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Abstract In this paper we investigate identities with two generalized derivations in prime
rings. Let R be a 2-torsion free prime ring admitting two generalized derivations F and G, not
both zero. Among others, we prove that if F (xy) + G(yx) ∈ Z(R) for all x, y ∈ R, then R
is a commutative. Also, if the ring R is equipped with an involution of the second kind and
F (xx∗) + G(x∗x) ∈ Z(R) for all x ∈ R, then R is commutative. The proved theorems give a
rise to many corollaries which recover well-known results on (generalized) derivations and left
multiplier maps on prime rings (resp. with involution). All along the paper, examples are given
to discuss the necessity of our assumptions.

1 Introduction

Throughout this paper, R will denote an associative ring 6= {0} with center Z(R). For any
x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx and the symbol x ◦ y denotes the
anti-commutator xy + yx. Recall that R is prime if, for any x, y ∈ R, xRy = {0} implies that
either x = 0 or y = 0, R is called semiprime if, for x ∈ R, xRx = {0} implies that x = 0, and R
is said to be 2-torsion free if 2x = 0, x ∈ R, implies x = 0. A mapping f : R→ R is said to be
additive if f(x+ y) = f(x) + f(y) holds for all x, y ∈ R. An additive mapping d on R is called
derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An additive mapping f is called left
multiplier if f(xy) = f(x)y holds for all x, y ∈ R. In [2], Brešar (1991) introduced the notion of
generalized derivation as follows: an additive mapping F on R is called a generalized derivation
associated with a derivation d if F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. The concept of
generalized derivations includes strictly the concepts of derivations and left multiplier mappings.
For a, b ∈ R, the mapping F : R → R defined by F (x) = ax + xb for all x ∈ R is an other
example of a generalized derivation on R (associated with the inner derivation d = [., b]), called
inner generalized derivation.
An additive mapping x 7→ x∗ satisfying (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R is called
an involution on R. An element x in a ring R equipped with an involution ∗ is said to be her-
mitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian and skew-hermitian
elements of R will be denoted by H(R) and S(R), respectively. The involution ∗ is said to be of
the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In the latter case,
S(R)∩Z(R) 6= {0}. The study of additive maps in rings with involution was initiated by Brešar
et al. [3] to describe the centralizing maps on the skew-symmetric elements in prime rings.

In the last fifteen years, there has been ongoing interest concerning the relationship between
the commutativity of rings (resp. with involution) and the existence of certain specific types of
additive mappings of R (such as automorphisms, derivations, skew derivations, semi-derivations,
and generalized derivations) acting on appropriate subsets of the rings (see for example [4, 6, 10,
12, 13]). In this paper we investigate identities with two generalized derivations in prime rings.
Let R be a 2-torsion free prime ring admitting two generalized derivations F and G, not both
zero. If F (xy) + G(yx) ∈ Z(R) for all x, y ∈ R, then R is a commutative. If the ring R
is equipped with an with involution of the second kind and F (xx∗) + G(x∗x) ∈ Z(R) for all
x, y ∈ R, then R is commutative. As consequence, many identities in term of commutator
and anti-commutator implying commutativity are given. We also give examples to discuss our
results on non prime rings. Note that the proved results recover many results on (generalized)
derivations and left multiplier mappings on prime rings (resp. with involution) (see for example
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[1, 5]).

2 A commutativity theorem for rings involving generalized derivations

We need the following lemma.

Lemma 2.1 ([7, Lemma 1]). Let R be a 2-torsion free prime ring. If R admits a non-zero
generalized derivation F such that F ([x, y]) ∈ Z(R) for all x, y ∈ R, then R is commutative.

The main result of this section is the following theorem.

Theorem 2.2. Let R be a 2-torsion free prime ring. If R admits two generalized derivations, not
both zero, F and G such that F (xy) +G(yx) ∈ Z(R) for all x, y ∈ R, then R is a commutative.

