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Abstract. In the present paper, we discuss the additivity of n-multiplicative (α, β)-derivations,
for the class of associative rings satisfying Martindale’s conditions.

1 Introduction

Let R be an associative ring, α, β : R → R automorphisms and n be a positive integer ≥ 2. A
mapping δ : R→ R is called a n-multiplicative (α, β)-derivation of R if

δ(a1a2 · · · an) =
n∑
i=1

β(a1) · · ·β(ai−1)δ(ai)α(ai+1) · · ·α(an),

for arbitrary elements a1, · · · , an ∈ R. If δ(a1a2) = δ(a1)α(a2) + β(a1)δ(a2), for arbitrary
elements a1, a2 ∈ R, we just say that δ is a multiplicative (α, β)-derivation of R. A mapping
δ : R→ R is called a n-multiplicative derivation of R if

δ(a1a2 · · · an) =
n∑
i=1

a1 · · · δ(ai) · · · an,

for arbitrary elements a1, · · · , an ∈ R. If δ(a1a2) = δ(a1)a2 + a1δ(a2), for arbitrary elements
a1, a2 ∈ R, we just say that δ is a multiplicative derivation of R.

The study of the question of when a n-multiplicative derivation is additive has become an
active research area in associative rings theory. The first result in this direction is due to Daif [3]
who obtained a pioneer result in 1991, which in his condition requires that the ring possess idem-
potents. It is worth noting that this question is not limited only to the scope of n-multiplicative
derivations. Over the last two decades, several papers have been published on the additivity of
various mappings on rings. For instance, in the papers [1, 2, 4, 5, 6, 7, 8, 9] we can find important
investigations involving studies on the additivity of Jordan (triple) derivations, of Jordan (triple)
higher derivable mappings, of Jordan (triple) multiplicative maps and Jordan elementary maps.
Within the scope of n-multiplicative derivations Wang [10] considered this question, presenting
a unified technique for the discussion of the additivity of n-multiplicative maps on associative
rings with idempotents, satisfying Martindale’s conditions [9]. To this end, he proved the fol-
lowing main theorem:

Theorem 1.1. [10, Theorem 1.2.] Let R be an associative ring containing a family {eα}α∈Λ of
non-trivial idempotents which satisfies as follows:

(i) If x ∈ R is such that xR = 0, then x = 0;

(ii) If x ∈ R is such that eαRx = 0 for all α ∈ Λ, then x = 0 (and hence Rx = 0 implies
x = 0);

(iii) For each α ∈ Λ and x ∈ R if eαxeαR(1− eα) = 0, then eαxeα = 0.
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Suppose that f : R×R→ R is a mapping and k a positive integer satisfying:

(iv) f(x, 0) = f(0, x) = 0;

(v) u1 · · ·ukf(x, y) = f(u1 · · ·ukx, u1u2 · · ·uky);

(vi) f(x, y)u1u2 · · ·uk = f(xu1u2 · · ·uk, yu1u2 · · ·uk);

for all elements x, y, u1, u2, · · · , uk ∈ R.
Then f(x, y) = 0, for all elements x, y ∈ R.

As a consequence of this result, he obtained the following corollary:

Corollary 1.2. [10, Corollary 3.3.] Let R be an associative ring containing a family {eα}α∈Λ

of non-trivial idempotents which satisfies as follows:

(i) If x ∈ R is such that xR = 0, then x = 0;

(ii) If x ∈ R is such that eαRx = 0 for all α ∈ Λ, then x = 0 (and hence Rx = 0 implies
x = 0);

(iii) For each α ∈ Λ and x ∈ R if eαxeαR(1− eα) = 0, then eαxeα = 0.

Then any n-multiplicative derivation δ of R is additive.

In the present paper, we also investigate this same question and consider the same approach
as was taken by Wang. To this end, we generalized the Theorem 1.1 and as a consequence of this
fact we discuss the additivity of n-multiplicative (α, β)-derivations, for the class of associative
rings satisfying Martindale’s conditions.

Let R be an associative ring and δ : R → R a mapping. According to Wang, let us set
f(x, y) = δ(x + y) − δ(x) − δ(y), for all elements x, y ∈ R. Then, we see that f(x, y) = 0, if
and only if, δ is additive. This observation also gives us a unified technique in the discussion of
the additivity of n-multiplicative (α, β)-derivations on associative rings.

2 The results

Let us state our main theorem.

Theorem 2.1. Let R be an associative ring containing a family {eγ}γ∈Γ of non-trivial idempo-
tents and α, β : R→ R be automorphisms which satisfy as follows:

(i) If x ∈ R is such that xR = 0, then x = 0;

(ii) If x ∈ R is such that β(eγ)Rx = 0 for all γ ∈ Γ, then x = 0 (and hence Rx = 0 implies
x = 0);

(iii) For each γ ∈ Γ and x ∈ R if β(eγ)xα(eγ)α
(
R(1 − eγ)

)
= 0, then

β(eγ)xα(eγ) = 0.

