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Abstract In this note, we study the existence of uniqueness of two meromorphic or entire
functions which is concerning about differential polynomials sharing a small function with re-
gard to multiplicity. Our results generalize and improve the results obtained in [2] and also solves
the open problems posed by M. B. Ahamed [2].

1 Introduction

In this paper, by meromorphic functions we always mean meromorphic in the whole complex
plane C. We assume that the reader is familiar with standard notations of Nevanlinna theory
as explained well in [10, 11], for a meromorphic function f(z), we denote the proximity func-
tion as m(r, f), the counting function by N(r, f), the reduced counting function by N(r, f) and
the characteristic function by T (r, f). Two meromorphic functions f and g share the value a
IM(ignoring multiplicities) if f and g have the same a-points counted by ignoring the multiplic-
ities, we say that f and g share a CM(counting multiplicities), if f − a and g − a have the same
zeros with same multiplicities. Also, we note that when a =∞, the zeros of f − a are the poles
of f .

Also, a meromorphic function a ≡ a(z)(6≡ 0,∞) is said to be a small function of f provided
T (r, a) = S(r, f) i.e., T (r, a) = O(T (r, f)) as r → ∞, outside of a possible exceptional set of
finite linear measure.

In 2013, S. S. Bhoosnurmath and V. Pujari [7], obtained the following uniqueness results.

Theorem 1.1. ([7]) Let f and g be two non-constant meromorphic functions, n ≥ 11 be an
integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share z CM, f and g share∞ IM, then either f ≡ g or

g =
(n+ 2)(1− hn+1)

(n+ 1)(1− hn+2)
, f =

(n+ 2)(1− hn+1)

(n+ 1)(1− hn+2)
,

where h is a non-constant meromorphic function.

Theorem 1.2. ([7]) Let f and g be two non-constant meromorphic functions, n ≥ 12 be an
integer. If fn(f − 1)2f

′
and gn(g − 1)2g

′
share z CM, f and g share∞ IM, then f ≡ g.

Theorem 1.3. ([7]) Let f and g be two non-constant entire functions, n ≥ 7 be an integer. If
fn(f − 1)f

′
and gn(g − 1)g

′
share z CM, then f ≡ g.

In 2016, the authors Harina P. Waghamore and S. Anand [14] generalize theorems 1.1, 1.2 and
1.3 by considering the functions fn(f − 1)mf

′
and gn(g − 1)mg

′
. They also proved that the

second condition in Theorem A can be omitted. The results obtained are as follows.

Theorem 1.4. ([14]) Let f and g be two non-constant meromorphic functions, n ≥ m + 10 be
an integer. If fn(f − 1)mf

′
and gn(g − 1)mg

′
share z CM, f and g share∞ IM, then f ≡ g.
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Theorem 1.5. ([14]) Let f and g be two non-constant entire functions, n ≥ m+ 6 be an integer.
If fn(f − 1)mf

′
and gn(g − 1)mg

′
share z CM, then f ≡ g.

The author M. B. Ahamed [2] by introducing a general polynomial improved as well as extended
the above mentioned results when they share α(z) CM. The following are the results obtained.
But, first let me give the definition of the general polynomial of degree n+m used in [6] which
can also be expressed as a transformation.

Definition 1.6. ([6]) Let

P(w) = wn+m + ...+ anw
n + ...+ a0 = an+m

s∏
i=1

(w − wpi)pi ,

where aj(j = 0, 1, 2, ..., n+m− 1) and wpi(i = 1, 2, ..., s) are distinct finite complex numbers
and 2 ≤ s ≤ n+m and p1, p2, ..., ps, s ≥ 2, n,m and k are all positive integers with

∑s
i=1 pi =

n+m. Also, let p > maxp 6=pi,i=1,2,...,r{pi}, r = s− 1, where r and s are two positive integers.

Let L(w∗) =
∏s−1
i=1 (w∗+wp−wpi)pi = bqw

q
∗+bq−1w

q−1
∗ + ...+b0, where w∗ = w−wp, q =

n+m − p. So it is clear that P(w) = wp∗L(w∗). In particular, if we choose bi = (−1)iqCi, for
i = 0, 1, ..., q. Then we get, easily P∗(w) = wp∗(w∗ − 1)q. Note that if wp = 0 and p = n, then
we get w = w∗ and P∗(w) = wn(w − 1)m.

Theorem 1.7. ([2]) Let f and g hence f∗ = f − wp and g∗ = g − wp, wp ∈ C be any two
non-constant non-entire meromorphic functions, n ≥ q + 9, q ∈ N, be an integer. If P∗(f)f

′

∗ =

fp∗ (f∗ − 1)qf
′

∗ and P∗(g)g
′

∗ = gp∗(g∗ − 1)qg
′

∗ share α ≡ α(z)(6≡ 0,∞) CM, f∗ and g∗ share∞
IM, then f ≡ g.

