RESULTS ON UNICITY OF MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION REGARDING MULTIPLICITY

HARINA P. WAGHAMORE, VIJAYLAXMI S. B.
Communicated by Hari Mohan Srivastava

MSC 2010 Classifications: Primary 30D35.
Keywords and phrases: Meromorphic functions, Differential polynomials, Multiplicity.

Abstract

In this note, we study the existence of uniqueness of two meromorphic or entire functions which is concerning about differential polynomials sharing a small function with regard to multiplicity. Our results generalize and improve the results obtained in [2] and also solves the open problems posed by M. B. Ahamed [2].

1 Introduction

In this paper, by meromorphic functions we always mean meromorphic in the whole complex plane \mathbb{C}. We assume that the reader is familiar with standard notations of Nevanlinna theory as explained well in $[10,11]$, for a meromorphic function $f(z)$, we denote the proximity function as $m(r, f)$, the counting function by $N(r, f)$, the reduced counting function by $\bar{N}(r, f)$ and the characteristic function by $T(r, f)$. Two meromorphic functions f and g share the value a IM(ignoring multiplicities) if f and g have the same a-points counted by ignoring the multiplicities, we say that f and g share $a \mathrm{CM}$ (counting multiplicities), if $f-a$ and $g-a$ have the same zeros with same multiplicities. Also, we note that when $a=\infty$, the zeros of $f-a$ are the poles of f.
Also, a meromorphic function $a \equiv a(z)(\not \equiv 0, \infty)$ is said to be a small function of f provided $T(r, a)=S(r, f)$ i.e., $T(r, a)=O(T(r, f))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure.

In 2013, S. S. Bhoosnurmath and V. Pujari [7], obtained the following uniqueness results.
Theorem 1.1.([7]) Let f and g be two non-constant meromorphic functions, $n \geq 11$ be an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z C M$, f and g share ∞ IM, then either $f \equiv g$ or

$$
g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, f=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}
$$

where h is a non-constant meromorphic function.
Theorem 1.2. ([7]) Let f and g be two, non-constant meromorphic functions, $n \geq 12$ be an integer. If $f^{n}(f-1)^{2} f^{\prime}$ and $g^{n}(g-1)^{2} g^{\prime}$ share $z C M, f$ and g share $\infty I M$, then $f \equiv g$.

Theorem 1.3. ([7]) Let f and g be two non-constant entire functions, $n \geq 7$ be an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z C M$, then $f \equiv g$.

In 2016, the authors Harina P. Waghamore and S. Anand [14] generalize theorems 1.1, 1.2 and 1.3 by considering the functions $f^{n}(f-1)^{m} f^{\prime}$ and $g^{n}(g-1)^{m} g^{\prime}$. They also proved that the second condition in Theorem A can be omitted. The results obtained are as follows.

Theorem 1.4. ([14]) Let f and g be two non-constant meromorphic functions, $n \geq m+10$ be an integer. If $f^{n}(f-1)^{m} f^{\prime}$ and $g^{n}(g-1)^{m} g^{\prime}$ share $z C M$, f and g share $\infty I M$, then $f \equiv g$.

Theorem 1.5. ([14]) Let f and g be two non-constant entire functions, $n \geq m+6$ be an integer. If $f^{n}(f-1)^{m} f^{\prime}$ and $g^{n}(g-1)^{m} g^{\prime}$ share $z C M$, then $f \equiv g$.
The author M. B. Ahamed [2] by introducing a general polynomial improved as well as extended the above mentioned results when they share $\alpha(z) \mathrm{CM}$. The following are the results obtained. But, first let me give the definition of the general polynomial of degree $n+m$ used in [6] which can also be expressed as a transformation.
Definition 1.6. ([6]) Let

$$
\mathcal{P}(w)=w^{n+m}+\ldots+a_{n} w^{n}+\ldots+a_{0}=a_{n+m} \prod_{i=1}^{s}\left(w-w_{p_{i}}\right)^{p_{i}}
$$

where $a_{j}(j=0,1,2, \ldots, n+m-1)$ and $w_{p_{i}}(i=1,2, \ldots, s)$ are distinct finite complex numbers and $2 \leq s \leq n+m$ and $p_{1}, p_{2}, \ldots, p_{s}, s \geq 2, n, m$ and k are all positive integers with $\sum_{i=1}^{s} p_{i}=$ $n+m$. Also, let $p>\max _{p \neq p_{i}, i=1,2, \ldots, r}\left\{p_{i}\right\}, r=s-1$, where r and s are two positive integers.

Let $\mathcal{L}\left(w_{*}\right)=\prod_{i=1}^{s-1}\left(w_{*}+w_{p}-w_{p_{i}}\right)^{p_{i}}=b_{q} w_{*}^{q}+b_{q-1} w_{*}^{q-1}+\ldots+b_{0}$, where $w_{*}=w-w_{p}, q=$ $n+m-p$. So it is clear that $\mathcal{P}(w)=w_{*}^{p} \mathcal{L}\left(w_{*}\right)$. In particular, if we choose $b_{i}=(-1)^{i q} C_{i}$, for $i=0,1, \ldots, q$. Then we get, easily $\mathcal{P}_{*}(w)=w_{*}^{p}\left(w_{*}-1\right)^{q}$. Note that if $w_{p}=0$ and $p=n$, then we get $w=w_{*}$ and $\mathcal{P}_{*}(w)=w^{n}(w-1)^{m}$.
Theorem 1.7. ([2]) Let f and g hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be any two non-constant non-entire meromorphic functions, $n \geq q+9, q \in \mathbb{N}$, be an integer. If $\mathcal{P}_{*}(f) f_{*}^{\prime}=$ $f_{*}^{p}\left(f_{*}-1\right)^{q} f_{*}^{\prime}$ and $\mathcal{P}_{*}(g) g_{*}^{\prime}=g_{*}^{p}\left(g_{*}-1\right)^{q} g_{*}^{\prime}$ share $\alpha \equiv \alpha(z)(\not \equiv 0, \infty) C M, f_{*}$ and g_{*} share ∞ IM, then $f \equiv g$.
Theorem 1.8. ([2]) Let f and g hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be any two non-constant entire functions, $n \geq q+5, q \in \mathbb{N}$, be an integer. If $\mathcal{P}_{*}(f) f_{*}^{\prime}=f_{*}^{p}\left(f_{*}-1\right)^{q} f_{*}^{\prime}$ and $\mathcal{P}_{*}(g) g_{*}^{\prime}=g_{*}^{p}\left(g_{*}-1\right)^{q} g_{*}^{\prime}$ share $\alpha \equiv \alpha(z)(\not \equiv 0, \infty) C M$, then $f \equiv g$.
In the same paper the author M. B. Ahamed [2] posed the following open questions.
Question 1.1. Is it possible to reduce further the lower bounds of p in Theorem 1.7 and Theorem 1.8?

