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Abstract In this paper, we study the uniqueness of meromorphic functions that share two
non-zero complex constants CM with their differences. We also investigate the uniqueness prob-
lem of entire functions which share a non-zero complex constant CM and a non-zero complex
constant IM with their differences.

1 Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the open complex plane C and c be a non-zero
complex number. We denote n(r,∞; f) the number of poles of f in |z| < r, the poles are counted
according to their multiplicities. The quantity

N(r, f) = N(r,∞; f) =
∫ r

0

n(t,∞; f)− n(0,∞; f)
t

dt+ n(0,∞; f) log r

is called the integrated counting function or simply the counting function of poles of f . Also,
the function

N(r, a; f) =
∫ r

0

n(t, a; f)− n(0, a; f)
t

dt+ n(0, a; f) log r

is called the counting function of a-points of f .
The proximity function for the poles of f is defined as

m(r,∞; f) =
1

2π

∫ 2π

0
log+

∣∣∣f (reiθ) ∣∣∣dθ,
where

log+ x =

{
0 if 0 ≤ x < 1,
logx if x ≥ 1.

The quantity m(r, f) + N(r, f) is called Nevanlinna’s characteristic function of the mero-
morphic function f and is denoted by T (r, f).

Let us denote by n(r, a; f) the number of distinct a-points of f in |z| < r, where a ∈ C∪{∞}.
The quantity

N(r, a; f) =
∫ r

0

n(t, a; f)− n(0, a; f)
t

dt+ n(0, a; f) log r

denotes the reduced counting function of a-points of f .
The order of growth of f is defined as follows

ρ(f) = lim
r→∞

sup
logT (r, f)

log r
.
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If ρ(f) <∞, then we say that f is a meromorphic function of finite order.

S(r, f) is a quantity which satisfies S(r, f) = ◦{T (r, f)}, as r →∞, possibly outside a set of
finite linear measure. A meromorphic function a = a(z) defined in C is called a small function
of f if T (r, a) = S(r, f). We use S(f) to denote the family of all small functions with respect
to f .

Let f and g be two non-constant meromorphic functions and a = a(z) be a polynomial. f
and g share a CM if f − a and g − a have the same zeros with same multiplicities. On the other
hand, f and g share a IM if f − a and g − a have the same zeros ignoring multiplicities. Espe-
cially, if f and g share a IM, then we denote by N(p,q)

(
r, 1
f−a

)
(N (p,q)

(
r, 1
f−a

)
) the counting

function (the reduced counting function) of zeros of f − a with respect to all the ponts such that
they are zeros of f − a with multiplicity p and zeros of g − a with multiplicity q.

The shift of a meromorphic function f is defined by fc(z) = f(z + c), and its first order
difference is defined by ∆cf(z) = f(z + c)− f(z).

The nth order difference of f is defined by ∆nc f(z) = ∆n−1
c (∆cf(z)), n ∈ N, n ≥ 2.

For standard definitions and results of the value distribution theory we refer the reader to
[5, 8, 17, 18].

The uniqueness theory of meromorphic functions has been started from Nevanlinna,s five
values uniqueness theorem. He proved that any non-constant meromorphic function can be
uniquely determined by five values. After a long research these five values were reduced to two
values. The uniqueness of an entire function f sharing values with its derivative f

′
was firstly

investigated by Rubel and Yang [15], Mues and Steinmetz [13, 14] and Gundersen [3] improved
their results.

The uniqueness of meromorphic functions sharing values with their shifts or differences has
become a subject of great interest recently. At first Heittokangas et al. [7] considered the value
sharing problems for shifts of the uniqueness of meromorphic functions. The uniqueness of en-
tire functions sharing values with their difference operators and proved some meaningful results
by Chen and Yi [1], Li and Gao [10], Liu and Yang [12]. We mention some of these results here.

The investigation of uniqueness of meromorphic function sharing three values has been in-
troduced by Heittokangas et al. [7] in 2009 in the following way.

Theorem A. [7]. Let f be a meromorphic function of finite order and c ∈ S(f) ∪ {∞}. If f(z)
and f(z + c) share three distinct periodic functions a1, a2, a3 ∈ S(f) ∪ {∞} with period c CM,
then

f(z) = f(z + c),

for all z ∈ C .

In 2011 Heittokangas et al. [6] improved Theorem A by replacing "sharing three small func-
tions CM" by "2 CM + 1 IM" and proved the following theorem.