Theorem 1.8. ([2]) Let f and g hence f∗ = f − wp and g∗ = g − wp, wp ∈ C be any two
non-constant entire functions, n ≥ q + 5, q ∈ N, be an integer. If P∗(f)f

′

∗ = fp∗ (f∗ − 1)qf
′

∗ and
P∗(g)g

′

∗ = gp∗(g∗ − 1)qg
′

∗ share α ≡ α(z)(6≡ 0,∞) CM, then f ≡ g.

In the same paper the author M. B. Ahamed [2] posed the following open questions.

Question 1.1. Is it possible to reduce further the lower bounds of p in Theorem 1.7 and Theorem
1.8?

Question 1.2. To get the uniqueness between f and g is it possible to replace fp∗ (f∗ − 1)qf
′

∗
and gp∗(g∗ − 1)qg

′

∗ respectively by fp∗Pm(f∗)f
′

∗ and gp∗Pm(g∗)g
′

∗, where Pm(f∗) = amf
m
∗ +

am−1f
m−1
∗ + ...+ a1f∗ + a0 in Theorem 1.7 and Theorem 1.8?

Our aim in writing this paper is to give a positive answer to the above questions. By considering
functions fp∗Pm(f∗)f

′

∗ and gp∗Pm(g∗)g
′

∗, where f∗ and g∗ are any two meromorphic functions
with multiplicity atleast l. We obtain two results which improves and generalizes Theorems 1.7
and 1.8.

The main results of this article are as follows:

Theorem 1.9. Let f , g and hence f∗ = f−wp and g∗ = g−wp, wp ∈ C be any two non-constant
meromorphic functions with multiplicity atleast l, p ≥ 2m−(m+1)l+10

l ,m ∈ N, be an integer. If
fp∗Pm(f∗)f

′

∗ and gp∗Pm(g∗)g
′

∗ share α ≡ α(z)(6≡ 0,∞) CM, f∗ and g∗ share∞ IM, then f ≡ g.

Theorem 1.10. Let f , g and hence f∗ = f − wp and g∗ = g − wp, wp ∈ C be any two non-
constant entire functions with multiplicity atleast l, p ≥ 2m−(m+1)l+6

l ,m ∈ N, be an integer. If
fp∗Pm(f∗)f

′

∗ and gp∗Pm(g∗)g
′

∗ share α ≡ α(z)(6≡ 0,∞) CM, then f ≡ g.

Remark 1.11. (i) If suppose we let l = 1, Pm(f∗) = (f∗ − 1)q, here m = q. Then our
conditions in Theorem 1.9 and Theorem 1.10 will reduce to Theorem 1.7 and Theorem 1.8
respectively. That is, p ≥ q + 9 and p ≥ q + 5.
(ii) Let l = 2, then the condition in Theorem 1.9 will be p ≥ 4 and the condition in Theorem
1.10 will be p ≥ 2.

Therefore, we make a note that by introducing the concept of multiplicity, we reduce the lower
bound of p. Also, as the multiplicity increases the condition value decreases.
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2 Lemmas

The following lemmas are used in the sequel.

Lemma 2.1. ([15]) Let f1, f2 and f3 be non-constant meromorphic functions such that f1 +
f2 + f3 = 1. If f1, f2 and f3 are linearly independent, then

T (r, f1) <
3∑
i=1

N2

(
r,

1
fi

)
+

3∑
i=1

N(r, f) + o(T (r)),

where T (r) = max1≤i≤3{T (r, fi)} and r 6∈ E.

Lemma 2.2. ([18]) Let f1 and f2 be non-constant meromorphic functions. If c1f1 + c2f2 = c3,
where ci, i = 1, 2, 3 are non-zero constants, then

T (r, f1) ≤ N(r, f1) +N

(
r,

1
f1

)
+N

(
r,

1
f2

)
+ S(r, f1).

Lemma 2.3. ([18]) Let f be a non-constant meromorphic function and k be a non-negative
integer, then

N

(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN(r, f) + S(r, f).

Lemma 2.4. ([20]) Suppose that f is a non-constant meromorphic function and P (f) = anf
n+

an−1f
n−1 + ...+ a1f + a0, where an(6≡ 0), an−1, ..., a1, a0 are small meromorphic functions of

f(z). Then
T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.5. ([16]) Let f1, f2 and f3 be three meromorphic functions satisfying
∑3
i=1 fi = 1,

then the functions g1 = − f3
f2

, g2 =
1
f2

and g3 = − f1
f2

are linearly independent when f1, f2 and f3
are linearly independent.

Lemma 2.6. ([2]) Let Ψ(z) = c2(zp−q − 1)2 − 4b(zp−2q − 1)(zp − 1), where b, c ∈ C − {0},
c2

4b =
p(p−2q)
(p−q)2 6= 1, then Ψ(z) has exactly one multiple zero of multiplicity 4 which is 1.

