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Abstract. We record a general asymptotic formula for colon of ideals and proceed to give
some applications regarding m-full, weakly m-full, and full ideals.

1 Introduction

Let R be a commutative ring, I an ideal and M ⊆ N finitely generated modules. One purpose
of this note is to record a formula of the form

InM :N J = 0 :N J + In−1M

for n� 0 and an ideal J ⊆ I containing any “general" generator of I . The precise and key local
statement is Theorem 2.2. We then give some corollaries. For instance if I, J,K are R-ideals,
then there is a number t > 0 such that

(J + InK) : I = J : I + In−1K

for each n ≥ t. See Corollaries 2.1 and 2.2.
Although these results are not too hard to prove and some special forms of them are well-

known to experts (see Remark 2.4 and [2, 8, 11]), we could not locate the most general versions
in the literature and found them rather convenient, thus it seems worth writing down.

Our main application (and original motivation) is to study the properties {m-full, weakly m-
full, full} for ideals asymptotically in a local ring (R,m). These type of ideals have recently
attracted renewed attention for some remarkable homological properties, see Definition 3.1 and
Remark 3.2. Using the results on colons we can quickly show that if (P ) is one of these proper-
ties, and I satisfies (P ), then I +Kmn is (P ) for n� 0, see Theorem 3.1.

In the final section we deal with regular local rings of dimension two and give stronger ver-
sions of the previous results. For instance, we give a precise condition for when (I + J) : x =
I : x+ J : x for a general x ∈ m (Proposition 4.2) and apply it to show when the sum of two m-
full ideals is m-full (Corollary 4.3). We show that certain invariants defined using the properties
{m-full, weakly m-full, full} and our stabilizing results coincide in this case.

2 General results on colon

First we consider the local situation (R,m, k). We say that x ∈ I is a general element if the
image of x in V = I/mI lies in a non-zero Zariski open subset U of V .

Lemma 2.1. Let (R,m, k) be a local ring with infinite residue field. Let I be an ideal of R and
M ⊆ N be finitely generated R-modules. Assume that grade(I,N) > 0. Then there is a number
t > 0 such that for a general element x in I , we have

InM :N x = In−1M

for each n ≥ t.



Proof. The case M = N is [8, Lemma 8.5.3]. Thus, it is enough to show that for n � 0,
InM :N x ⊆M , as then we would have

InM :N x = InM :M x = In−1M

Let S be the set of associated primes of N/M that are not in Supp(I). We can choose x
outside all primes in S. Let L = M :N x∞, then L/M is I-torsion. Clearly InM :N x ⊆ L.
Also, by the case M = N , InM :N x ⊆ In−1N , so InM :N x ⊆ L∩ In−1N . But by Artin-Rees
Lemma, there is a constant c so that if n− 1 ≥ c

L ∩ In−1N = In−1−c(L ∩ IcN) ⊆ In−1−cL ⊆M

if n− c is big enough.

Theorem 2.2. Let (R,m, k) be a local ring with infinite residue field. Let I be an ideal of R and
M ⊆ N be finitely generated R-modules. Then there is a number t > 0 such that for a general
element x in I , given any ideal J with x ∈ J ⊆ I we have

InM :N J = 0 :N J + In−1M

for each n ≥ t.
Proof. Let L = ΓI(N) = 0 :N I∞, N ′ = N/L and M ′ = (M + L)/L (which can be zero
modules). Then L :N I = L, in other words grade(I,N ′) > 0, so we can choose t1 such that
for any superficial element x (which is also regular on N ) in I with respect to N , the following
holds: InM ′ :N ′ x = In−1M ′ for n ≥ t1, by Lemma 2.1.

On the other hand, by Artin-Rees Lemma there is t2 such that L ∩ InM = 0 for n ≥ t2.
Choose t = max{t1, t2}. For any n ≥ t

0 :N J = (L :N J) ∩ (InM :N J) = L ∩ (InM :N J)

(the second equality holds since J contains a regular element on N ′, hence L :N J = L).
We rewrite InM ′ :N ′ x = In−1M ′ as

(L+ InM) :N x = L+ In−1M

Let u ∈ InM :N J ⊆ (L + InM) :M x. Thus u = v + w with v ∈ L and w ∈ In−1M . But
then v ∈ L ∩ InM :N J = 0 :N J , which gives the non-trivial inclusion and proves the desired
equality.

Remark 2.3. Looking at the proof, one sees that the only place we use J ⊆ I is to show that
v = u − w ∈ InM :N J . So it is enough to assume that JIn−1M ⊆ InM for n � 0, in other
words J is inside the Ratliff-Rush closure of I (with respect to M ) (see [10, 12]).