Proof. Let f and g be the associate derivations to F and G, respectively.
By the assumption, we have

F (xy) +G(yx) ∈ Z(R) for all x, y ∈ R. (2.1)

We claim that Z(R) 6= {0}. Otherwise, we have

F (xy) +G(yx) = 0 for all x, y ∈ R. (2.2)

Replacing y by yx, we get

F (xy)x+G(yx)x+ xyf(x) + yxg(x) = 0 for all x, y ∈ R, (2.3)

and hence
xyf(x) + yxg(x) = 0 for all x, y ∈ R. (2.4)

Substituting ry in place of y in (2.4), we obtain

xryf(x) + ryxg(x) = 0 for all r, x, y ∈ R. (2.5)

Left multiplying (2.4) by r, where r ∈ R, we get

rxyf(x) + ryxg(x) = 0 for all r, x, y ∈ R. (2.6)

Now, subtracting (2.5) from (2.6), we have

[r, x]yf(x) = 0 for all r, x, y ∈ R. (2.7)

Since R is prime and Z(R) = {0}, we get immediately f = 0. Similarly, g = 0. Accordingly, F
and G are left multiplier. Thus, (2.2) becomes

F (x)y +G(y)x = 0 for all x, y ∈ R. (2.8)

Replacing y by yr, where r ∈ R, we get

F (x)yr +G(y)rx = 0 for all r, x, y ∈ R. (2.9)

Right multiplying (2.8) by r, we obtain

F (x)yr +G(y)xr = 0 for all r, x, y ∈ R. (2.10)

Subtracting (2.10) from (2.9), we have

G(y)[r, x] = 0 for all r, x, y ∈ R. (2.11)

Since R is prime and Z(R) = {0}, we obtain G = 0. Hence, we have F (x)y = 0 for all
x, y ∈ R, which means that F = 0, a contradiction. Consequently, Z(R) 6= {0}.
Now, let y ∈ Z(R)\{0} and replace x by x2 in (2.1), we get

(F (x2) +G(x2))y + x2(f(y) + g(y)) ∈ Z(R) for all x ∈ R. (2.12)
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Since (F (x2) + G(x2))y ∈ Z(R) for all x ∈ R, we get that x2(f(y) + g(y)) ∈ Z(R). Then,
since f(y) + g(y) ∈ Z(R) for all y ∈ Z(R), we conclude that either x2 ∈ Z(R) for all x ∈ R
or (f + g)(y) = 0 for all y ∈ Z(R). The first case implies that R is commutative. In the second
case, our assumption implies that, for any y ∈ Z(R)\{0}, we have

(F (x) +G(x))y ∈ Z(R) for all x ∈ R, (2.13)

which means that
(F +G)(x) ∈ Z(R) for all x ∈ R. (2.14)

Using Lemma 2.1, we deduce that either R is commutative or F + G = 0. When F + G = 0,
our assumption becomes F ([x, y]) ∈ Z(R) for all x, y ∈ R and F 6= 0, which implies, again by
Lemma 2.1, that R is commutative.2
Next, we give a collection of consequences of the theorem above.

Corollary 2.3. Let R be a 2-torsion free prime ring admitting two generalized derivations, not
both zero, F and G. Then, the following assertions are equivalent:

(i) F (x ◦ y) +G([x, y]) ∈ Z(R) for all x, y ∈ R.

(ii) F (xy) +G([x, y]) ∈ Z(R) for all x, y ∈ R.

(iii) F (xy) +G(x ◦ y) ∈ Z(R) for all x, y ∈ R.

(iv) R is commutative.

Proof. We need only the prove the implications (i)⇒ (4) with i ∈ {1, 2, 3}.
(1)⇒ (4) Follows immediately from Theorem 2.2 since the generalized derivations F +G and
F −G are not both zero and satisfy the relation

(F +G)(xy) + (F −G)(yx) = F (x ◦ y) +G([x, y]) ∈ Z(R) for all x, y ∈ R.