Lemma 2.7. Let f , g and hence f∗ = f−wp and g∗ = g−wp, wp ∈ C be any two non-constant
meromorphic functions with multiplicity atleast l and α ≡ α(z)(6≡ 0,∞) be a small function of
f and g. If fp∗Pm(f∗)f

′

∗ and gp∗Pm(g∗)g
′

∗ share α CM and p ≥ m−(m−2)l+5
l , then

T (r, g∗) ≤
[

l(p+m+ 2)
(p+m− 2)l − (m+ 4)

]
T (r, f∗) + S(r, g∗)

Proof. First, by applying the second fundamental theorem on gp∗Pm(g∗)g
′

∗, we get

T (r, gp∗Pm(g∗)g
′

∗) ≤ N(r, gp∗Pm(g∗)g
′

∗) +N

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+N

(
r,

1
gp∗Pm(g∗)g

′
∗ − α

)
+ S(r, g∗)

≤ N(r, g∗) +N

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+N

(
r,

1
gp∗Pm(g∗)g

′
∗ − α

)
+ S(r, g∗)

(2.1)

Now, by applying first fundamental theorem, we get

(p+m)T (r, g∗) ≤ T (r, gp∗Pm(g∗)) + S(r, g∗)

≤ T (r, gp∗Pm(g∗)g
′

∗) + T

(
r,

1
g′∗

)
+ S(r, g∗)

(2.2)
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Combining (2.1) and (2.2), we get

(p+m)T (r, g∗) ≤ N(r, g∗) +N

(
r,

1
gp∗

)
+N(r, 0;Pm(g∗)) +N

(
r,

1
g′∗

)
+N

(
r,

1
fp∗Pm(f∗)f

′
∗ − α

)
+ T (r, g

′

∗) + S(r, g∗)

(2.3)

Since S(r, g∗) = T (r, α) = S(r, f∗), we have

N

(
r,

1
fp∗Pm(f∗)f

′
∗ − α

)
≤ T

(
r,

1
fp∗Pm(f∗)f

′
∗ − α

)
+O(1)

≤ T
(
r,

1
fp∗

)
+ T

(
r,

1
Pm(f∗)

)
+ T

(
r,

1
f ′∗

)
+ T (r, α) +O(1)

≤ (p+m+ 2)T (r, f∗) + S(r, g∗)
(2.4)

Now taking (2.4) in (2.3), we get

(p+m)T (r, g∗) ≤ N
(
r,

1
g∗

)
+N

(
r,

1
Pm(g∗)

)
+N(r, g∗) +N

(
r,

1
g′∗

)
+ (p+m+ 2)T (r, f∗) + 2T (r, g∗) + S(r, g∗)

Now since zeros and poles of f∗ and g∗ are of multiplicities atleast l, we have

N(r, f∗) ≤
1
l
N(r, f∗) ≤

1
l
T (r, f∗);N

(
r,

1
f∗

)
≤ 1
l
N

(
r,

1
f∗

)
≤ 1
l
T (r, f∗). (2.5)

Similarly, we have

N(r, g∗) ≤
1
l
N(r, g∗) ≤

1
l
T (r, g∗);N

(
r,

1
g∗

)
≤ 1
l
N

(
r,

1
g∗

)
≤ 1
l
T (r, g∗). (2.6)

So, we get

(p+m)T (r, g∗) ≤
1
l
T

(
r,

1
g∗

)
+
m

l
T

(
r,

1
g∗

)
+

1
l
T (r, g∗) +

2
l
T (r, g∗)

+ (p+m+ 2)T (r, f∗) + 2T (r, g∗) + S(r, g∗)

≤
(
m+ 4 + 2l

l

)
T (r, g∗) + (p+m+ 2)T (r, f∗) + S(r, g∗)

So, [
(p+m− 2)l − (m+ 4)

l

]
T (r, g∗) ≤ (p+m+ 2)T (r, f∗) + S(r, g∗)

Thus, we get

T (r, g∗) ≤
[

l(p+m+ 2)
(p+m− 2)l − (m+ 4)

]
T (r, f∗) + S(r, g∗),

where p ≥ m−(m−2)l+5
l .

Hence the proof.

Lemma 2.8. Let f , g and hence f∗ = f − wp and g∗ = g − wp, wp ∈ C be two non-constant
entire functions with multiplicity atleast l. Let α ≡ α(z)(6≡ 0,∞) be a small function of f and g.
If fp∗Pm(f∗)f

′

∗ and gp∗Pm(g∗)g
′

∗ share α CM and p ≥ m−(m−2)l+2
l , then

T (r, g∗) ≤
[

l(p+m+ 2)
(p+m− 2)l − (m+ 1)

]
T (r, f∗) + S(r, g∗)

Proof. Since both the functions f, g and hence f∗ and g∗ are entire functions, so we have
N(r, f) = 0 = N(r, g); N(r, f∗) = 0 = N(r, g∗). Now continuing the proof on lines of
proof of Lemma 2.7, we prove Lemma 2.8.
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3 Proof of theorems