Theorem B. [6]. Let f be a meromorphic function of finite order and c ∈ S(f) ∪ {∞}. Also let
a1, a2, a3 ∈ S(f) ∪ {∞} be three distinct periodic functions with period c. If f(z) and f(z + c)
share a1, a2 CM and a3 IM, then

f(z) = f(z + c),

for all z ∈ C.

Considering three shared values IM, in 2016 Li and Yi [11] proved the following result.

Theorem C. [11]. Let f be a non-constant entire function of finite order and c be a non-zero
complex number. Also let a1, a2, a3 be three distinct finite values. If f(z) and ∆cf(z) share a1,
a2, a3 IM, then

2f(z) = f(z + c),

for all z ∈ C.
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Our aim in this paper is what results we can get if the condition that f(z) and f(z + c)
share three values CM or f(z) and ∆cf(z) share three values IM is relaxed to two values CM or
one value CM and another one IM and if f(z+c) or ∆cf(z) is replaced by ∆nc f(z), where n ∈ N.

In this paper we consider the following problems:
(i) f(z) and ∆nc f(z) share a, b CM, where f(z) is a non-constant meromorphic function with
N(r, f(z)) = S(r, f) and
(ii) f(z) and ∆nc f(z) share a CM and b IM, where f(z) is a non-constant entire function with
m
(
r, 1
f(z)−a

)
= S(r, f).

We now state the following two theorems, which are the main results of this paper.

Theorem 1.1. Let f be a non-constant meromorphic function of finite order and c be a non-zero
complex number. Also let a, b be two non-zero distinct finite complex constants. If
(i) f(z) and ∆nc f(z) (n ≥ 1) share a, b CM
and
(ii) N(r, f(z)) = S(r, f),
then

∆
n
c f(z) ≡ f(z).

If we taking an entire function in Theorem 1.1, we get the following corollary.

Corollary 1.1. Let f be a non-constant entire function of finite order and c be a non-zero complex
number. Also let a, b be two non-zero distinct finite complex constants. If f(z) and ∆nc f(z)
(n ≥ 1) share a, b CM, then

∆
n
c f(z) ≡ f(z).

Theorem 1.2. Let f be a non-constant entire function of finite order and c be a non-zero complex
number. Also let a, b be two non-zero distinct finite complex constants. If
(i) f(z) and ∆nc f(z) (n ≥ 1) share a CM,
(ii) f(z) and ∆nc f(z) (n ≥ 1) share b IM
and
(iii) m

(
r, 1
f(z)−a

)
= S(r, f),

then

∆
n
c f(z) ≡ f(z).

2 Lemmas

For the proof of our main results, we need the following lemmas.

Lemma 2.1. [16]. Let f be a non-constant meromorphic function and aj(j = 1, 2, · · · , q) be q
distinct complex numbers. Then

m

r, q∑
j=1

1
f − aj

 =
q∑
j=1

m

(
r,

1
f − aj

)
+O(1).

Lemma 2.2. [2, 4]. Let f be a meromorphic function of finite order and c be a non-zero complex
constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.3. [10]. Let c ∈ C, n ∈ N and f be a meromorphic function of finite order. Then for
any small periodic function a(z) with period c with respect to f(z),

m

(
r,

∆nc f(z)

f(z)− a(z)

)
= S(r, f),

where the exceptional set associated with S(r, f) is of at most finite logarithmic measure.
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In particular, the Lemma 2.2 and Lemma 2.3 are the difference analogue of the logarithmic
derivative lemma.

Lemma 2.4. Let f be a non-constant meromorphic function in C. Also let a1, a2, · · · , an (n ≥ 1)
be distinct complex numbers. Then we get

n∑
j=1

m

(
r,

1
f(z)− aj

)
≤ m

(
r,

1
f ′(z)

)
+ S(r, f).

Proof. From Lemma 2.1, we have

n∑
j=1

m

(
r,

1
f(z)− aj

)
= m

r, n∑
j=1

1
f(z)− aj

+O(1)

= m

r, 1
f ′(z)

·
n∑
j=1

f
′
(z)

f(z)− aj

+ S(r, f)

≤ m
(
r,

1
f ′(z)

)
+m

r, n∑
j=1

f
′
(z)

f(z)− aj

+ S(r, f)

= m

(
r,

1
f ′(z)

)
+

n∑
j=1

m

(
r,

f
′
(z)

f(z)− aj

)
+ S(r, f).

Now using the Lemma on the Logarithmic derivative, we get
n∑
j=1

m

(
r,

1
f(z)− aj

)
≤ m

(
r,

1
f ′(z)

)
+ S(r, f).

The proof of Lemma 2.4 is completed.