Question 1.2. To get the uniqueness between f and g is it possible to replace $f_{*}^{p}\left(f_{*}-1\right)^{q} f_{*}^{\prime}$ and $g_{*}^{p}\left(g_{*}-1\right)^{q} g_{*}^{\prime}$ respectively by $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$, where $P_{m}\left(f_{*}\right)=a_{m} f_{*}^{m}+$ $a_{m-1} f_{*}^{m-1}+\ldots+a_{1} f_{*}+a_{0}$ in Theorem 1.7 and Theorem 1.8?

Our aim in writing this paper is to give a positive answer to the above questions. By considering functions $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$, where f_{*} and g_{*} are any two meromorphic functions with multiplicity atleast l. We obtain two results which improves and generalizes Theorems 1.7 and 1.8.

The main results of this article are as follows:
Theorem 1.9. Let f, g and hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be any two non-constant meromorphic functions with multiplicity atleast $l, p \geq \frac{2 m-(m+1) l+10}{l}, m \in \mathbb{N}$, be an integer. If $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share $\alpha \equiv \alpha(z)(\not \equiv 0, \infty) C M, f_{*}$ and g_{*} share $\infty I M$, then $f \equiv g$.
Theorem 1.10. Let f, g and hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be any two nonconstant entire functions with multiplicity atleast $l, p \geq \frac{2 m-(m+1) l+6}{l}, m \in \mathbb{N}$, be an integer. If $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share $\alpha \equiv \alpha(z)(\not \equiv 0, \infty) C M$, then $f \equiv g$.
Remark 1.11. (i) If suppose we let $l=1, P_{m}\left(f_{*}\right)=\left(f_{*}-1\right)^{q}$, here $m=q$. Then our conditions in Theorem 1.9 and Theorem 1.10 will reduce to Theorem 1.7 and Theorem 1.8 respectively. That is, $p \geq q+9$ and $p \geq q+5$.
(ii) Let $l=2$, then the condition in Theorem 1.9 will be $p \geq 4$ and the condition in Theorem 1.10 will be $p \geq 2$.

Therefore, we make a note that by introducing the concept of multiplicity, we reduce the lower bound of p. Also, as the multiplicity increases the condition value decreases.

2 Lemmas

The following lemmas are used in the sequel.
Lemma 2.1. ([15]) Let f_{1}, f_{2} and f_{3} be non-constant meromorphic functions such that $f_{1}+$ $f_{2}+f_{3}=1$. If f_{1}, f_{2} and f_{3} are linearly independent, then

$$
T\left(r, f_{1}\right)<\sum_{i=1}^{3} N_{2}\left(r, \frac{1}{f_{i}}\right)+\sum_{i=1}^{3} \bar{N}(r, f)+o(T(r))
$$

where $T(r)=\max _{1 \leq i \leq 3}\left\{T\left(r, f_{i}\right)\right\}$ and $r \notin E$.
Lemma 2.2. ([18]) Let f_{1} and f_{2} be non-constant meromorphic functions. If $c_{1} f_{1}+c_{2} f_{2}=c_{3}$, where $c_{i}, i=1,2,3$ are non-zero constants, then

$$
T\left(r, f_{1}\right) \leq \bar{N}\left(r, f_{1}\right)+\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}\right)+S\left(r, f_{1}\right)
$$

Lemma 2.3. ([18]) Let f be a non-constant meromorphic function and k be a non-negative integer, then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.4. ([20]) Suppose that f is a non-constant meromorphic function and $P(f)=a_{n} f^{n}+$ $a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}$, where $a_{n}(\not \equiv 0), a_{n-1}, \ldots, a_{1}, a_{0}$ are small meromorphic functions of $f(z)$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Lemma 2.5. ([16]) Let f_{1}, f_{2} and f_{3} be three meromorphic functions satisfying $\sum_{i=1}^{3} f_{i}=1$, then the functions $g_{1}=-\frac{f_{3}}{f_{2}}, g_{2}=\frac{1}{f_{2}}$ and $g_{3}=-\frac{f_{1}}{f_{2}}$ are linearly independent when f_{1}, f_{2} and f_{3} are linearly independent.
Lemma 2.6. ([2]) Let $\Psi(z)=c^{2}\left(z^{p-q}-1\right)^{2}-4 b\left(z^{p-2 q}-1\right)\left(z^{p}-1\right)$, where $b, c \in \mathbb{C}-\{0\}$, $\frac{c^{2}}{4 b}=\frac{p(p-2 q)}{(p-q)^{2}} \neq 1$, then $\Psi(z)$ has exactly one multiple zero of multiplicity 4 which is 1 .

Lemma 2.7. Let f, g and hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be any two non-constant meromorphic functions with multiplicity atleast l and $\alpha \equiv \alpha(z)(\equiv \equiv 0, \infty)$ be a small function of f and g. If $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share α CM and $p \geq \frac{m-(m-2) l+5}{l}$, then

$$
T\left(r, g_{*}\right) \leq\left[\frac{l(p+m+2)}{(p+m-2) l-(m+4)}\right] T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
$$

Proof. First, by applying the second fundamental theorem on $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$, we get

$$
\begin{align*}
T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right) & \leq \bar{N}\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \\
& +\bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha}\right)+S\left(r, g_{*}\right) \tag{2.1}\\
& \leq \bar{N}\left(r, g_{*}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \\
& +\bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha}\right)+S\left(r, g_{*}\right)
\end{align*}
$$

Now, by applying first fundamental theorem, we get

$$
\begin{align*}
(p+m) T\left(r, g_{*}\right) & \leq T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right)\right)+S\left(r, g_{*}\right) \\
& \leq T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right)+T\left(r, \frac{1}{g_{*}^{\prime}}\right)+S\left(r, g_{*}\right) \tag{2.2}
\end{align*}
$$

Combining (2.1) and (2.2), we get

$$
\begin{align*}
(p+m) T\left(r, g_{*}\right) & \leq \bar{N}\left(r, g_{*}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{p}}\right)+\bar{N}\left(r, 0 ; P_{m}\left(g_{*}\right)\right)+\bar{N}\left(r, \frac{1}{g_{*}^{\prime}}\right) \\
& +\bar{N}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha}\right)+T\left(r, g_{*}^{\prime}\right)+S\left(r, g_{*}\right) \tag{2.3}
\end{align*}
$$