Proof. (Proof of Theorem 1.9) By hypothesis, fp∗Pm(f∗)f
′

∗ and gp∗Pm(g∗)g
′

∗ share α ≡ α(z)
CM, also f∗ and g∗ share∞ IM, so let us suppose that

H ≡ fp∗Pm(f∗)f
′

∗ − α
gp∗Pm(g∗)g

′
∗ − α

. (3.1)

From (3.1), we have

T (r,H) = T

(
r,
fp∗Pm(f∗)f

′

∗ − α
gp∗Pm(g∗)g

′
∗ − α

)
≤ T (r, fp∗Pm(f∗)f

′

∗ − α) + T (r, gp∗Pm(g∗)g
′

∗ − α) +O(1)

≤ (p+m+ 2)[T (r, f∗) + T (r, g∗)] + S(r, f∗) + S(r, g∗)

≤ 2(p+m+ 2)T∗(r) + S∗(r),

where T∗(r) = max{T (r, f∗), T (r, g∗)} and S∗(r) = max{S(r, f∗), S(r, g∗)}.
i.e.,

T (r,H) = O(T∗(r)). (3.2)

By (3.1), again we see that the zeros and poles of H are multiple, hence

N(r,H) ≤ NL(r, f∗), N(r,
1
H
) ≤ NL(r, g∗). (3.3)

Let f1 =
fp
∗Pm(f∗)f

′
∗

α , f2 = H and f3 = −H gp∗Pm(g∗)g
′
∗

α . Thus, we get f1 + f2 + f3 = 1.

Let us now denote T (r) = max{T (r, f1), T (r, f2), T (r, f3)}. Then, we have

T (r, f1) = O(T (r, f∗)),

T (r, f2) = O(T (r, f∗) + T (r, g∗)) = T (r, f3).

So, T (r, fi) = O(T∗(r)) for i = 1, 2, 3 and also S(r, f∗) + S(r, g∗) = o(T∗(r)).

We now study the following cases.

Case 1. Suppose that none of f2 and f3 are constant. If f1 and f2, f3 are linearly independent,
then by using Lemma 2.1 and Lemma 2.4, we get

T (r, f1) ≤
3∑
i=1

N2

(
r,

1
fi

)
+

3∑
i=1

N(r, fi) + o(T (r))

≤ N2

(
r,

α

fp∗Pm(f∗)f
′
∗

)
+N2

(
r,

1
H

)
+N2

(
r,

α

Hgp∗Pm(g∗)g′∗

)
+N(r, fp∗Pm(f∗)f

′

∗) +N(r,H) +N(r,Hgp∗Pm(g∗)g
′

∗) + o(T (r))

≤ N2

(
r,

1
fp∗Pm(f∗)f

′
∗

)
+ 2N2

(
r,

1
H

)
+N2

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+N(r, f∗) + 2N(r,H) +N(r, g∗) + o(T (r)).

(3.4)

Now, since N2
(
r, 1
H
)
≤ 2N

(
r, 1
H
)
≤ 2NL(r, g∗) and N(r,H) ≤ NL(r, f∗).

Also, since NL(r, f∗) = 0 = NL(r, g∗) and we note that N(r, f∗) = N(r, g∗), so by using all
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these facts, we get from (3.4) that

T (r, f1) ≤ N2

(
r,

1
fp∗Pm(f∗)f

′
∗

)
+N2

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+ 2N(r, f∗) + o(T (r))

≤ N
(
r,

1
fp∗Pm(f∗)f

′
∗

)
−
[
N(3

(
r,

1
fp∗Pm(f∗)f

′
∗

)
− 2N (3

(
r,

1
fp∗Pm(f∗)f

′
∗

)]
+N

(
r,

1
gp∗Pm(g∗)g

′
∗

)
−
[
N(3

(
r,

1
gp∗Pm(g∗)g

′
∗

)
− 2N (3

(
r,

1
gp∗Pm(g∗)g

′
∗

)]
+ 2N(r, f∗) + o(T (r)).

(3.5)

Let z0 be a zero of f∗ of multiplicity r, then z0 is also a zero of fp∗Pm(f∗)f
′

∗ of multiplicity
pr + r − 1 ≥ 3. Then, we have

N(3

(
r,

1
fp∗Pm(f∗)f

′
∗

)
− 2N (3

(
r,

1
fp∗Pm(f∗)f

′
∗

)
≥ (p− 2)N

(
r,

1
f∗

)
. (3.6)

Similarly, we get

N(3

(
r,

1
gp∗Pm(g∗)g

′
∗

)
− 2N (3

(
r,

1
gp∗Pm(g∗)g

′
∗

)
≥ (p− 2)N

(
r,

1
g∗

)
. (3.7)

Let us consider

F =
am

p+m+ 1
fp+m+1
∗ +

am−1

p+m
fp+m∗ + ...+

a1

p+ 2
fp+2
∗ +

a0

p+ 1
fp+1
∗

and
G =

am
p+m+ 1

gp+m+1
∗ +

am−1

p+m
gp+m∗ + ...+

a1

p+ 2
gp+2
∗ +

a0

p+ 1
gp+1
∗ .