The Lemma 2.3 motivates us to prove the following:

Lemma 2.5. Let c ∈ C, n ∈ N and f be a meromorphic function of finite order. Also let a1, a2,
· · · , ak (k ≥ 1) be distinct complex numbers. Then we have

k∑
i=1

m

(
r,

1
f(z)− ai

)
≤ m

(
r,

1
∆nc f(z)

)
+ S(r, f).

Proof. Using Lemma 2.1, we obtain

k∑
i=1

m

(
r,

1
f(z)− ai

)
= m

(
r,

k∑
i=1

1
f(z)− ai

)
+O(1)

= m

(
r,

1
∆nc f(z)

·
k∑
i=1

∆nc f(z)

f(z)− ai

)
+ S(r, f)

≤ m
(
r,

1
∆nc f(z)

)
+m

(
r,

k∑
i=1

∆nc f(z)

f(z)− ai

)
+ S(r, f)

= m

(
r,

1
∆nc f

(z)

)
+

k∑
i=1

m

(
r,

∆nc f(z)

f(z)− ai

)
+ S(r, f).

By Lemma 2.3, we have

k∑
i=1

m

(
r,

1
f(z)− ai

)
≤ m

(
r,

1
∆nc f(z)

)
+ S(r, f).

This proves the Lemma.
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Lemma 2.6. [17]. Suppose that f is a non-constant meromorphic function and P (f) = a0f
p +

a1f
p−1 + · · · + ap(a0 6= 0) is a polynomial in f of degree p with constant coefficients aj(j =

0, 1, · · · , p). Suppose furthermore that bj(j = 1, 2, · · · , q)(q > p) are distinct values. Then

m

(
r,

P (f)f
′

(f − b1)(f − b2) · · · (f − bq)

)
= S(r, f).

Lemma 2.7. [18]. If f1 and f2 are meromorphic functions in |z| < R(R ≤ ∞). Then

N(r, f1(z)f2(z))−N
(
r,

1
f1(z)f2(z)

)
= N(r, f1(z)) +N(r, f2(z))−N

(
r,

1
f1(z)

)
−N

(
r,

1
f2(z)

)
,

where 0 < r < R.

Lemma 2.8. [17]. Let f be a non-constant meromorphic function in the complex plane and
R(f) = P (f)

Q(f) , where

P (f) =
p∑
k=0

akf
k

and

Q(f) =
q∑
j=0

bjf
j

are two mutually prime polynomials in f . If the coefficients {ak(z)} and {bj(z)} are small
functions of f and ap(z) 6≡ 0, bq(z) 6≡ 0, then

T (r,R(f)) = max{p, q}T (r, f).

Lemma 2.9. [9]. Let f be a transcendental meromorphic solution of finite order ρ of a difference
equation of the form

U(z, f)P (z, f) = Q(z, f),

whereU(z, f), P (z, f) andQ(z, f) are difference polynomials such that the total degree degU(z, f) =
n in f(z) and its shifts and degQ(z, f) ≤ n. If U(z, f) contains exactly one term of maximal
total degree in f(z) and its shifts, then for each ε > 0,

m (r, P (z, f)) = O
(
rρ−1+ε)+ S(r, f),

possible outside of an exceptional set of finite logarithmic measure.

3 Proof of the theorem 1.1

Let us suppose, on the contrary, that ∆nc f(z) 6≡ f(z). To prove the Theorem 1.1, we consider a
function defined as follow:

ψ(z) =
(∆nc f(z))

′

∆nc f(z)− a
− f

′
(z)

f(z)− a
. (3.1)

By Lemma 2.3 and the Lemma on the Logarithmic Derivative, we have

m(r, ψ(z)) = m(r,
(∆nc f(z))

′

∆nc f(z)− a
− f

′
(z)

f(z)− a
)

≤ m

(
r,

(∆nc f(z))
′

∆nc f(z)− a

)
+m

(
r,

f
′
(z)

f(z)− a

)
+ log 2

= S(r, f). (3.2)
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We know that

T (r,∆nc f(z)) = m(r,∆nc f(z)) +N(r,∆nc f(z)) + S(r, f)

≤ m

(
r,

∆nc f(z)

f(z)
· f(z)

)
+ (n+ 1)N(r, f(z)) + S(r, f)

≤ m

(
r,

∆nc f(z)

f(z)

)
+m(r, f(z)) + S(r, f)

= m(r, f(z)) + S(r, f)

= T (r, f(z)) + S(r, f). (3.3)

Now the Logarithmic Derivative of ∆
n
c f(z)−a
f(z)−a is ψ(z), the poles of ψ(z) derive from the zeros

and poles of ∆
n
c f(z)−a
f(z)−a . Since f(z) and ∆nc f(z) share the non-zero complex number a CM, then

∆
n
c f(z)−a
f(z)−a has no zeros and has at most N(r, f(z)) poles. Hence

N(r, ψ(z)) ≤ N(r, f(z))

= S(r, f). (3.4)

Thus from (3.2) and (3.4), we get

T (r, ψ(z)) = S(r, f). (3.5)

We suppose that

ψ(z) 6≡ 0.