Since $S\left(r, g_{*}\right)=T(r, \alpha)=S\left(r, f_{*}\right)$, we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha}\right) & \leq T\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha}\right)+O(1) \\
& \leq T\left(r, \frac{1}{f_{*}^{p}}\right)+T\left(r, \frac{1}{P_{m}\left(f_{*}\right)}\right)+T\left(r, \frac{1}{f_{*}^{\prime}}\right)+T(r, \alpha)+O(1) \\
& \leq(p+m+2) T\left(r, f_{*}\right)+S\left(r, g_{*}\right) \tag{2.4}
\end{align*}
$$

Now taking (2.4) in (2.3), we get

$$
\begin{aligned}
(p+m) T\left(r, g_{*}\right) & \leq \bar{N}\left(r, \frac{1}{g_{*}}\right)+\bar{N}\left(r, \frac{1}{P_{m}\left(g_{*}\right)}\right)+\bar{N}\left(r, g_{*}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{\prime}}\right) \\
& +(p+m+2) T\left(r, f_{*}\right)+2 T\left(r, g_{*}\right)+S\left(r, g_{*}\right)
\end{aligned}
$$

Now since zeros and poles of f_{*} and g_{*} are of multiplicities atleast l, we have

$$
\begin{equation*}
\bar{N}\left(r, f_{*}\right) \leq \frac{1}{l} N\left(r, f_{*}\right) \leq \frac{1}{l} T\left(r, f_{*}\right) ; \bar{N}\left(r, \frac{1}{f_{*}}\right) \leq \frac{1}{l} N\left(r, \frac{1}{f_{*}}\right) \leq \frac{1}{l} T\left(r, f_{*}\right) . \tag{2.5}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{N}\left(r, g_{*}\right) \leq \frac{1}{l} N\left(r, g_{*}\right) \leq \frac{1}{l} T\left(r, g_{*}\right) ; \bar{N}\left(r, \frac{1}{g_{*}}\right) \leq \frac{1}{l} N\left(r, \frac{1}{g_{*}}\right) \leq \frac{1}{l} T\left(r, g_{*}\right) \tag{2.6}
\end{equation*}
$$

So, we get

$$
\begin{aligned}
(p+m) T\left(r, g_{*}\right) & \leq \frac{1}{l} T\left(r, \frac{1}{g_{*}}\right)+\frac{m}{l} T\left(r, \frac{1}{g_{*}}\right)+\frac{1}{l} T\left(r, g_{*}\right)+\frac{2}{l} T\left(r, g_{*}\right) \\
& +(p+m+2) T\left(r, f_{*}\right)+2 T\left(r, g_{*}\right)+S\left(r, g_{*}\right) \\
& \leq\left(\frac{m+4+2 l}{l}\right) T\left(r, g_{*}\right)+(p+m+2) T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
\end{aligned}
$$

So,

$$
\left[\frac{(p+m-2) l-(m+4)}{l}\right] T\left(r, g_{*}\right) \leq(p+m+2) T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
$$

Thus, we get

$$
T\left(r, g_{*}\right) \leq\left[\frac{l(p+m+2)}{(p+m-2) l-(m+4)}\right] T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
$$

where $p \geq \frac{m-(m-2) l+5}{l}$.
Hence the proof.
Lemma 2.8. Let f, g and hence $f_{*}=f-w_{p}$ and $g_{*}=g-w_{p}, w_{p} \in \mathbb{C}$ be two non-constant entire functions with multiplicity atleast l. Let $\alpha \equiv \alpha(z)(\not \equiv 0, \infty)$ be a small function of f and g. If $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share $\alpha C M$ and $p \geq \frac{m-(m-2) l+2}{l}$, then

$$
T\left(r, g_{*}\right) \leq\left[\frac{l(p+m+2)}{(p+m-2) l-(m+1)}\right] T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
$$

Proof. Since both the functions f, g and hence f_{*} and g_{*} are entire functions, so we have $\bar{N}(r, f)=0=\bar{N}(r, g) ; \bar{N}\left(r, f_{*}\right)=0=\bar{N}\left(r, g_{*}\right)$. Now continuing the proof on lines of proof of Lemma 2.7, we prove Lemma 2.8.

3 Proof of theorems

Proof. (Proof of Theorem 1.9) By hypothesis, $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share $\alpha \equiv \alpha(z)$ CM, also f_{*} and g_{*} share $\infty \mathrm{IM}$, so let us suppose that

$$
\begin{equation*}
\mathcal{H} \equiv \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha} \tag{3.1}
\end{equation*}
$$

From (3.1), we have

$$
\begin{aligned}
T(r, \mathcal{H}) & =T\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha}\right) \\
& \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha\right)+T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha\right)+O(1) \\
& \leq(p+m+2)\left[T\left(r, f_{*}\right)+T\left(r, g_{*}\right)\right]+S\left(r, f_{*}\right)+S\left(r, g_{*}\right) \\
& \leq 2(p+m+2) T_{*}(r)+S_{*}(r)
\end{aligned}
$$

where $T_{*}(r)=\max \left\{T\left(r, f_{*}\right), T\left(r, g_{*}\right)\right\}$ and $S_{*}(r)=\max \left\{S\left(r, f_{*}\right), S\left(r, g_{*}\right)\right\}$.
i.e.,

$$
\begin{equation*}
T(r, \mathcal{H})=O\left(T_{*}(r)\right) \tag{3.2}
\end{equation*}
$$

By (3.1), again we see that the zeros and poles of \mathcal{H} are multiple, hence

$$
\begin{equation*}
\bar{N}(r, \mathcal{H}) \leq \bar{N}_{L}\left(r, f_{*}\right), \bar{N}\left(r, \frac{1}{\mathcal{H}}\right) \leq \bar{N}_{L}\left(r, g_{*}\right) \tag{3.3}
\end{equation*}
$$