Now, by using Lemma 2.4, we get

T (r,F) = (p+m+ 1)T (r, f∗) + S(r, f∗).

So, it is clear that F ′ = αf1. We also have

m

(
r,

1
F

)
≤ m

(
r,

1
αf1

)
+m

(
r,
F ′

F

)
≤ m

(
r,

1
f1

)
+ S(r, f∗). (3.8)

By using (3.8) and the first fundamental theorem, we get

T (r,F) = m

(
r,

1
F

)
+N

(
r,

1
F

)
≤ T (r, f1)−N

(
r,

1
f1

)
+N

(
r,

1
F

)
+ S(r, f∗)

≤ T (r, f1) + (p+ 1)N
(
r,

1
f∗

)
+

m∑
i=1

N

(
r,

1
f∗ − bi

)
−N

(
r,

1
f1

)
,

(3.9)

where bi(i = 1, 2, ...,m) are the roots of the algebraic equation
am

p+m+ 1
zm +

am−1

p+m
zm−1 +

am−2

p+m− 1
zm−2 + ...+

a1

p+ 2
z +

a0

p+ 1
= 0.

Substituting (3.5) to (3.8) and using (2.5), (2.6) in (3.9), we get

T (r,F) ≤ N
(
r,

1
fp∗Pm(f∗)f

′
∗

)
+ (2− p)N

(
r,

1
f∗

)
+N

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+ (2− p)N

(
r,

1
g∗

)
+ 2N(r, f∗) + (p+ 1)N

(
r,

1
f∗

)
+

m∑
i=1

N

(
r,

1
f∗ − bi

)
−N

(
r,

1
fp∗Pm(f∗)f

′
∗

)
+ o(T (r))
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(p+m+ 1)T (r, f∗) ≤ 3N
(
r,

1
f∗

)
+ 3N

(
r,

1
g∗

)
+N(r, g∗) +mN

(
r,

1
g∗

)
+ 2N(r, f∗) +

m∑
i=1

N

(
r,

1
f∗ − bi

)
+ o(T (r))

≤ 3
l
T

(
r,

1
f∗

)
+

3
l
T

(
r,

1
g∗

)
+

1
l
T (r, g∗) +

m

l
T

(
r,

1
g∗

)
+

2
l
T (r, f∗) +

m

l
T

(
r,

1
f∗

)
+ o(T (r))

i.e.,[
(p+m+ l)l − (m+ 5)

l

]
T (r, f∗) ≤

(
m+ 4
l

)
T (r, g∗) + o(T (r)) (3.10)

Let g1 = − f3
f2

= gp∗Pm(g∗)g
′
∗

α , g2 = 1
f2

= 1
H and g3 = − f1

f2
= − f

p
∗Pm(f∗)f

′
∗

αH . Then we get
g1 + g2 + g3 = 1.

By Lemma 2.5, we have g1, g2 and g3 are linearly independent because f1, f2 and f3 are linearly
independent. Now, proceeding in the same lines as above, we obtain[

(p+m+ l)l − (m+ 5)
l

]
T (r, g∗) ≤

(
m+ 4
l

)
T (r, f∗) + o(T (r)) (3.11)

Let T∗(r) = max{T (r, f∗), T (r, g∗)}. Combining (3.10) and (3.11),[
(p+m+ l)l − (m+ 5)

l

]
T∗(r) ≤

(
m+ 4
l

)
T∗(r) + o(T (r))

i.e., [
(p+m+ l)l − (m+ 5)

l
−
(
m+ 4
l

)]
T∗(r) ≤ o(T (r))

i.e.,

p ≤ 2m− (m+ 1)l+ 9
l

,

which contradicts p ≥ 2m−(m+1)l+10
l .

Thus, f1, f2 and f3 are linearly independent. Therefore there exists constants c1, c2 and c3, atleast
one of them is non-zero such that

c1f1 + c2f2 + c3f3 = 0. (3.12)

Subcase 1.1. If c1 = 0, c2 6= 0 and c3 6= 0, then from (3.12), we get f3 = − c2
c3
f2, which implies

that gp∗Pm(g∗)g
′

∗ =
c2
c3
α.

On integrating, we get

am
p+m+ 1

gp+m+1
∗ +

am−1

p+m
gp+m∗ + ...+

a1

p+ 2
gp+2
∗ +

a0

p+ 1
gp+1
∗ =

c2

c3
α+ c, (3.13)

where c is an arbitrary constant. Thus, we get

T

(
r,

am
p+m+ 1

gp+m+1
∗ +

am−1

p+m
gp+m∗ + ...+

a1

p+ 2
gp+2
∗ +

a0

p+ 1
gp+1
∗

)
≤ T (r, α) +O(1)

i.e., (p+m+ 1)T (r, g∗) ≤ S(r, g∗).