Then dividing both sides of (3.1) by f(z)− b, we have

ψ(z)

f(z)− b
=

(∆nc f(z))
′

(∆nc f(z)− a)(f(z)− b)
− f

′
(z)

(f(z)− a)(f(z)− b)
. (3.6)

From (3.5) and (3.6) and using the Lemma on the Logarithmic Derivative, we have
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m

(
r,

1
f(z)− b

)
= m

(
r,

ψ(z)

f(z)− b
· 1
ψ(z)

)
≤ m

(
r,

ψ(z)

f(z)− b

)
+m

(
r,

1
ψ(z)

)

≤ m

(
r,

(∆nc f(z))
′

(∆nc f(z)− a)(f(z)− b)
− f

′
(z)

(f(z)− a)(f(z)− b)

)
+T (r, ψ(z))

≤ m

(
r,

(∆nc f(z))
′

(∆nc f(z)− a)(f(z)− b)

)
+m

(
r,

f
′
(z)

(f(z)− a)(f(z)− b)

)
+S(r, f)

≤ m

(
r,

(∆nc f(z))
′

∆nc f(z)(∆
n
c f(z)− a)

· ∆nc f(z)

f(z)− b

)

+m

(
r,
f

′
(z)

a− b

(
1

f(z)− a
− 1
f(z)− b

))
+ S(r, f)

≤ m

(
r,
(∆nc f(z))

′

a

(
1

∆nc f(z)− a
− 1

∆nc f(z)

))

+m

(
∆nc f(z)

f(z)− b

)
+m

(
r,

1
a− b

)
+m

(
r,

f
′
(z)

f(z)− a

)

+m

(
f

′
(z)

f(z)− b

)
+ S(r, f)

≤ m

(
r,

1
a

)
+m

(
r,

(∆nc f(z))
′

∆nc f(z)− a

)
+m

(
r,
(∆nc f(z))

′

∆nc f(z)

)
+ S(r, f)

= S(r, f). (3.7)

From (3.7) and by the First Fundamental Theorem, we see that

T (r, f(z)) = N

(
r,

1
f(z)− b

)
+ S(r, f). (3.8)

Since f(z) and ∆nc f(z) share the non-zero complex numbers a, b CM, then by the Second
Fundamental Theorem, we obtain

T (r, f(z)) ≤ N(r, f(z)) +N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+ S(r, f)

= N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+ S(r, f)

= N

(
r,

1
∆nc f(z)− a

)
+N

(
r,

1
∆nc f(z)− b

)
+ S(r, f)

≤ N

(
r,

1
∆nc f(z)− f(z)

)
+ S(r, f). (3.9)
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From the hypothesis of Theorem 1.1 and using Lemma 2.3, we get

N

(
r,

1
∆nc f(z)− f(z)

)
+ S(r, f) = N

(
r,

f(z)

∆nc f(z)− f(z)

)
+ S(r, f)

= N

r, 1
∆n
c f(z)
f(z) − 1

+ S(r, f)

≤ T

r, 1
∆n
c f(z)
f(z) − 1

+ S(r, f)

= T

(
r,

∆nc f(z)

f(z)

)
+ S(r, f)

= m

(
r,

∆nc f(z)

f(z)

)
+N

(
r,

∆nc f(z)

f(z)

)
+ S(r, f)

= N

(
r,

∆nc f(z)

f(z)

)
+ S(r, f)

≤ N

(
r,

1
f(z)

)
+N(r,∆nc f(z)) + S(r, f)

≤ N

(
r,

1
f(z)

)
+ (n+ 1)N(r, f(z)) + S(r, f)

= N

(
r,

1
f(z)

)
+ S(r, f). (3.10)

From (3.9) and (3.10), we have

T (r, f(z)) = N

(
r,

1
f(z)

)
+ S(r, f)

= N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+ S(r, f). (3.11)

Now from (3.8) and (3.11), we get

N

(
r,

1
f(z)− a

)
= S(r, f).