Let $f_{1}=\frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}, f_{2}=\mathcal{H}$ and $f_{3}=-\mathcal{H} \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}$. Thus, we get $f_{1}+f_{2}+f_{3}=1$.
Let us now denote $T(r)=\max \left\{T\left(r, f_{1}\right), T\left(r, f_{2}\right), T\left(r, f_{3}\right)\right\}$. Then, we have

$$
\begin{aligned}
& T\left(r, f_{1}\right)=O\left(T\left(r, f_{*}\right)\right) \\
& T\left(r, f_{2}\right)=O\left(T\left(r, f_{*}\right)+T\left(r, g_{*}\right)\right)=T\left(r, f_{3}\right)
\end{aligned}
$$

So, $T\left(r, f_{i}\right)=O\left(T_{*}(r)\right)$ for $i=1,2,3$ and also $S\left(r, f_{*}\right)+S\left(r, g_{*}\right)=o\left(T_{*}(r)\right)$.
We now study the following cases.
Case 1. Suppose that none of f_{2} and f_{3} are constant. If f_{1} and f_{2}, f_{3} are linearly independent, then by using Lemma 2.1 and Lemma 2.4, we get

$$
\begin{align*}
T\left(r, f_{1}\right) & \leq \sum_{i=1}^{3} N_{2}\left(r, \frac{1}{f_{i}}\right)+\sum_{i=1}^{3} \bar{N}\left(r, f_{i}\right)+o(T(r)) \\
& \leq N_{2}\left(r, \frac{\alpha}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+N_{2}\left(r, \frac{1}{\mathcal{H}}\right)+N_{2}\left(r, \frac{\alpha}{\mathcal{H} g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \tag{3.4}\\
& +\bar{N}\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right)+\bar{N}(r, \mathcal{H})+\bar{N}\left(r, \mathcal{H} g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right)+o(T(r)) \\
& \leq N_{2}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+2 N_{2}\left(r, \frac{1}{\mathcal{H}}\right)+N_{2}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \\
& +\bar{N}\left(r, f_{*}\right)+2 \bar{N}(r, \mathcal{H})+\bar{N}\left(r, g_{*}\right)+o(T(r))
\end{align*}
$$

Now, since $N_{2}\left(r, \frac{1}{\mathcal{H}}\right) \leq 2 \bar{N}\left(r, \frac{1}{\mathcal{H}}\right) \leq 2 \bar{N}_{L}\left(r, g_{*}\right)$ and $\bar{N}(r, \mathcal{H}) \leq \bar{N}_{L}\left(r, f_{*}\right)$.
Also, since $\bar{N}_{L}\left(r, f_{*}\right)=0=\bar{N}_{L}\left(r, g_{*}\right)$ and we note that $\bar{N}\left(r, f_{*}\right)=\bar{N}\left(r, g_{*}\right)$, so by using all
these facts, we get from (3.4) that

$$
\begin{align*}
T\left(r, f_{1}\right) & \leq N_{2}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+N_{2}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+2 \bar{N}\left(r, f_{*}\right)+o(T(r)) \\
& \leq N\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)-\left[N_{(3}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)\right] \tag{3.5}\\
& +N\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)-\left[N_{(3}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)\right] \\
& +2 \bar{N}\left(r, f_{*}\right)+o(T(r)) .
\end{align*}
$$

Let z_{0} be a zero of f_{*} of multiplicity r, then z_{0} is also a zero of $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ of multiplicity $p r+r-1 \geq 3$. Then, we have

$$
\begin{equation*}
N_{(3}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right) \geq(p-2) N\left(r, \frac{1}{f_{*}}\right) \tag{3.6}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
N_{(3}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \geq(p-2) N\left(r, \frac{1}{g_{*}}\right) \tag{3.7}
\end{equation*}
$$

Let us consider

$$
\mathcal{F}=\frac{a_{m}}{p+m+1} f_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} f_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} f_{*}^{p+2}+\frac{a_{0}}{p+1} f_{*}^{p+1}
$$

and

$$
\mathcal{G}=\frac{a_{m}}{p+m+1} g_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} g_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} g_{*}^{p+2}+\frac{a_{0}}{p+1} g_{*}^{p+1}
$$

Now, by using Lemma 2.4, we get

$$
T(r, \mathcal{F})=(p+m+1) T\left(r, f_{*}\right)+S\left(r, f_{*}\right)
$$

So, it is clear that $\mathcal{F}^{\prime}=\alpha f_{1}$. We also have

$$
\begin{equation*}
m\left(r, \frac{1}{\mathcal{F}}\right) \leq m\left(r, \frac{1}{\alpha f_{1}}\right)+m\left(r, \frac{\mathcal{F}^{\prime}}{\mathcal{F}}\right) \leq m\left(r, \frac{1}{f_{1}}\right)+S\left(r, f_{*}\right) \tag{3.8}
\end{equation*}
$$

By using (3.8) and the first fundamental theorem, we get

$$
\begin{align*}
T(r, \mathcal{F}) & =m\left(r, \frac{1}{\mathcal{F}}\right)+N\left(r, \frac{1}{\mathcal{F}}\right) \\
& \leq T\left(r, f_{1}\right)-N\left(r, \frac{1}{f_{1}}\right)+N\left(r, \frac{1}{\mathcal{F}}\right)+S\left(r, f_{*}\right) \tag{3.9}\\
& \leq T\left(r, f_{1}\right)+(p+1) N\left(r, \frac{1}{f_{*}}\right)+\sum_{i=1}^{m} N\left(r, \frac{1}{f_{*}-b_{i}}\right)-N\left(r, \frac{1}{f_{1}}\right)
\end{align*}
$$

where $b_{i}(i=1,2, \ldots, m)$ are the roots of the algebraic equation

$$
\frac{a_{m}}{p+m+1} z^{m}+\frac{a_{m-1}}{p+m} z^{m-1}+\frac{a_{m-2}}{p+m-1} z^{m-2}+\ldots+\frac{a_{1}}{p+2} z+\frac{a_{0}}{p+1}=0
$$