Now, since p ≥ 2m−(m+1)l+10
l , we get a contradiction.

Subcase 1.2. Let c1 6= 0. Then by (3.12), we get f1 =
(
− c2
c1

)
f2 +

(
− c3
c1

)
f3.
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On substituting this in the relation f1 + f2 + f3 = 1, we get
(

1− c2
c1

)
f2 +

(
1− c3

c1

)
f3 = 1,

where (c1 − c2)(c1 − c3) 6= 0. Thus, we get(
1− c3

c1

)
gp∗Pm(g∗)g

′

∗
α

+
1
H

=

(
1− c2

c1

)
(3.14)

We now see that

T (r, gp∗Pm(g∗)g
′

∗) ≤ T

(
r,
gp∗Pm(g∗)g

′

∗
α

)
+ T (r, α)

≤ T

(
r,
gp∗Pm(g∗)g

′

∗
α

)
+ S(r, g∗).

By using Lemma 2.2 to (3.14), we get

T

(
r,
gp∗Pm(g∗)g

′

∗
α

)
≤ N

(
r,
gp∗Pm(g∗)g

′

∗
α

)
+N

(
r,

α

gp∗Pm(g∗)g
′
∗

)
+N(r,H) + S(r, g∗).

Combining the above two, we get

T (r, gp∗Pm(g∗)g
′

∗) ≤ N
(
r,

1
gp∗Pm(g∗)g

′
∗

)
+ 2N(r, g∗) + S(r, g∗). (3.15)

By using Lemma 2.3, Lemma 2.4 and (3.15), we get

(p+m)T (r, g∗) ≤ T (r, gp∗Pm(g∗)) + S(r, g∗)

≤ T (r, gp∗Pm(g∗)g
′

∗) + T

(
r,

1
g′∗

)
+ S(r, g∗)

≤ N
(
r,

1
gp∗Pm(g∗)g

′
∗

)
+ 2N(r, g∗) + T

(
r,

1
g′∗

)
+ S(r, g∗)

≤ 8T (r, g∗) + S(r, g∗),

which contradicts p ≥ 2m−(m+1)l+10
l .

Case 2. If f2 = k, where k is a constant.

Subcase 2.1. If k 6= 1, then from the relation f1 + f2 + f3 = 1, we get

fp∗Pm(f∗)f
′

∗
α

− k g
p
∗Pm(g∗)g

′

∗
α

= 1− k. (3.16)

By applying Lemma 2.2 to (3.16), we get

T

(
r,
fp∗Pm(f∗)f

′

∗
α

)
≤ N(r, f∗) +N

(
r,

1
fp∗Pm(f∗)f

′
∗

)
+N

(
r,

1
gp∗Pm(g∗)g

′
∗

)
+ S(r, g∗).

(3.17)
Again by applying Lemma 2.3, Lemma 2.4 and (3.17), we get

(p+m)T (r, f∗) ≤ T (r, fp∗Pm(f∗)) + S(r, f∗)

≤ T (r, fp∗Pm(f∗)f
′

∗) + T

(
r,

1
f ′∗

)
+ S(r, f∗)

≤ T

(
r,
fp∗Pm(f∗)f

′

∗
α

)
+ T

(
r,

1
f ′∗

)
+ S(r, f∗)

≤ 7T (r, f∗) + 4T (r, g∗) + S(r, f∗)
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i.e.,
(p+m− 7)T (r, f∗) ≤ 4T (r, g∗) + S(r, f∗).

Now, using Lemma 2.7, we get

(p+m− 7)T (r, f∗) ≤ 4
[

l(p+m+ 2)
(p+m− 2)l − (m+ 4)

]
T (r, f∗) + S(r, g∗),

which contradicts p ≥ 2m−(m+1)l+10
l .

Subcase 2.2. Let k = 1 i.e., H = 1 and fp∗Pm(f∗)f
′

∗ = gp∗Pm(g∗)g
′

∗.

On integrating both sides, we get

am
p+m+ 1

fp+m+1
∗ +

am−1

p+m
fp+m∗ + ...+

a1

p+ 2
fp+2
∗ +

a0

p+ 1
fp+1
∗ ≡

am
p+m+ 1

gp+m+1
∗ +

am−1

p+m
gp+m∗ + ...+

a1

p+ 2
gp+2
∗ +

a0

p+ 1
gp+1
∗ + c,

where c is an arbitrary constant. That is
F ≡ G + c. (3.18)

Subcase 2.2.1. Let if possible c 6= 0. Then, we get

Θ(0,F) + Θ(c,F) + Θ(∞,F) = Θ(0,F) + Θ(0,G) + Θ(∞,F).