By the hypothesis of Theorem 1.1 and from the above equality, we have

N

(
r,

1
∆nc f(z)− a

)
= N

(
r,

1
f(z)− a

)
= S(r, f). (3.12)

Since f(z) and ∆nc f(z) share the non-zero constant b CM and using (3.3), (3.7), we get

m

(
r,

1
∆nc f(z)− b

)
+N

(
r,

1
∆nc f(z)− b

)
= T (r,∆nc f(z)) + S(r, f)

≤ T (r, f(z)) + S(r, f)

= m

(
r,

1
f(z)− b

)
+N

(
r,

1
f(z)− b

)
+S(r, f)

= N

(
r,

1
f(z)− b

)
+ S(r, f)

= N

(
r,

1
∆nc f(z)− b

)
+ S(r, f).
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Therefore

m

(
r,

1
∆nc f(z)− b

)
= S(r, f).

By Lemma 2.4, we obtain

m

(
r,

1
∆nc f(z)

)
+m

(
r,

1
∆nc f(z)− a

)
+m

(
r,

1
∆nc f(z)− b

)
≤ m

(
r,

1
(∆nc f(z))

′

)
+S(r, f). (3.13)

Using Lemma 2.5, we have

m

(
r,

1
f(z)− a

)
+m

(
r,

1
f(z)− b

)
≤ m

(
r,

1
∆nc f(z)

)
+ S(r, f). (3.14)

From (3.12), we get

N

(
r,

1
∆nc f(z)− a

)
+N

(
r,

1
∆nc f(z)− b

)
= N

(
r,

1
∆nc f(z)− b

)
+S(r, f). (3.15)

Now from (3.11), we have

N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
= T (r, f(z)) + S(r, f). (3.16)

Adding both sides of (3.13), (3.14), (3.15) and (3.16), we have

T
(
r, 1

∆n
c f(z)−a

)
+ T

(
r, 1

∆n
c f(z)−b

)
+ T

(
r, 1
f(z)−a

)
+ T

(
r, 1
f(z)−b

)
≤ m

(
r, 1

(∆n
c f(z))

′

)
+N

(
r, 1

∆n
c f(z)−b

)
+ T (r, f(z)) + S(r, f)

≤ T
(
r, 1

(∆n
c f(z))

′

)
+N

(
r, 1

∆n
c f(z)−b

)
+ T (r, f(z)) + S(r, f).

On the other hand, using (3.3), we can easily see that

T

(
r,

1
(∆nc f(z))

′

)
= m(r, (∆nc f(z))

′
) +N(r, (∆nc f(z))

′
) + O(1)

= m

(
r,
(∆nc f(z))

′

∆nc f(z)
· ∆nc f(z)

)
+N(r,∆nc f(z))

+N(r,∆nc f(z)) + S(r, f)

≤ m

(
r,
(∆nc f(z))

′

∆nc f(z)

)
+m(r,∆nc f(z)) + (n+ 1)N(r, f(z))

+(n+ 1)N(r, f(z)) + S(r, f)

= T (r,∆nc f(z)) + S(r, f)

≤ T (r, f(z)) + S(r, f).

Combining above two inequality and by the First Fundamental Theorem, we obtain

T (r, f(z)) = S(r, f),

which is a contradiction.
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Therefore

ψ(z) ≡ 0.

Hence from (3.1), we get

(∆nc f(z))
′

∆nc f(z)− a
≡ f

′
(z)

f(z)− a
.

Integrating above identity, we have

∆nc f(z)− a
f(z)− a

≡ A, (3.17)

where A(6= 0) is a constant.

Using the similar arguments as above, by the hypothesis f(z) and ∆nc f(z) share the non-zero
complex number b CM, we get

∆nc f(z)− b
f(z)− b

≡ B, (3.18)

where B(6= 0) is a constant.

If A = 1 and B = 1, then from (3.17) and (3.18), we have

∆
n
c f(z) ≡ f(z),

which is a contradiction.

We now verify that A 6= 1 and B 6= 1.
Then from (3.17) and (3.18), we get

(A−B)f(z) = b− a+Aa−Bb. (3.19)

If A 6= B, then f is a constant. Which leads towards a contradiction.
Hence

A = B.

Thus from (3.19), we obtain

A(a− b) = a− b.

This implies A = B = 1. Which is again a contradiction.

Therefore indeed we get

∆
n
c f(z) ≡ f(z).

This completes the proof of Theorem 1.1.