Substituting (3.5) to (3.8) and using (2.5), (2.6) in (3.9), we get

$$
\begin{aligned}
T(r, \mathcal{F}) & \leq N\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+(2-p) N\left(r, \frac{1}{f_{*}}\right)+N\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \\
& +(2-p) N\left(r, \frac{1}{g_{*}}\right)+2 \bar{N}\left(r, f_{*}\right)+(p+1) N\left(r, \frac{1}{f_{*}}\right) \\
& +\sum_{i=1}^{m} N\left(r, \frac{1}{f_{*}-b_{i}}\right)-N\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+o(T(r))
\end{aligned}
$$

$$
\begin{aligned}
(p+m+1) T\left(r, f_{*}\right) & \leq 3 N\left(r, \frac{1}{f_{*}}\right)+3 N\left(r, \frac{1}{g_{*}}\right)+\bar{N}\left(r, g_{*}\right)+m N\left(r, \frac{1}{g_{*}}\right) \\
& +2 \bar{N}\left(r, f_{*}\right)+\sum_{i=1}^{m} N\left(r, \frac{1}{f_{*}-b_{i}}\right)+o(T(r)) \\
& \leq \frac{3}{l} T\left(r, \frac{1}{f_{*}}\right)+\frac{3}{l} T\left(r, \frac{1}{g_{*}}\right)+\frac{1}{l} T\left(r, g_{*}\right)+\frac{m}{l} T\left(r, \frac{1}{g_{*}}\right) \\
& +\frac{2}{l} T\left(r, f_{*}\right)+\frac{m}{l} T\left(r, \frac{1}{f_{*}}\right)+o(T(r))
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left[\frac{(p+m+l) l-(m+5)}{l}\right] T\left(r, f_{*}\right) \leq\left(\frac{m+4}{l}\right) T\left(r, g_{*}\right)+o(T(r)) \tag{3.10}
\end{equation*}
$$

Let $g_{1}=-\frac{f_{3}}{f_{2}}=\frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}, g_{2}=\frac{1}{f_{2}}=\frac{1}{\mathcal{H}}$ and $g_{3}=-\frac{f_{1}}{f_{2}}=-\frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha \mathcal{H}}$. Then we get $g_{1}+g_{2}+g_{3}=1$.
By Lemma 2.5, we have g_{1}, g_{2} and g_{3} are linearly independent because f_{1}, f_{2} and f_{3} are linearly independent. Now, proceeding in the same lines as above, we obtain

$$
\begin{equation*}
\left[\frac{(p+m+l) l-(m+5)}{l}\right] T\left(r, g_{*}\right) \leq\left(\frac{m+4}{l}\right) T\left(r, f_{*}\right)+o(T(r)) \tag{3.11}
\end{equation*}
$$

Let $T_{*}(r)=\max \left\{T\left(r, f_{*}\right), T\left(r, g_{*}\right)\right\}$. Combining (3.10) and (3.11),

$$
\left[\frac{(p+m+l) l-(m+5)}{l}\right] T_{*}(r) \leq\left(\frac{m+4}{l}\right) T_{*}(r)+o(T(r))
$$

i.e.,

$$
\left[\frac{(p+m+l) l-(m+5)}{l}-\left(\frac{m+4}{l}\right)\right] T_{*}(r) \leq o(T(r))
$$

i.e.,

$$
p \leq \frac{2 m-(m+1) l+9}{l}
$$

which contradicts $p \geq \frac{2 m-(m+1) l+10}{l}$.
Thus, f_{1}, f_{2} and f_{3} are linearly independent. Therefore there exists constants c_{1}, c_{2} and c_{3}, atleast one of them is non-zero such that

$$
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}=0 \tag{3.12}
\end{equation*}
$$

Subcase 1.1. If $c_{1}=0, c_{2} \neq 0$ and $c_{3} \neq 0$, then from (3.12), we get $f_{3}=-\frac{c_{2}}{c_{3}} f_{2}$, which implies that $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}=\frac{c_{2}}{c_{3}} \alpha$.
On integrating, we get

$$
\begin{equation*}
\frac{a_{m}}{p+m+1} g_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} g_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} g_{*}^{p+2}+\frac{a_{0}}{p+1} g_{*}^{p+1}=\frac{c_{2}}{c_{3}} \alpha+c \tag{3.13}
\end{equation*}
$$

where c is an arbitrary constant. Thus, we get

$$
T\left(r, \frac{a_{m}}{p+m+1} g_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} g_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} g_{*}^{p+2}+\frac{a_{0}}{p+1} g_{*}^{p+1}\right) \leq T(r, \alpha)+O(1)
$$

i.e., $(p+m+1) T\left(r, g_{*}\right) \leq S\left(r, g_{*}\right)$.

Now, since $p \geq \frac{2 m-(m+1) l+10}{l}$, we get a contradiction.
Subcase 1.2. Let $c_{1} \neq 0$. Then by (3.12), we get $f_{1}=\left(-\frac{c_{2}}{c_{1}}\right) f_{2}+\left(-\frac{c_{3}}{c_{1}}\right) f_{3}$.

On substituting this in the relation $f_{1}+f_{2}+f_{3}=1$, we get $\left(1-\frac{c_{2}}{c_{1}}\right) f_{2}+\left(1-\frac{c_{3}}{c_{1}}\right) f_{3}=1$, where $\left(c_{1}-c_{2}\right)\left(c_{1}-c_{3}\right) \neq 0$. Thus, we get

$$
\begin{equation*}
\left(1-\frac{c_{3}}{c_{1}}\right) \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}+\frac{1}{\mathcal{H}}=\left(1-\frac{c_{2}}{c_{1}}\right) \tag{3.14}
\end{equation*}
$$

We now see that

$$
\begin{aligned}
T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right) & \leq T\left(r, \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}\right)+T(r, \alpha) \\
& \leq T\left(r, \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}\right)+S\left(r, g_{*}\right)
\end{aligned}
$$

By using Lemma 2.2 to (3.14), we get

$$
\begin{aligned}
T\left(r, \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}\right) & \leq \bar{N}\left(r, \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}\right)+\bar{N}\left(r, \frac{\alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right) \\
& +\bar{N}(r, \mathcal{H})+S\left(r, g_{*}\right) .
\end{aligned}
$$

Combining the above two, we get

$$
\begin{equation*}
T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right) \leq \bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+2 \bar{N}\left(r, g_{*}\right)+S\left(r, g_{*}\right) . \tag{3.15}
\end{equation*}
$$

By using Lemma 2.3, Lemma 2.4 and (3.15), we get

$$
\begin{aligned}
(p+m) T\left(r, g_{*}\right) & \leq T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right)\right)+S\left(r, g_{*}\right) \\
& \leq T\left(r, g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}\right)+T\left(r, \frac{1}{g_{*}^{\prime}}\right)+S\left(r, g_{*}\right) \\
& \leq \bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+2 \bar{N}\left(r, g_{*}\right)+T\left(r, \frac{1}{g_{*}^{\prime}}\right)+S\left(r, g_{*}\right) \\
& \leq 8 T\left(r, g_{*}\right)+S\left(r, g_{*}\right)
\end{aligned}
$$

which contradicts $p \geq \frac{2 m-(m+1) l+10}{l}$.
Case 2. If $f_{2}=k$, where k is a constant.
Subcase 2.1. If $k \neq 1$, then from the relation $f_{1}+f_{2}+f_{3}=1$, we get

$$
\begin{equation*}
\frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}-k \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}=1-k \tag{3.16}
\end{equation*}
$$