The proofs of the implications (2) ⇒ (4) and (3) ⇒ (4) are similar to the first one by consid-
ering the generalized derivations F +G and −G and the generalized derivations F +G and G,
respectively. 2

Corollary 2.4. Let R be a 2-torsion free prime ring. If R admits two generalized derivations,
not both zero, F and G such that F (xy) = G(yx) for all x, y ∈ R, then R is commutative and
F = G.

Proof. The ring R is clearly commutative (by Theorem 2.2). Let d be the associate derivation
to the generalized derivation H = F − G. We have H(xy) = 0 for all x, y ∈ R. Thus, for all
x, y ∈ R, we have 0 = H(x2y) = H(x2)y + x2d(y) = x2d(y). Then, d = 0. Consequently,
0 = H(xy) = H(x)y for all x, y ∈ R, and so H = 0. 2

Note that in an arbitrary 2-torsion free ring R (even commutative), if F and G are two gen-
eralized derivations on R such that F (xy) = G(yx) for all x, y ∈ R, then F and G are not
necessary equal. To see this, consider the ring

R :=


 0 a b

0 0 c

0 0 0

 | a, b, c ∈ Z

 .

We can verify easily that xy = yx = 0 for all x, y ∈ R. Hence, for F = and G = 0, we have
F (xy) = G(yx). However, F 6= G. Unfortunately, R is not semiprime. So we can not be sure
that, on a semi-prime ring, the relation F (xy) = G(yx) for all x, y ∈ R implies that F = G or
not.

Corollary 2.5. Let R be a 2-torsion free prime ring admitting two generalized derivations, not
both zero, F and G. Then, the following assertions are equivalent:
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(i) F (x ◦ y) = G([x, y]) for all x, y ∈ R.

(ii) F (xy) = G([x, y]) for all x, y ∈ R.

(iii) R is commutative and F = 0.

Proof. (1) ⇒ (3) Applying Corollary 2.4 to the generalized derivations F − G and −F − G
which are not both zero and which satisfy (F − G)(xy) = (−F − G)(yx), we conclude that R
is commutative and that F −G = −F −G (and so F = 0 since R is 2-torsion free).
(1)⇒ (3) It suffices to apply Corollary 2.4 to the generalized derivations F −G and −G (as in
the proof of (1)⇒ (3)).
The converse implications are trivial. 2

Corollary 2.6. Let R be a 2-torsion free prime ring. If R admits two generalized derivations,
not both zero, F and G such that F (xy) = G(x ◦ y) for all x, y ∈ R then R is commutative and
F = 2G.

Proof. Follows by applying Corollary 2.4 to the generalized derivations F −G and G. 2

Corollary 2.7. Let R be a 2-torsion free prime ring. If R admits a generalized derivation F such
that F (x ◦ y) = 0 for all x, y ∈ R then F = 0.

Proof. Suppose that F 6= 0. Using Corollary 2.5 for the generalized derivations F and G = 0,
we get that F = 0, a contradiction. Thus, F = 0. 2
The following examples show that under the hypotheses of any result of this section we cannot
hope to prove the commutativity of the ring R if this one is semiprime.

Example 2.8. Let R1 be a 2-torsion free integral domain admitting a non zero derivation d1
(take for example R = R[X] equipped with the usual derivation of polynomials) and R2 be any
noncommutative 2-torsion free prime ring. Set R = R1 × R2 (which is a semiprime ring) and
let d : R → R be the derivation defined by d(x, y) = (d1(x), 0) for all (x, y) ∈ R. Then, for all
(x, y), (x′, y′) ∈ R,

d ([(x, y), (x′, y′)]) = d ([x, x′], [y, y′]) = d (0, [y, y′]) = (0, 0).

Let F0 : R → R be the left multiplier defined by F0(x, y) = (x, 0) for all (x, y) ∈ R. Then, for
all (x, y), (x′, y′) ∈ R,

F0 ([(x, y), (x
′, y′)]) = F0 ([x, x

′], [y, y′]) = F (0, [y, y′]) = (0, 0).