Corollary 2.1. Let R be a Noetherian commutative ring. Let I be an ideal of R and M ⊆ N be
finitely generated R-modules. Then there is a number t > 0 such that

InM :N I = 0 :N I + In−1M

for each n ≥ t.
Proof. Let Xn, Yn be the left and right hand sides respectively. Clearly Xn ⊇ Yn, so to prove
the equality it is enough to prove (Xn)p = (Yn)p for each p ∈ Ass(Yn). As S = ∪i≥1Yn is
finite, see [2], we can reduce to the local case (our t will be the maximal of all tp that works for
each localization at p ∈ S. Once reduced to the case (R,m, k) local we can make a faithfully
flat extension to assume k is infinite and apply 2.2 with J = I (note that as k is infinite, general
elements exist).

Remark 2.4. The case M = N and 0 :M I = 0 of Corollary 2.1 appeared as Lemma (4) in
[2], which refers to the proof of [11, Theorem 4.1], which was the case when M = N = R and
0 : I = 0.

Corollary 2.2. Let R be a Noetherian commutative ring and I, J,K be R-ideals. Then there is a
number t > 0 such that

(J + InK) : I = J : I + In−1K

for each n ≥ t.
Proof. We apply 2.1 with M = (K + J)/J,N = R/J .
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3 Applications

For an ideal I in a local ring (R,m, k) let µ(I) denote the minimal number of generators of I
and ord(I) = max{t |I ⊆ mt}.

Definition 3.1. Let (R,m, k) be a local ring. We say that an ideal I of R is

(i) m-full if Im : x = I for a general x ∈ m (assuming k is infinite).

(ii) full if I : x = I : m for a general x ∈ m (assuming k is infinite).

(iii) weakly m-full (or basically full) if Im : m = I .

(iv) Burch if Im : m 6= I : m (equivalently Im 6= (I : m)m).

Remark 3.2. The above types of ideals have been studied by many authors and shown to enjoy
remarkable properties. When depthR/I = 0, we have m-full =⇒ weakly m-full =⇒ Burch.
Burch ideals and their quotients enjoys unexpectedly strong properties ([5]). Weakly m-full
ideals are also called basically full in [7] and weakly m-full in [4]. See [3, 4, 5, 6, 7, 9, 14, 15, 16]
and the references therein for more details.

Remark 3.3. Even when k is finite, we can still define m-fullness or fullness by passing to the
faithfully flat extension SmS with S = R[X1, . . . , Xn], n = µ(m).

Theorem 3.1. Let (R,m, k) be a local ring and J,K ideals ofR. Let (P ) be one of the properties
{m -full, weakly m-full, full}. The following are equivalent

(i) J is (P ).

(ii) J +Kmn is (P ) for n� 0.

Proof. We shall give the proof for (P ) = “m-full", the other cases are similar. By 2.2, we have
for Jn = J +mn and n� 0:

Jnm : x = Jm : x+Kmn

So Jn is m-full for n � 0 is equivalent to Jm : x + Kmn = J + Kmn for n � 0. Working
in R/J , this is equivalent to Jm : x ⊆ Kmn for n � 0, which is equivalent to Jm : x = 0, or
Jm : x = J .

The below Corollary extends [7, Theorem 7.2], see Remark 3.2 and [16, Proposition 3.3 (ii)].

Corollary 3.2. Let (R,m, k) be a local ring. The following are equivalent:

(i) depthR > 0.

(ii) Kmn is weakly m-full for n� 0 and some ideal K.

(iii) Kmn is weakly m-full for n� 0 and any ideal K.

(iv) Kmn is m-full for n� 0 and some ideal K.

(v) Kmn is m-full for n� 0 and any ideal K.

Proof. Take J = 0 in 3.1.

Remark 3.4. The notions in Definition 3.1 can be extended to submodules, see for instance [7]
or [13, Section 8.4.3]. One can use Theorem 2.2 to derive similar results to 3.1 and 3.2.

The following observation involves Burch ideals, which turns out to be rather easy to con-
struct by adding products with m.

Proposition 3.3. Let (R,m, k) be a local ring and I, J be ideals of R such that Jm * Im. Then
I + Jm is Burch. In particular, if dimR/I > 0 and dimR/J = 0, then I + Jm is Burch.

Proof. Suppose I +Jm is not Burch, then Im+Jm2 = [(I +Jm) : m]m ⊇ (I +J)m. Working
modulo Im, we get Jm2 ⊆ Jm, so Jm ⊆ Im. The second assertion is clear.
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Because of Theorem 3.1 and Corollary 3.2, it seems reasonable to make:

Definition 3.5. For an ideal I in a local ring (R,m, k) with depthR > 0, we define:

n1(I) := min{t ≥ 0 | Imn is m-full for all n ≥ t}

n2(I) := min{t ≥ 0 | Imn is full for all n ≥ t}

n3(I) := min{t ≥ 0 | Imn is weakly m-full for all n ≥ t}

Remark 3.6. Clearly n1(I) ≥ max{n2(I), n3(I)}.

These invariants will be shown to be equal when R is a regular local ring of dimension 2, see
the next section.

The following observation comes from a question by Neil Epstein.