By applying Lemma 2.2 to (3.16), we get

$$
\begin{equation*}
T\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right) \leq \bar{N}\left(r, f_{*}\right)+\bar{N}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+S\left(r, g_{*}\right) \tag{3.17}
\end{equation*}
$$

Again by applying Lemma 2.3, Lemma 2.4 and (3.17), we get

$$
\begin{aligned}
(p+m) T\left(r, f_{*}\right) & \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right)\right)+S\left(r, f_{*}\right) \\
& \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right)+T\left(r, \frac{1}{f_{*}^{\prime}}\right)+S\left(r, f_{*}\right) \\
& \leq T\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right)+T\left(r, \frac{1}{f_{*}^{\prime}}\right)+S\left(r, f_{*}\right) \\
& \leq 7 T\left(r, f_{*}\right)+4 T\left(r, g_{*}\right)+S\left(r, f_{*}\right)
\end{aligned}
$$

i.e.,

$$
(p+m-7) T\left(r, f_{*}\right) \leq 4 T\left(r, g_{*}\right)+S\left(r, f_{*}\right) .
$$

Now, using Lemma 2.7, we get

$$
(p+m-7) T\left(r, f_{*}\right) \leq 4\left[\frac{l(p+m+2)}{(p+m-2) l-(m+4)}\right] T\left(r, f_{*}\right)+S\left(r, g_{*}\right)
$$

which contradicts $p \geq \frac{2 m-(m+1) l+10}{l}$.
Subcase 2.2. Let $k=1$ i.e., $\mathcal{H}=1$ and $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}=g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$.
On integrating both sides, we get

$$
\begin{aligned}
& \frac{a_{m}}{p+m+1} f_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} f_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} f_{*}^{p+2}+\frac{a_{0}}{p+1} f_{*}^{p+1} \equiv \\
& \quad \frac{a_{m}}{p+m+1} g_{*}^{p+m+1}+\frac{a_{m-1}}{p+m} g_{*}^{p+m}+\ldots+\frac{a_{1}}{p+2} g_{*}^{p+2}+\frac{a_{0}}{p+1} g_{*}^{p+1}+c,
\end{aligned}
$$

where c is an arbitrary constant. That is

$$
\begin{equation*}
\mathcal{F} \equiv \mathcal{G}+c . \tag{3.18}
\end{equation*}
$$

Subcase 2.2.1. Let if possible $c \neq 0$. Then, we get

$$
\Theta(0, \mathcal{F})+\Theta(c, \mathcal{F})+\Theta(\infty, \mathcal{F})=\Theta(0, \mathcal{F})+\Theta(0, \mathcal{G})+\Theta(\infty, \mathcal{F}) .
$$

So, we have

$$
\bar{N}\left(r, \frac{1}{\mathcal{F}}\right)=\bar{N}\left(r, \frac{1}{f_{*}}\right)+\bar{N}\left(r, \frac{1}{f_{*}-b_{1}}\right)+\ldots+\bar{N}\left(r, \frac{1}{f_{*}-b_{m}}\right) \leq(m+1) T\left(r, f_{*}\right) .
$$

Similarly, we get

$$
\bar{N}\left(r, \frac{1}{\mathcal{G}}\right) \leq(m+1) T\left(r, g_{*}\right)
$$

We also note that,

$$
\begin{aligned}
& T(r, \mathcal{F})=(p+m+1) T\left(r, f_{*}\right)+S\left(r, f_{*}\right) \\
& T(r, \mathcal{G})=(p+m+1) T\left(r, g_{*}\right)+S\left(r, g_{*}\right) .
\end{aligned}
$$

Thus, $\Theta(0, \mathcal{F})=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{\mathcal{F}}\right)}{T(r, \mathcal{F})} \geq 1-\frac{(m+1) T\left(r, f_{*}\right)}{(p+m+1) T\left(r, f_{*}\right)}=1-\frac{m+1}{p+m+1}$.
Therefore, $\Theta(0, \mathcal{F}) \geq \frac{p}{p+m+1}$.
Thus, $\Theta(0, \mathcal{F})+\Theta(c, \mathcal{F})+\Theta(\infty, \mathcal{F}) \geq \frac{3 p+m}{p+m+1}>2$.
Since $p \geq \frac{2 m-(m+1) l+10}{l}$, we get a contradiction.
Subcase 2.2.2. Thus, we get $c=0$. So,

$$
\begin{equation*}
\mathcal{F} \equiv \mathcal{G} . \tag{3.19}
\end{equation*}
$$

Let $h=\frac{f_{*}}{g_{*}}$. Then taking h in (3.19), we get

$$
\begin{align*}
\frac{a_{m}}{p+m+1} & {\left[g_{*}^{p+m+1}\left\{h^{p+m+1}-1\right\}\right]+\frac{a_{m-1}}{p+m}\left[g_{*}^{p+m}\left\{h^{p+m}-1\right\}\right]+} \tag{3.20}\\
& \ldots+\frac{a_{1}}{p+2}\left[g_{*}^{p+2}\left\{h^{p+2}-1\right\}\right]+\frac{a_{0}}{p+1}\left[g_{*}^{p+1}\left\{h^{p+1}-1\right\}\right]=0 .
\end{align*}
$$

Subcase 2.2.2.1. If h is a non-constant, then by using Lemma 2.6 and proceeding exactly in the same lines as done in [13, p.1272], we get a contradiction.
Subcase 2.2.2.2. Let h be a constant, then from (3.20), we get

$$
h^{p+m+1}-1=0, h^{p+m}-1=0, \ldots, h^{p+1}-1=0 .
$$

That is $h^{d}=1$, where $d=g c d\{p+m+1, p+m, \ldots, p+1\}=1$. That is $h=1$.
Hence $f_{*} \equiv g_{*}$ (or) $f \equiv g$.
Case 3. Suppose $f_{3}=c$, where c is a constant.
Subcase 3.1. If $c \neq 1$, then from the relation $f_{1}+f_{2}+f_{3}=1$, we get

$$
\begin{equation*}
\frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}-\frac{c \alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}=1-\mathcal{H} \tag{3.21}
\end{equation*}
$$