The ring R is not commutative. However,

(i) the (generalized) derivations F = d (resp. F = F0) and G = 0 satisfy the hypothesis of
Theorem 2.2.

(ii) the (generalized) derivations F = 0 and G = d (resp. G = F0) satisfy the hypothesis of
Corollary 2.3. .

(iii) the (generalized) derivations F = G = d (resp. F = G = F0) satisfy the hypothesis of
Corollary 2.4.

(iv) the (generalized) derivations F = 0 and G = d (resp. G = F0) satisfy the hypothesis of
Corollary 2.5.

(v) the (generalized) derivations F = 2G = 2d (resp. F = 2G = 2F0) satisfy the hypothesis
of Corollary 2.6.
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3 A commutativity theorem for rings with involution involving generalized
derivations

We need the following lemma.

Lemma 3.1 ([7, Theorem 1]). Let R be a 2-torsion free prime ring with involution of the second
kind. If R admits a non-zero generalized derivation F such that F ([x, x∗]) ∈ Z(R) for all x ∈ R,
then R is commutative.

The main result of this section is as follows.

Theorem 3.2. Let R be a 2-torsion free prime ring with involution of the second kind. If R admits
two generalized derivations, not both zero, F and G such that F (xx∗) +G(x∗x) ∈ Z(R) for all
x, y ∈ R, then R is commutative.

Proof. Let f and g be the associate derivations to F and G, respectively.
By assumption, we have

F (xx∗) +G(x∗x) ∈ Z(R) for all x ∈ R. (3.1)

Linearizing (3.1), we get

F (xy∗) + F (yx∗) +G(x∗y) +G(y∗x) ∈ Z(R) for all x, y ∈ R, (3.2)

which can be rewritten as

F (xy) + F (y∗x∗) +G(x∗y∗) +G(yx) ∈ Z(R) for all x, y ∈ R. (3.3)

Let h ∈ Z(R) ∩H(R)\{0}. Replacing y by hy, we get

(xy + y∗x∗)f(h) + (yx+ x∗y∗)g(h) ∈ Z(R) for all x, y ∈ R. (3.4)

In particular, for y = h we have

(x+ x∗)(f + g)(h)h ∈ Z(R) for all x ∈ R. (3.5)

Then, since (f + g)(h)h ∈ Z(R) and R is prime, we get either x+ x∗ ∈ Z(R) for all x ∈ R or
(f + g)(h) = 0 for all h ∈ Z(R) ∩H(R). In the first case, we have [x, x∗] = 0 for all x ∈ R,
and so R is commutative (by Lemma 3.1). Now, if (f + g)(h) = 0 for all h ∈ Z(R) ∩ H(R)
then (f + g)(s2) = 0 for all s ∈ Z(R) ∩ S(R), which means that (f + g)(s) = 0. Therefore,
(f + g)(Z(R)) = 0.
Replacing y in (3.3) by h ∈ Z(R) ∩H(R)\{0}, we deduce that

F (x) + F (x∗) +G(x∗) +G(x) ∈ Z(R) for all x ∈ R, (3.6)

and replacing y in (3.3) by s ∈ Z(R) ∩ S(R)\{0}, we also conclude that

F (x)− F (x∗)−G(x∗) +G(x) ∈ Z(R) for all x ∈ R. (3.7)

Thus, from equations (3.6) and (3.7), we get

(F +G)(x) ∈ Z(R) for all x ∈ R. (3.8)

By Lemma 2.1, either R is commutative or F + G = 0. In the second case, our assumption
becomes F ([x, x∗]) ∈ Z(R) for all x ∈ R, which implies, also by Lemma 3.1, that R is commu-
tative (since F 6= 0). 2
Next, we give a collection of corollaries of the theorem above. The proofs of theses corollar-
ies are easily obtained by replacing Theorem 2.2 by Theorem 3.2 and y by x∗ in the proofs of
Corollaries 2.3, 2.4, 2.5, 2.6, and 2.7.