Suppose that f : R×R→ R is a mapping and k a positive integer satisfying:

(iv) f(x, 0) = f(0, x) = 0;

(v) β(u1)β(u2) · · ·β(uk)f(x, y) = f(u1u2 · · ·ukx, u1u2 · · ·uky);

(vi) f(x, y)α(u1)α(u2) · · ·α(uk) = f(xu1u2 · · ·uk, yu1u2 · · ·uk);

for all elements x, y, u1, u2, · · · , uk ∈ R.
Then f(x, y) = 0, for all elements x, y ∈ R.

Following the techniques presented by Wang [10], we organize the proof of Theorem 2.1 in
a series of Lemmas which have the same hypotheses. We begin with the following.

Lemma 2.2. β(u)f(x, y) = f(ux, uy) and f(x, y)α(u) = f(xu, yu) for all elements x, y, u ∈
R.
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Proof. For arbitrary elements x, y, u, u1, u2, · · · , uk ∈ R we have

β(u1) · · ·β(uk)β(u)f(x, y) = β(u1) · · ·β(uku)f(x, y)
= f(u1u2 · · ·ukux, u1u2 · · ·ukuy) = β(u1)β(u2) · · ·β(uk)f(ux, uy).

It follows that β(u1)β(u2) · · ·β(uk)
(
β(u)f(x, y) − f(ux, uy)

)
= 0. In view of conditions on

β and (ii), of the Theorem 2.1, we conclude that β(u)f(x, y) = f(ux, uy). Similarly, we prove
that f(x, y)α(u) = f(xu, yu).

Lemma 2.3. f(xii, yjk) = 0 = f(yjk, xii), for j 6= k.

Proof. Two cases are considered. First case. (i = j). For an arbitrary element ais ∈ Ris, we
have

f(xii, yjk)α(ais) = f(xiiais, yjkais) = f(xiiais, 0) = 0.

Also, for an arbitrary element aks ∈ Rks, we have

f(xii, yjk)α(aks) = f(xiiaks, yjkaks) = f(0, yjkaks) = 0.

Since α is an epimorphism, then we conclude that f(xii, yjk)R = 0 which implies that
f(xii, yjk) = 0, by condition (i) of the Theorem 2.1. Second case. (i 6= j). For an arbitrary
element asi ∈ Rsi, we have

β(asi)f(xii, yjk) = f(asixii, asiyjk) = f(asixii, 0) = 0.

Also, for an arbitrary element akj ∈ Rkj , we have

β(akj)f(xii, yjk) = f(akjxii, akjyjk) = f(0, akjyjk) = 0.

Since β is an epimorphism, then we conclude that Rf(xii, yjk) = 0 which implies that
f(xii, yjk) = 0, by condition (ii) of the Theorem 2.1.

Similarly we prove that f(yjk, xii) = 0, for j 6= k.

Lemma 2.4. f(x12, y12) = 0.

Proof. For an arbitrary element a1s ∈ R1s, we have

f(x12, y12)α(a1s) = f(x12a1s, y12a1s) = f(0, 0) = 0.

Also, for an arbitrary element a2s ∈ R1s, we have

f(x12, y12)α(a2s) = f(x12a2s, y12a2s)

= f(x12(a2s + y12a2s), e1(a2s + y12a2s))

= f(x12, e1)α(a2s + y12a2s) = 0,

by Lemma 2.3. It follows that f(x12, y12)R = 0 which implies that f(x12, y12) = 0.

Lemma 2.5. f(x11, y11) = 0.

Proof. For an arbitrary element a12 ∈ R12, we have

f(x11, y11)α(a12) = f(x11a12, y11a12) = 0.

Also, for an arbitrary element a = a11 + a12 + a21 + a22 ∈ R, we have

β(e1)f(x11, y11)α(e1)α
(
a(1− e1)

)
= β(e1)f(x11, y11)α(e1)α(a12 + a22)

= f(x11, y11)α(a12) = 0.

By condition (iii) of the Theorem 2.1, we obtain f(x11, y11) = β(e1)f(x11, y11)α(e1) = 0.
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Lemma 2.6. f(x11 + x12, y11 + y12) = 0.

Proof. For an arbitrary element aij ∈ Rij , we have

f(x11 + x12, y11 + y12)α(aij) = f(x1iaij , y1iaij) = 0.

It follows that f(x11 + x12, y11 + y12)R = 0 which implies that f(x11 + x12, y11 + y12) = 0.

Proof of Theorem 2.1. Let r, x, y be arbitrary elements of R. By Lemmas 2.2 and 2.6 we have

β(e1)β(r)f(x, y) = f(e1rx, e1ry) = 0.