So, we have

N

(
r,

1
F

)
= N

(
r,

1
f∗

)
+N

(
r,

1
f∗ − b1

)
+ ...+N

(
r,

1
f∗ − bm

)
≤ (m+ 1)T (r, f∗).

Similarly, we get

N

(
r,

1
G

)
≤ (m+ 1)T (r, g∗).

We also note that,

T (r,F) = (p+m+ 1)T (r, f∗) + S(r, f∗)

T (r,G) = (p+m+ 1)T (r, g∗) + S(r, g∗).

Thus, Θ(0,F) = 1− limr→∞
N(r, 1

F )
T (r,F) ≥ 1− (m+1)T (r,f∗)

(p+m+1)T (r,f∗)
= 1− m+1

p+m+1 .

Therefore, Θ(0,F) ≥ p
p+m+1 .

Thus, Θ(0,F) + Θ(c,F) + Θ(∞,F) ≥ 3p+m
p+m+1 > 2.

Since p ≥ 2m−(m+1)l+10
l , we get a contradiction.

Subcase 2.2.2. Thus, we get c = 0. So,
F ≡ G. (3.19)

Let h = f∗
g∗

. Then taking h in (3.19), we get

am
p+m+ 1

[
gp+m+1
∗

{
hp+m+1 − 1

}]
+

am−1

p+m

[
gp+m∗

{
hp+m − 1

}]
+

...+
a1

p+ 2
[
gp+2
∗

{
hp+2 − 1

}]
+

a0

p+ 1
[
gp+1
∗

{
hp+1 − 1

}]
= 0.

(3.20)

Subcase 2.2.2.1. If h is a non-constant, then by using Lemma 2.6 and proceeding exactly in the
same lines as done in [13, p.1272], we get a contradiction.

Subcase 2.2.2.2. Let h be a constant, then from (3.20), we get

hp+m+1 − 1 = 0, hp+m − 1 = 0, ..., hp+1 − 1 = 0.
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That is hd = 1, where d = gcd{p+m+ 1, p+m, ..., p+ 1} = 1. That is h = 1.

Hence f∗ ≡ g∗ (or) f ≡ g.

Case 3. Suppose f3 = c, where c is a constant.

Subcase 3.1. If c 6= 1, then from the relation f1 + f2 + f3 = 1, we get

fp∗Pm(f∗)f
′

∗
α

− cα

gp∗Pm(g∗)g
′
∗
= 1−H. (3.21)

Now, by applying Lemma 2.2 to the above equation, we get

T (r, fp∗Pm(f∗)f
′

∗) ≤ T

(
r,
fp∗Pm(f∗)f

′

∗
α

)
+ S(r, f∗) (3.22)

≤ N

(
r,
fp∗Pm(f∗)f

′

∗
α

)
+N

(
r,

α

fp∗Pm(f∗)f
′
∗

)
+N

(
r,
gp∗Pm(g∗)g

′

∗
α

)

≤ N(r, f∗) +N

(
r,

1
fp∗Pm(f∗)f

′
∗

)
+N(r, g∗) + S(r, g∗).

By using Lemma 2.3, Lemma 2.4 and (3.22), we have

(p+m)T (r, f∗) ≤ T (r, fp∗Pm(f∗)) + S(r, f∗)

≤ T (r, fp∗Pm(f∗)f
′

∗) + T

(
r,

1
f ′∗

)
+ S(r, f∗)

≤ 7T (r, f∗) +N(r, g∗) + S(r, f∗).

Again using Lemma 2.7, we get

(p+m− 7)T (r, f∗) ≤ T (r, g∗) + S(r, f∗)

≤
[

l(p+m+ 2)
(p+m− 2)l − (m+ 4)

]
T (r, f∗) + S(r, f∗),

which contradicts p ≥ 2m−(m+1)l+10
l .

Subcase 3.2. Let c = 1. Then from (3.21), we get

fp∗Pm(f∗)f
′

∗ g
p
∗Pm(g∗)g

′

∗ = α2. (3.23)

Let z0 be a zero of f∗ of order r0. Then from (3.23), we see that z0 is a pole of g∗ of order s0(say).
Then, from (3.23), we get pr0+r0−1 = ps0+ms0+s0+1 i.e., (p+1)(r0−s0) = ms0+2 ≥ p+1
i.e., r0 ≥ p+m−1

m .

Let z1 be a zero of Pm(f∗) of order r1. Then from (3.23), we see that z1 is a pole of g∗ of order
s1(say). So, we have r1 + r1 − 1 = ps1 +ms1 + s1 + 1 i.e., r1 ≥ p+m+3

2 .

Let z2 be a zero of f
′

∗ of order r2 which are not the zeros of f∗Pm(f∗), so from (3.23) we see that
z2 will be a pole of g∗ of order s2(say). Then from (3.23), we get r2 = ps2 +ms2 + s2 + 1 i.e.,
r2 ≥ p+m+ 2.