Corollary 3.3. Let R be a 2-torsion free prime ring with involution of the second kind and ad-
mitting two generalized derivations, not both zero, F and G. Then, the following assertions are
equivalent:
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(i) F (x ◦ x∗) +G([x, x∗]) ∈ Z(R) for all x ∈ R.

(ii) F (xx∗) +G([x, x∗]) ∈ Z(R) for all x ∈ R.

(iii) F (xx∗) +G(x ◦ x∗) ∈ Z(R) for all x ∈ R.

(iv) R is commutative.

Corollary 3.4. Let R be a 2-torsion free prime ring with involution of the second kind. If R
admits two generalized derivations, not both zero, F and G such that F (xx∗) = G(x∗x) for all
x ∈ R, then R is commutative and F = G.

Corollary 3.5. Let R be a 2-torsion free prime ring with involution of the second kind and ad-
mitting two generalized derivations, not both zero, F and G. Then, the following assertions are
equivalent:

(i) F (x ◦ x∗) = G([x, x∗]) for all x ∈ R.

(ii) F (xx∗) = G([x, x∗]) for all x ∈ R.

(iii) R is commutative and F = 0.

Corollary 3.6. Let R be a 2-torsion free prime ring with involution of the second kind. If R
admits two generalized derivations, not both zero, F and G such that F (xx∗) = G(x ◦ x∗) for
all x ∈ R then R is commutative and F = 2G.

Corollary 3.7. Let R be a 2-torsion free prime ring with involution of the second kind. If R
admits a generalized derivation F such that F (x ◦ x∗) = 0 for all x ∈ R then F = 0.

The following examples show that the condition "∗ is of the second kind" is necessary in all
results of this section.

Example 3.8. Let R := M2(Z) (the matrix ring over Z) equipped with the involution defined by(
a b

c d

)∗
=

(
d −b
−c a

)
.

It is straightforward to check that R is a prime and that ∗ is of the first kind. Moreover, for all
x ∈ R, we have

[x, x∗] = 0 and xx∗ = x∗x ∈ Z(R).

The map d of R defined by

d

(
a b

c d

)
=

(
0 b

−c 0

)
is a derivation which satisfies d(xx∗) = 0 for all x ∈ R.

(i) For any nonzero generalized derivation F of R, the generalized derivations F and −F
satisfy the conditions of Theorem 3.2. However, R is not commutative.

(ii) The generalized derivations F = 0 and G = satisfy the assertions (1), (2), and (3) of Corol-
lary 3.3. However, R is not commutative. We can also take F and G any two derivations
on R.

(iii) The generalized derivations F = d and G = 0 satisfy the hypothesis of Corollary 3.4, 3.6,
and 3.7 and the assertions (1) and (2) of Corollary 3.5. However, neither R is commutative
nor F = 0.

The following examples prove that our results cannot be extended to semi-prime rings.

Example 3.9. Let R, ∗, and d be as in Examples 3.8. Let S := R×C equipped with the involution
of the second kind defined by (x, z)? = (x∗, z) where z is the conjugate of the complex number
z. Consider also the derivation (d, 0) of S defined by (d, 0)(x, z) = (d(x), 0). It is easy to see
that

[(x, z), (x, z)?] = (0, 0) and (x, z)(x, z)? = (x, z)?(x, z) = (x∗x, 2zz) ∈ Z(S)
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(i) For any nonzero generalized derivation F of S, the generalized derivations F and −F
satisfy the conditions of Theorem 3.2. However, S is not commutative.

(ii) The generalized derivations F = 0 and G = satisfy the conditions (1), (2), and (3) of Corol-
lary 3.3. However, S is not commutative. We can also take F and G any two derivations of
S.

(iii) The generalized derivations F = (d, 0) and G = 0 satisfy the hypothesis of Corollary
3.4, 3.6, and 3.7 and the assertions (1) and (2) of Corollary 3.5. However, neither S is
commutative nor F = 0.
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