It follow that β(e1)Rf(x, y) = 0. This allows us to conclude that β(eγ)Rf(x, y) = 0 for all
γ ∈ Γ, since e1 was chosen arbitrary. This results that f(x, y) = 0, by condition (ii) of the
Theorem 2.1. The theorem is proved. 2

3 Applications

Theorem 3.1. Let R be an associative ring containing a family {eγ}γ∈Γ of non-trivial idempo-
tents and α, β : R→ R be automorphisms which satisfy as follows:

(i) If x ∈ R is such that xR = 0, then x = 0;

(ii) If x ∈ R is such that β(eγ)Rx = 0 for all γ ∈ Γ, then x = 0 (and hence Rx = 0 implies
x = 0);

(iii) For each γ ∈ Γ and x ∈ R if β(eγ)xα(eγ)α
(
R(1− eγ)

)
= 0, then β(eγ)xα(eγ) = 0.

Then every n-multiplicative (β, α)-derivation of R is additive.

Proof. First, we observe that

δ(0) = δ(00 · · · 0︸ ︷︷ ︸
n terms

) =
n∑
i=1

β(0) · · ·β(0)δ(0)︸ ︷︷ ︸
i terms

α(0) · · ·α(0) =
n∑
i=1

0 · · · 0δ(0)︸ ︷︷ ︸
i terms

0 · · · 0 = 0.

Set f(x, y) = δ(x+ y)− δ(x)− δ(y) for all elements x, y ∈ R. Then f(x, 0) = 0 = f(0, x), for
all element x ∈ R. This results that for arbitrary elements x, y, a1, · · · , an−1 ∈ R,

β(a1) · · ·β(an−1)f(x, y)

= β(a1) · · ·β(an−1)
(
δ(x+ y)− δ(x)− δ(y)

)
= β(a1) · · ·β(an−1)δ(x+ y)− β(a1) · · ·β(an−1)δ(x)

−β(a1) · · ·β(an−1)δ(y)

= δ(a1 · · · an−1(x+ y))

−
n−1∑
i=1

β(a1) · · ·β(ai−1)δ(ai)︸ ︷︷ ︸
i terms

α(ai+1) · · ·α(an−1)α(x+ y)

−δ(a1 · · · an−1x) +
n−1∑
i=1

β(a1) · · ·β(ai−1)δ(ai)︸ ︷︷ ︸
i terms

α(ai+1) · · ·α(an−1)α(x)

−δ(a1 · · · an−1y) +
n−1∑
i=1

β(a1) · · ·β(ai−1)δ(ai)︸ ︷︷ ︸
i terms

α(ai+1) · · ·α(an−1)α(y)

= δ(a1 · · · an−1(x+ y))− δ(a1 · · · an−1x)− δ(a1 · · · an−1y)

= f(a1 · · · an−1x, a1 · · · an−1y).

Similarly, we prove that

f(x, y)α(a1)α(a2) · · ·α(an−1) = f(xa1a2 · · · an−1, ya1a2 · · · an−1).

By Theorem 2.1, we obtain f(x, y) = 0, for all elements x, y ∈ R.



ADDITIVITY OF n-MULTIPLICATIVE (α, β)-DERIVATIONS 393

Corollary 3.2. Let R be a 2-torsion free associative prime ring containing a non-trivial idem-
potent e1 and α, β : R → R be automorphisms. Then every n-multiplicative (β, α)-derivation
of R is additive.

Proof. It is evident that the conditions (i) and (ii), of the Theorem 2.1, are satisfied. Now, for
an arbitrary element x ∈ R, suppose that β(e1)xα(e1)α

(
R(1− e1)

)
= 0. Then, for an arbitrary

element r = r11 + r12 + r21 + r22 ∈ R we have

0 = β(e1)xα(e1)α
(
r(1− e1)

)
= β(e1)xα(e1)α(r12 + r22) = β(e1)xα(e1)α(r12)

= α
(
(α−1β)(e1)α

−1(x)e1r12
)

This results that (α−1β)(e1)α−1(x)e1r12 = 0, for an arbitrary element r12 ∈ R12. By [5, Lemma
2] we obtain (α−1β)(e1)α−1(x)e1 = 0 which implies that

β(e1)xα(e1) = α
(
(α−1β)(e1)α

−1(x)e1
)
= 0.

This allows us to conclude that every n-multiplicative (β, α)-derivation of R is additive.

The ideas that follow below are similar those presented by Wang [10].

Let X be a Banach space. Denote by B(X) the algebra of all bounded linear operators on X.A
subalgebra of B(X) is called a standard operator algebra if it contains all finite rank operators.
It is well known that every standard operator algebra is prime. Moreover, if dimX ≥ 2, then
there exists a non-trivial idempotent operator of rank one in B(X). Therefore, it follows from
Corollary 3.2 that

Corollary 3.3. Let X be a Banach space with dimX ≥ 2, A be a standard operator algebra on
X and α, β : R → R be automorphisms. Then any n-multiplicative (α, β)-derivation of A is
additive.
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