4 Proof of the theorem 1.2

Let us suppose, on the contrary, that ∆nc f(z) 6≡ f(z). To prove the Theorem 1.2, let us consider
two functions defined as follow:

α(z) =
f

′
(z)(∆nc f(z)− f(z))

(f(z)− a)(f(z)− b)
(4.1)
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and

β(z) =
(∆nc f(z))

′
(∆nc f(z)− f(z))

(∆nc f(z)− a)(∆nc f(z)− b)
. (4.2)

We know from the hypothesis of Theorem 1.2 that α(z) and β(z) are entire functions. Then
by Lemma 2.3 and the Lemma on the Logarithmic Derivative, we have

T (r, α(z)) = m(r, α(z))

= m

(
r,
f

′
(z)(∆nc f(z)− f(z))

(f(z)− a)(f(z)− b)

)

≤ m

(
r,

f
′
(z)

f(z)− b

)
+m

(
r,

∆nc f(z)− f(z)
f(z)− a

)

≤ m

(
r,

∆nc f(z)

f(z)− a

)
+m

(
r,

f(z)

f(z)− a

)
+ S(r, f)

= m

(
r,

(
1 +

a

f(z)− a

))
+ S(r, f)

≤ m

(
r,

1
f(z)− a

)
+ S(r, f)

= S(r, f). (4.3)

Since f(z) and ∆nc f(z) share the non-zero complex number a CM, then we get

∆nc f(z)− a
f(z)− a

= eγ(z), (4.4)

where γ(z) is a polynomial.

From the hypothesis of Theorem 1.2 and by Lemma 2.3, we have

T (r, eγ(z)) = m(r, eγ(z))

= m

(
r,

∆nc f(z)− a
f(z)− a

)
≤ m

(
r,

∆nc f(z)

f(z)− a

)
+m

(
r,

a

f(z)− a

)
+ log 2

≤ m

(
r,

1
f(z)− a

)
+ S(r, f)

= S(r, f). (4.5)

Now from (4.4), we get

∆
n
c f(z) = eγ(z)f(z) + a(1− eγ(z)).

From (4.5) and the above equality, we obtain

T (r,∆nc f(z)) = T (r, eγ(z)f(z) + a(1− eγ(z)))

≤ T (r, eγ(z)f(z)) + T (r, a(1− eγ(z))) + log 2

≤ T (r, eγ(z)) + T (r, f(z)) + T (r, a) + T (r, (1− eγ(z))) + S(r, f)

= T (r, f(z)) + S(r, f). (4.6)
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By the assumption m
(
r, 1
f(z)−a

)
= S(r, f) and Lemma 2.3, Lemma 2.6 and for any d ∈

C \ {a, b}, we have

m

(
r,

1
f(z)− d

)
= m

(
r,

f
′
(z)(∆nc f(z)− f(z))

(f(z)− a)(f(z)− b)(f(z)− d)α(z)

)

≤ m

(
r,

∆nc f(z)− f(z)
(f(z)− a)

)
+m

(
r,

f
′
(z)

(f(z)− b)(f(z)− d)

)

+m

(
r,

1
α(z)

)
≤ m

(
r,

∆nc f(z)

f(z)− a

)
+m

(
r,

f(z)

f(z)− a

)
+ S(r, f)

= m

(
r,

(
1 +

a

f(z)− a

))
+ S(r, f)

≤ m

(
r,

1
f(z)− a

)
+ S(r, f)

= S(r, f). (4.7)

By Nevanlinna,s Second Fundamental Theorem, we see that

T (r, f(z)) ≤ N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+N(r, f(z)) + S(r, f)

≤ N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+ S(r, f). (4.8)

Now from (4.1), (4.3) and Lemma 2.3, we have

N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
= N

(
r,

f
′
(z)

(f(z)− a)(f(z)− b)

)
+ S(r, f)

= N

(
r,

α(z)

∆nc f(z)− f(z)

)
+ S(r, f)

≤ N

(
r,

1
∆nc f(z)− f(z)

)
+N(r, α(z))

+S(r, f)

≤ T (r,∆nc f(z)− f(z)) + S(r, f)

= m(r,∆nc f(z)− f(z)) +N(r,∆nc f(z)− f(z))
+S(r, f)

≤ m

(
r, f(z) ·

(
∆nc f(z)

f(z)
− 1
))

+N(r,∆nc f(z))

+N(r, f(z)) + S(r, f)

≤ m(r, f(z)) +m

(
r,

∆nc f(z)

f(z)
− 1
)

+(n+ 1)N(r, f(z)) + S(r, f)

= T (r, f(z)) + S(r, f).
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From (4.8) and and the above inequality, we obtain

N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
= T (r, f(z)) + S(r, f). (4.9)

Since f(z) and ∆nc f(z) share the non-zero complex number a CM and the non-zero complex
number b IM, by using (4.6) and (4.9), together with the Second Fundamental Theorem, we can
deduce that