Now, by applying Lemma 2.2 to the above equation, we get

$$
\begin{align*}
T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right) & \leq T\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right)+S\left(r, f_{*}\right) \tag{3.22}\\
& \leq \bar{N}\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right)+\bar{N}\left(r, \frac{\alpha}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+\bar{N}\left(r, \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}\right) \\
& \leq \bar{N}\left(r, f_{*}\right)+\bar{N}\left(r, \frac{1}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+\bar{N}\left(r, g_{*}\right)+S\left(r, g_{*}\right)
\end{align*}
$$

By using Lemma 2.3, Lemma 2.4 and (3.22), we have

$$
\begin{aligned}
(p+m) T\left(r, f_{*}\right) & \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right)\right)+S\left(r, f_{*}\right) \\
& \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right)+T\left(r, \frac{1}{f_{*}^{\prime}}\right)+S\left(r, f_{*}\right) \\
& \leq 7 T\left(r, f_{*}\right)+\bar{N}\left(r, g_{*}\right)+S\left(r, f_{*}\right)
\end{aligned}
$$

Again using Lemma 2.7, we get

$$
\begin{aligned}
(p+m-7) T\left(r, f_{*}\right) & \leq T\left(r, g_{*}\right)+S\left(r, f_{*}\right) \\
& \leq\left[\frac{l(p+m+2)}{(p+m-2) l-(m+4)}\right] T\left(r, f_{*}\right)+S\left(r, f_{*}\right)
\end{aligned}
$$

which contradicts $p \geq \frac{2 m-(m+1) l+10}{l}$.
Subcase 3.2. Let $c=1$. Then from (3.21), we get

$$
\begin{equation*}
f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime} g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}=\alpha^{2} \tag{3.23}
\end{equation*}
$$

Let z_{0} be a zero of f_{*} of order r_{0}. Then from (3.23), we see that z_{0} is a pole of g_{*} of order $s_{0}(s a y)$. Then, from (3.23), we get $p r_{0}+r_{0}-1=p s_{0}+m s_{0}+s_{0}+1$ i.e., $(p+1)\left(r_{0}-s_{0}\right)=m s_{0}+2 \geq p+1$ i.e., $r_{0} \geq \frac{p+m-1}{m}$.

Let z_{1} be a zero of $P_{m}\left(f_{*}\right)$ of order r_{1}. Then from (3.23), we see that z_{1} is a pole of g_{*} of order $s_{1}(s a y)$. So, we have $r_{1}+r_{1}-1=p s_{1}+m s_{1}+s_{1}+1$ i.e., $r_{1} \geq \frac{p+m+3}{2}$.
Let z_{2} be a zero of f_{*}^{\prime} of order r_{2} which are not the zeros of $f_{*} P_{m}\left(f_{*}\right)$, so from (3.23) we see that z_{2} will be a pole of g_{*} of order $s_{2}(s a y)$. Then from (3.23), we get $r_{2}=p s_{2}+m s_{2}+s_{2}+1$ i.e., $r_{2} \geq p+m+2$.
The similar explanations holds for the zeros of $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$. Next, we see from (3.23) that

$$
\bar{N}\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right)=\bar{N}\left(r, \frac{\alpha^{2}}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)
$$

i.e.,

$$
\begin{aligned}
\bar{N}\left(r, f_{*}\right) & \leq \bar{N}\left(r, \frac{1}{g_{*}}\right)+\bar{N}\left(r, \frac{1}{P_{m}\left(g_{*}\right)}\right)+\bar{N}\left(r, \frac{1}{g_{*}^{\prime}}\right) \\
& \leq\left(\frac{m}{p+m-1}\right) N\left(r, \frac{1}{g_{*}}\right)+\left(\frac{2}{p+m+3}\right) N\left(r, \frac{1}{P_{m}\left(g_{*}\right)}\right) \\
& +\left(\frac{1}{p+m+2}\right) N\left(r, \frac{1}{g_{*}^{\prime}}\right)+S\left(r, g_{*}\right) \\
& \leq\left(\frac{m}{p+m-1}+\frac{2}{p+m+3}+\frac{1}{p+m+2}\right) T\left(r, g_{*}\right)+S\left(r, g_{*}\right) .
\end{aligned}
$$

By applying the second fundamental theorem, we get

$$
\begin{align*}
& T\left(r, f_{*}\right) \leq \bar{N}\left(r, f_{*}\right)+\bar{N}\left(r, \frac{1}{f_{*}}\right)+\bar{N}\left(r, \frac{1}{P_{m}\left(f_{*}\right)}\right)+S\left(r, f_{*}\right) \\
& \quad \leq\left(\frac{m}{p+m-1}+\frac{2}{p+m+3}\right) T\left(r, f_{*}\right) \tag{3.24}\\
& \quad+\left(\frac{m}{p+m-1}+\frac{2}{p+m+3}+\frac{2}{p+m+2}\right) T\left(r, g_{*}\right)+S\left(r, f_{*}\right)+S\left(r, g_{*}\right)
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
T\left(r, g_{*}\right) & \leq\left(\frac{m}{p+m-1}+\frac{2}{p+m+3}\right) T\left(r, g_{*}\right) \\
& +\left(\frac{m}{p+m-1}+\frac{2}{p+m+3}+\frac{2}{p+m+2}\right) T\left(r, f_{*}\right)+S\left(r, f_{*}\right)+S\left(r, g_{*}\right) \tag{3.25}
\end{align*}
$$

From (3.24) and (3.25), we get

$$
T_{*}(r) \leq\left(\frac{2 m}{p+m-1}+\frac{4}{p+m+3}+\frac{2}{p+m+2}\right) T_{*}(r)+S_{*}(r)
$$

i.e.,

$$
\left[1-\frac{2 m}{p+m-1}-\frac{4}{p+m+3}-\frac{2}{p+m+2}\right] T_{*}(r) \leq S_{*}(r)
$$

which contradicts $p \geq \frac{2 m-(m+1) l+10}{l}$.
Hence the proof of theorem 1.9.
Proof. (Proof of Theorem 1.10.) Since f_{*} and g_{*} are both non-constant entire functions, then we may consider the following two cases.
Case 1. Let f_{*} and g_{*} are two transcendental entire functions. Then it is clear that $\bar{N}\left(r, f_{*}\right)=$ $S\left(r, f_{*}\right)$ and $\bar{N}\left(r, g_{*}\right)=S\left(r, g_{*}\right)$. With this the result of the proof is carried out in the same lines as in the proof of theorem 1.9.
Case 2. Let f_{*} and g_{*} be both polynomials. Since $f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}$ and $g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}$ share $\alpha \mathrm{CM}$, then we have

$$
\begin{equation*}
f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}-\alpha=\kappa\left(g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}-\alpha\right), \tag{3.26}
\end{equation*}
$$

where κ is a non-zero constant.
Subcase 2.1. Suppose that $\kappa \neq 1$, then from (3.26), we get

$$
\begin{equation*}
\frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}-\kappa \frac{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}{\alpha}=1-\kappa . \tag{3.27}
\end{equation*}
$$