Proposition 3.4. Let (P ) be one of the properties {m -full, weakly m-full, full}. Let {Ii}i∈X be
a family of ideals such that each Ii is (P ). Then

⋂
i∈X Ii is (P ) (for m-full or full we need to

assume that the cardinality of X is less than that of the residue field k).

Proof. Suppose each Ii is m-full and let Ui ⊆ V = m/m2 be the Zariski open set for which
the condition mIi : x = Ii holds when the image of x is in Ui. We claim that

⋂
i∈X Ui is non-

empty (this is where we need the cardinality condition). Let Vi = V − Ui, then each Vi has
dimension less than dimV . If dimV = 1, then

⋃
Vi has cardinality |X|, while |V | = |k|, so

we are done. If dimV > 1, one can do induction by taking a general hyperplane H such that
dimVi ∩H < dimVi for each i.

By the above claim, for a general x, m(
⋂

i∈X Ii) : x ⊆ mIi : x = Ii for each i ∈ X . Thus the
left hand side is in

⋂
i∈X Ii and we are done.

For full ideals, we use the existence of general x as above and (
⋂

i∈X Ii) : J =
⋂

i∈X(Ii : J).
The proof for weakly m-full is simpler as we don’t need to use cardinalities.

4 Two dimensional regular local rings

In this section we focus on the case when R is a regular local ring of dimension two. In this
case, any ideal I can be written as I = fJ where J is m-primary, and it is easy to see that
I : x = f(J : x) and I : m = f(J : m). Thus, using the results on m-primary ideals carefully
developed in [8, Chapter 14], we see that:

Proposition 4.1. Let (R,m, k) be a regular local ring of dimension two and I be an ideal. Write
I = fJ where J is m-primary. The following are equivalent:

(i) I is m-full.

(ii) I is full.

(iii) J is m-full.

(iv) J is full.

(v) µ(J) = ord(J) + 1.

A crucial and interesting result in dimension two is that the product of two full ideals is full.
However, even in this situation, the sum of two full ideals may not be full. For instance, take
I = (x2), J = (y2) or I = (x2, xy2, y3) and J = (x3, x2y, y2). We shall establish a precise
condition for when the sum of two full ideal is full.

Proposition 4.2. Let (R,m, k) be a regular local ring of dimension two and I, J are nonzero
ideals. The following are equivalent.

(i) (I + J) : x = (I : x) + (J : x) for a general x ∈ m.

(ii) ord(I ∩ J) = max{ord(I), ord(J)}.
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Proof. Consider the exact sequence 0→ R
I∩J →

R
I ⊕

R
J →

R
I+J → 0. Then quite generally, (1)

is equivalent to the surjectivity of the map induced when tensoring the sequence with R/xR:

TorR1 (R/I⊕R/J,R/xR) = (I : x)/I⊕(J : x)/J → TorR1 (R/(I+J), R/xR) = (I+J) : x/(I+J)

Hence, (1) is equivalent to the exactness of

0→ R

(I ∩ J, x)
→ R

(I, x)
⊕ R

(J, x)
→ R

(I + J, x)
→ 0

Note that since we are in dimension two andR is regular, length(R/(I, x)) = ord(I) and ord(I+
J) = min{ord(I), ord(J)}, so we are done.

Corollary 4.3. Let I, J be full ideals such that ord(I ∩ J) = max{ord(I), ord(J)}. Then I + J
is full. In particular I +ma is full for any a.

Proof. Then by 4.2, for a general x:

(I + J) : x = (I : x) + (J : x) ⊆ (I : m) + (J : m) ⊆ (I + J) : m

which is all we need.
For the last assertion, we need to show that ord(I ∩ ma) = max{ord(I), a}. If ord(I) ≥ a

then I ∩ ma = I . If b = ord(I) < a, then Ima−b ⊆ I ∩ ma ⊆ ma which forces the desired
equality.

Finally, we prove the equality of the invariants defined in 3.5 in this special case.

Proposition 4.4. If R is regular local of dimension 2, then n1(I) = n2(I) = n3(I) for each ideal
I .

Proof. Since being m-full and full are equivalent in this case, it suffices to prove n1(I) = n3(I).
Let a = n1(I) and b = n3(I). Since being weakly m-full is equivalent to µ(mI) = µ(I) + 1. we
have that µ(Imb) = µ(Ima)+b−a. However, as Imb is full, we have µ(Imb) = ord(Imb)+1 =
ord(Ima) + b− a+ 1. So µ(Ima) = ord(Ima) + 1, showing that Ima is full already.

Example 4.1. Let I = (xa, ya) ⊂ R = k[[x, y]]. It is easy to show (e.g. using 4.1) that Imn is
m-full if and only if n ≥ a− 1, so ni(I) = a− 1 for all i ∈ {1, 2, 3}.

Question 4.5. Can we find good lower and upper bounds for ni(I)? Even when R is regular and
2-dimensional, it is not clear to the author how to do this.
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