2T (r, f(z)) = 2T (r,∆nc f(z)) + S(r, f)

≤ N

(
r,

1
∆nc f(z)− a

)
+N

(
r,

1
∆nc f(z)− b

)
+N

(
r,

1
∆nc f(z)− d

)
+S(r, f)

≤ N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+T

(
r,

1
∆nc f(z)− d

)
−m

(
r,

1
∆nc f(z)− d

)
+ S(r, f)

≤ T (r, f(z)) + T (r,∆nc f(z))−m
(
r,

1
∆nc f(z)− d

)
+ S(r, f)

= 2T (r, f(z))−m
(
r,

1
∆nc f(z)− d

)
+ S(r, f).

This implies

m

(
r,

1
∆nc f(z)− d

)
= S(r, f). (4.10)

By Lemma 2.7 and from (4.6), (4.7), (4.10), we can easily see that



A NOTE ON UNIQUENESS OF MEROMORPHIC FUNCTIONS 427

m

(
r,

f(z)− d
∆nc f(z)− d

)
−m

(
r,

∆nc f(z)− d
f(z)− d

)
= T

(
r,

f(z)− d
∆nc f(z)− d

)
−N

(
r,

f(z)− d
∆nc f(z)− d

)
−T

(
r,

∆nc f(z)− d
f(z)− d

)
+N

(
r,

∆nc f(z)− d
f(z)− d

)
= N

(
r,

∆nc f(z)− d
f(z)− d

)
−N

(
r,

f(z)− d
∆nc f(z)− d

)
+ O(1)

≤ N(r,∆nc f(z)− d) +N

(
r,

1
f(z)− d

)
−N(r, f(z)− d)−N

(
r,

1
∆nc f(z)− d

)
+S(r, f)

= N

(
r,

1
f(z)− d

)
−N

(
r,

1
∆nc f(z)− d

)
+S(r, f)

= T

(
r,

1
f(z)− d

)
−m

(
r,

1
f(z)− d

)
−T

(
r,

1
∆nc f(z)− d

)
+m

(
r,

1
∆nc f(z)− d

)
+S(r, f)

= T

(
r,

1
f(z)− d

)
− T

(
r,

1
∆nc f(z)− d

)
+S(r, f)

= T (r, f(z))− T (r,∆nc f(z)) + S(r, f)

= T (r, f(z))− T (r, f(z)) + S(r, f)

= S(r, f). (4.11)

Now from (4.7), (4.11) and using Lemma 2.3, we obtain

m

(
r,

f(z)− d
∆nc f(z)− d

)
≤ m

(
r,

∆nc f(z)− d
f(z)− d

)
+ S(r, f)

≤ m

(
r,

∆nc f(z)

f(z)− d

)
+m

(
r,

d

f(z)− d

)
+ S(r, f)

≤ m

(
r,

1
f(z)− d

)
+ S(r, f)

= S(r, f). (4.12)
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By Lemma 2.6 and from (4.2), (4.12), we have

T (r, β(z)) = m(r, β(z))

= m

(
r,
(∆nc f(z))

′
(∆nc f(z)− f(z))

(∆nc f(z)− a)(∆nc f(z)− b)

)

= m

(
r,
(∆nc f(z))

′
(∆nc f(z)− f(z))(∆nc f(z)− d)

(∆nc f(z)− a)(∆nc f(z)− b)(∆nc f(z)− d)

)

≤ m

(
r,

(∆nc f(z))
′
(∆nc f(z)− d)

(∆nc f(z)− a)(∆nc f(z)− b)

)
+m

(
r,

∆nc f(z)− f(z)
∆nc f(z)− d

)

= m

(
r,

(
1− f(z)− d

∆nc f(z)− d

))
+ S(r, f)

≤ m

(
r,

f(z)− d
∆nc f(z)− d

)
+ S(r, f)

= S(r, f). (4.13)

Now we consider z0 be any zero of f(z) − b and ∆nc f(z) − b with multiplicities p and q,
respectively.

From (4.1) and (4.2), we have

α(z0) =
p

b− a
·
(

∆nc f(z)− f(z)
z − z0

)
|z=z0 (4.14)

and

β(z0) =
q

b− a
·
(

∆nc f(z)− f(z)
z − z0

)
|z=z0 . (4.15)

From (4.14) and (4.15), we get

qα(z0) = pβ(z0).

Again we let z1 be any zero of f(z)−a and ∆nc f(z)−awith multiplicities p and q, respectively.
Then similarly, we can prove that

qα(z1) = pβ(z1).

We shall the following two cases.