By Lemma 2.2, we get

$$
\begin{aligned}
T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right) & \leq T\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right)+S\left(r, f_{*}\right) \\
& \leq \bar{N}\left(r, \frac{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}{\alpha}\right)+\bar{N}\left(r, \frac{\alpha}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right) \\
& +\bar{N}\left(r, \frac{\alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+S\left(r, f_{*}\right) \\
& \leq \bar{N}\left(r, f_{*}\right)+\bar{N}\left(r, \frac{\alpha}{f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}}\right)+\bar{N}\left(r, \frac{\alpha}{g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}}\right)+S\left(r, f_{*}\right) .
\end{aligned}
$$

By using Lemma 2.3, Lemma 2.4 and (3.27) gives

$$
\begin{aligned}
(p+m) T\left(r, f_{*}\right) & \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right)\right) \\
& \leq T\left(r, f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime}\right)+T\left(r, \frac{1}{f_{*}^{\prime}}\right)+S\left(r, f_{*}\right) \\
& \leq 4 T\left(r, f_{*}\right)+3 T\left(r, g_{*}\right)+S\left(r, f_{*}\right)
\end{aligned}
$$

i.e.,

$$
(p+m-4) T\left(r, f_{*}\right) \leq 3 T\left(r, g_{*}\right)+S\left(r, f_{*}\right)
$$

Again using Lemma 2.8, we get

$$
(p+m-4) T\left(r, f_{*}\right) \leq 3\left[\frac{l(P+m+2)}{(P+m-2) l-(m+1)}\right] T\left(r, f_{*}\right)+S\left(r, f_{*}\right)
$$

which contradicts $p \geq \frac{2 m-(m+1) l+6}{l}$.
Subcase 2.2. Let $\kappa=1$, from (3.27), we get

$$
f_{*}^{p} P_{m}\left(f_{*}\right) f_{*}^{\prime} \equiv g_{*}^{p} P_{m}\left(g_{*}\right) g_{*}^{\prime}
$$

Now, proceeding in the same lines as in Subcase 2.2.2.1 and Subcase 2.2.2.2 in the proof of theorem 1.9, we get proof of theorem 1.10.

References

[1] Ahamed, Molla Basir. Uniqueness of two differential polynomials of a meromorphic function sharing a set. Commun. Korean Math. Soc. 33 (2018), no. 4, 1181-1203.
[2] Ahamed, Molla Basir. On uniqueness of two meromorphic functions sharing a small function. Konuralp J. Math. 7 (2019), no. 2, 252-263.
[3] Banerjee, Abhijit; Ahamed, Molla Basir. Results on certain non-linear differential polynomials sharing a small function. İstanb. Univ. Sci. Fac. J. Math. Phys. Astronom. 5 (2014), 17-34.
[4] Banerjee, Abhijit; Ahamed, Molla Basir. Meromorphic function sharing a small function with its differential polynomial. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 54 (2015), no. 1, 33-45.
[5] Banerjee, Abhijit; Ahamed, Molla Basir. Nonlinear differential polynomials sharing a non-zero polynomial with finite weight. Math. Bohem. 141 (2016), no. 1, 13-36.
[6] Banerjee, Abhijit; Ahamed, Molla Basir. Uniqueness of a polynomial and a differential monomial sharing a small function. An. Univ. Vest Timiş. Ser. Mat.-Inform. 54 (2016), no. 1, 55-71.
[7] Bhoosnurmath, Subhas S.; Pujari, Veena L. Uniqueness of meromorphic functions sharing fixed point. Int. J. Anal. 2013, Art. ID 538027, 12 pp.
[8] Fang, Ming-Liang; Hong, Wei. A unicity theorem for entire functions concerning differential polynomials. Indian J. Pure Appl. Math. 32 (2001), no. 9, 1343-1348.
[9] Frank, Gunter; Reinders, Martin. A unique range set for meromorphic functions with 11 elements. Complex Variables Theory Appl. 37 (1998), no. 1-4, 185-193.
[10] Hayman, W. K. Meromorphic functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964 xiv+191 pp.
[11] Hayman, W. K. Research problems in function theory. The Athlone Press University of London, London 1967 vii+56 pp.
[12] Lin, Weichuan; Yi, Hongxun. Uniqueness theorems for meromorphic functions concerning fixed-points. Complex Var. Theory Appl. 49 (2004), no. 11, 793-806.
[13] H. P. Waghamore and N. Shilpa, Generalization of uniqueness theorems for entire and meromorphic functions, Appl. Math., Vol:5, (2014), 1267-1274.
[14] H. P. Waghamore and S. Anand, Generalization of uniqueness of meromorphic functions sharing fixed points, Appl. Math., Vol:7, (2016), 939-952.
[15] Xu, Jun-Feng; Lu, Feng; Yi, Hong-Xun. Fixed-points and uniqueness of meromorphic functions. Comput. Math. Appl. 59 (2010), no. 1, 9-17.
[16] Yi, Hong Xun. Meromorphic functions that share two or three values. Kodai Math. J. 13 (1990), no. 3, 363-372.
[17] Yang, Chung-Chun; Hua, Xinhou. Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[18] Yang, Chung-Chun; Yi, Hong-Xun. Uniqueness theory of meromorphic functions. Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003. viii+569 pp. ISBN: 1-4020-1448-1
[19] Yang, Lo. Value distribution theory. Translated and revised from the 1982 Chinese original. SpringerVerlag, Berlin; Science Press Beijing, Beijing, 1993. xii+269 pp. ISBN: 3-540-54379-1
[20] Yang, Chung Chun. On deficiencies of differential polynomials. II. Math. Z. 125 (1972), 107-112.

Author information

HARINA P. WAGHAMORE, VIJAYLAXMI S. B., Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, INDIA.
E-mail: harinapw@gmail.com ; vijaylaxmib@gmail.com
Received: July 09, 2020.
Accepted: September 12, 2020.