The similar explanations holds for the zeros of gp∗Pm(g∗)g
′

∗. Next, we see from (3.23) that

N(r, fp∗Pm(f∗)f
′

∗) = N

(
r,

α2

gp∗Pm(g∗)g
′
∗

)
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i.e.,

N(r, f∗) ≤ N
(
r,

1
g∗

)
+N

(
r,

1
Pm(g∗)

)
+N

(
r,

1
g′∗

)
≤
(

m

p+m− 1

)
N

(
r,

1
g∗

)
+

(
2

p+m+ 3

)
N

(
r,

1
Pm(g∗)

)
+

(
1

p+m+ 2

)
N

(
r,

1
g′∗

)
+ S(r, g∗)

≤
(

m

p+m− 1
+

2
p+m+ 3

+
1

p+m+ 2

)
T (r, g∗) + S(r, g∗).

By applying the second fundamental theorem, we get

T (r, f∗) ≤ N(r, f∗) +N

(
r,

1
f∗

)
+N

(
r,

1
Pm(f∗)

)
+ S(r, f∗)

≤
(

m

p+m− 1
+

2
p+m+ 3

)
T (r, f∗)

+

(
m

p+m− 1
+

2
p+m+ 3

+
2

p+m+ 2

)
T (r, g∗) + S(r, f∗) + S(r, g∗).

(3.24)

Similarly, we get

T (r, g∗) ≤
(

m

p+m− 1
+

2
p+m+ 3

)
T (r, g∗)

+

(
m

p+m− 1
+

2
p+m+ 3

+
2

p+m+ 2

)
T (r, f∗) + S(r, f∗) + S(r, g∗).

(3.25)

From (3.24) and (3.25), we get

T∗(r) ≤
(

2m
p+m− 1

+
4

p+m+ 3
+

2
p+m+ 2

)
T∗(r) + S∗(r)

i.e., [
1− 2m

p+m− 1
− 4
p+m+ 3

− 2
p+m+ 2

]
T∗(r) ≤ S∗(r),

which contradicts p ≥ 2m−(m+1)l+10
l .

Hence the proof of theorem 1.9.

Proof. (Proof of Theorem 1.10.) Since f∗ and g∗ are both non-constant entire functions, then we
may consider the following two cases.

Case 1. Let f∗ and g∗ are two transcendental entire functions. Then it is clear that N(r, f∗) =
S(r, f∗) and N(r, g∗) = S(r, g∗). With this the result of the proof is carried out in the same lines
as in the proof of theorem 1.9.

Case 2. Let f∗ and g∗ be both polynomials. Since fp∗Pm(f∗)f
′

∗ and gp∗Pm(g∗)g
′

∗ share α CM,
then we have

fp∗Pm(f∗)f
′

∗ − α = κ(gp∗Pm(g∗)g
′

∗ − α), (3.26)

where κ is a non-zero constant.

Subcase 2.1. Suppose that κ 6= 1, then from (3.26), we get

fp∗Pm(f∗)f
′

∗
α

− κg
p
∗Pm(g∗)g

′

∗
α

= 1− κ. (3.27)
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By Lemma 2.2, we get

T (r, fp∗Pm(f∗)f
′

∗) ≤ T

(
r,
fp∗Pm(f∗)f

′

∗
α

)
+ S(r, f∗)

≤ N

(
r,
fp∗Pm(f∗)f

′

∗
α

)
+N

(
r,

α

fp∗Pm(f∗)f
′
∗

)

+N

(
r,

α

gp∗Pm(g∗)g
′
∗

)
+ S(r, f∗)

≤ N(r, f∗) +N

(
r,

α

fp∗Pm(f∗)f
′
∗

)
+N

(
r,

α

gp∗Pm(g∗)g
′
∗

)
+ S(r, f∗).

By using Lemma 2.3, Lemma 2.4 and (3.27) gives

(p+m)T (r, f∗) ≤ T (r, fp∗Pm(f∗))

≤ T (r, fp∗Pm(f∗)f
′

∗) + T

(
r,

1
f ′∗

)
+ S(r, f∗)

≤ 4T (r, f∗) + 3T (r, g∗) + S(r, f∗)

i.e.,
(p+m− 4)T (r, f∗) ≤ 3T (r, g∗) + S(r, f∗).

Again using Lemma 2.8, we get

(p+m− 4)T (r, f∗) ≤ 3
[

l(P +m+ 2)
(P +m− 2)l − (m+ 1)

]
T (r, f∗) + S(r, f∗),

which contradicts p ≥ 2m−(m+1)l+6
l .

Subcase 2.2. Let κ = 1, from (3.27), we get

fp∗Pm(f∗)f
′

∗ ≡ gp∗Pm(g∗)g
′

∗.

Now, proceeding in the same lines as in Subcase 2.2.2.1 and Subcase 2.2.2.2 in the proof of
theorem 1.9, we get proof of theorem 1.10.
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