Case 1. First we suppose that

qα(z)− pβ(z) 6≡ 0.

By the reasoning as mentioned above, we deduce that zj is a zero of f(z)− b and ∆nc f(z)− b
or f(z)− a and ∆nc f(z)− a with multiplicities p and q must be the zero of qα(z)− pβ(z).

It follows from this and the fact that α(z) and β(z) are small functions of f(z), we have

N (p,q)

(
r,

1
f(z)− a

)
+N (p,q)

(
r,

1
f(z)− b

)
≤ N

(
r,

1
qα(z)− pβ(z)

)
≤ T (r, qα(z)− pβ(z))
≤ T (r, α(z)) + T (r, β(z)) + S(r, f)

= S(r, f). (4.16)
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By using (4.6) and (4.16) toghether with Second Fundamental Theorem, we obtain

T (r, f(z)) ≤ N

(
r,

1
f(z)− a

)
+N

(
r,

1
f(z)− b

)
+ S(r, f)

=
∑
p,q

(
N (p,q)

(
r,

1
f(z)− a

)
+N (p,q)

(
r,

1
f(z)− b

))
+S(r, f)

=
∑
p+q<6

(
N (p,q)

(
r,

1
f(z)− a

)
+N (p,q)

(
r,

1
f(z)− b

))

+
∑
p+q≥6

(
N (p,q)

(
r,

1
f(z)− a

)
+N (p,q)

(
r,

1
f(z)− b

))
+S(r, f)

≤ 1
6

∑
p+q≥6

(
N(p,q)

(
r,

1
f(z)− a

)
+N(p,q)

(
r,

1
∆nc f(z)− a

))

+
1
6

∑
p+q≥6

(
N(p,q)

(
r,

1
f(z)− b

)
+N(p,q)

(
r,

1
∆nc f(z)− b

))
+S(r, f)

≤ 1
6

(
N(p,q)

(
r,

1
f(z)− a

)
+N(p,q)

(
r,

1
∆nc f(z)− a

))
+

1
6

(
N(p,q)

(
r,

1
f(z)− b

)
+N(p,q)

(
r,

1
∆nc f(z)− b

))
+S(r, f)

≤ 1
3
T (r, f(z)) +

1
3
T (r,∆nc f(z)) + S(r, f)

=
1
3
T (r, f(z)) +

1
3
T (r, f(z)) + S(r, f)

=
2
3
T (r, f(z)) + S(r, f).

This implies that

T (r, f(z)) = S(r, f),

which is a contradiction.

Case 2. Next we suppose that

qα(z)− pβ(z) ≡ 0.

Then from (4.1) and (4.2), we have

q
f

′
(z)

(f(z)− a)(f(z)− b)
≡ p (∆nc f(z))

′

(∆nc f(z)− a)(∆nc f(z)− b)
.

Therefore

q

(
f

′
(z)

f(z)− a
− f

′
(z)

f(z)− b

)
≡ p

(
(∆nc f(z))

′

∆nc f(z)− a
− (∆nc f(z))

′

∆nc f(z)− b

)
. (4.17)

Integrating both sides of (4.17), we get(
f(z)− a
f(z)− b

)q
≡ C

(
∆nc f(z)− a
∆nc f(z)− b

)p
, (4.18)
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where C(6= 0) is a constant.

From (4.6) and (4.18) and using Lemma 2.8, we obtain

qT (r, f(z)) = pT (r,∆nc f(z)) + O(1)

= pT (r, f(z)) + S(r, f),

This implies that

p = q.

Now from (4.18), we get(
f(z)− a
f(z)− b

)
≡ D

(
∆nc f(z)− a
∆nc f(z)− b

)
, (4.19)

where D(6= 0) is a constant.
Since ∆nc f(z) 6≡ f(z), by using (4.19), we have D 6= 1.
From (4.19), we get

f(z)[(1−D)∆nc f(z) + aD − b] = (a− bD)∆nc f(z) + ab(D − 1).

By Lemma 2.9 and using above equality, we obtain

m(r,∆nc f(z)) = S(r, f).

Since f(z) is an entire function, it follows that

T (r,∆nc f(z)) = S(r, f).

On the other hand, we can easily see that

T (r, f(z)) = m(r, f(z))

= m

(
r,

f(z)

∆nc f(z)
· ∆nc f(z)

)
≤ m

(
r,

f(z)

∆nc f(z)

)
+m(r,∆nc f(z))

= S(r, f),

which is again a contradiction.
Therefore indeed we have

∆
n
c f(z) ≡ f(z).

This completes the proof of Theorem 1.2.
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