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Abstract. Let (S, .) be a semigroup and let σ ∈ Hom(S, S) satisfies σ ◦σ = id. In this paper
we show that any solution f : S → C of the functional equation

χ1(y)f(xy) + χ2(y)f(σ(y)x) = 2f(x)f(y), x, y ∈ S,

has the form f = µ+χ2χ1µ◦σ
2 , where µ is a multiplicative function on S and χ1, χ2 : S →

(C\{0}, .) be two characters on S (i.e, χ1(xy) = χ1(x)χ1(y) and χ2(xy) = χ2(x)χ2(y)
for all x, y ∈ S) such that χ2(xσ(x)) = 1 for all x ∈ S. These results are applied to study the
solutions of this equation defined on a semigroup and taking valued in a complex Hilbert space
with the Hadamard product.

1 Introduction

We recall that a semigroup S is a non-empty set equipped with an associative operation and we
write the operation multiplicatively as a function µ : S → C such that

µ(xy) = µ(x)µ(y) for all x, y ∈ S.

Let (S, .) be a semigroup and σ : S → S a homomorphism such that σ ◦ σ = id. We say that
χ : S → (C\{0}, .) is a character on S if χ(xy) = χ(x)χ(y) for all x, y ∈ S.
If S is a topological space, then we let C(S) denote the algebra of continuous functions from S
into C.

The symmetrized multiplicative Cauchy equation is of the following form

f(xy) + f(yx) = 2f(x)f(y), x, y ∈ S, (1.1)

where f : S → C is the unknown function. The complex-valued solutions of (1.1) are known to
be the multiplicative functions on S (see, for instance, [10] or [11, Theorem 3.21]).
Equation (1.1) is a special case of the following variant of d’Alembert’s functional equation:

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S, (1.2)

which was introduced and solved by Stetkær [12]. Some information, applications, and numer-
ous references concerning (1.1), (1.2), the d’Alembert’s functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ R,

and their further generalizations can be found, e.g, in [1, 9, 12].

H. Stetkær [13] obtained the complex valued solutions of the following version of d’Alembert’s
functional equation

f(xy) + χ(y)f(xy−1) = 2f(x)f(y), x, y ∈ G, (1.3)
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where χ : G→ C is a character of G and G is a group. The non-zero solutions of equation (1.3)
are the normalized traces of certain representation of the group G on C2.

E. Elqorachi and A. Redouani [8] studied the solution of the following variant of d’Alembert’s
functional equation

f(xy) + χ(y)f(σ(y)x) = 2f(x)f(y), x, y ∈ G, (1.4)

where G is a group, χ : G→ C\{0} is a character on G and σ is an involutive automorphism of
G such that σ ◦ σ = id and χ(xσ(x)) = 1 for all x ∈ G.

The purpose of the present paper is to solve the following functional equation

χ1(y)f(xy) + χ2(y)f(σ(y)x) = 2f(x)f(y) , x, y ∈ S, (1.5)

where S is a semigroup, χ1, χ2 : S → C\{0} be two characters on S and σ is an involutive
homomorphism of S such that σ ◦ σ = id and χ2(xσ(x)) = 1 for all x ∈ S. This equation
is a natural generalization of the equations (1.1), (1.2) and (1.4). As an application we study
an extension of the equation (1.5) above to a situation where the unknown function f map a
semigroup into a complex Hilbert space H with the Hadamard product. Our considerations refer
mainly to result Stetkær [11], Zeglami [14], Dimou [4, 5].

Let H be a separable Hilbert space with a orthonormal basis {en, n ∈ N}. For two vectors
x, y ∈ H, the Hadamard product, also known as the entrywise product on the Hilbert space H is
defined by

x ∗ y =
∞∑
n=0

〈x, en〉〈y, en〉en, x, y ∈ H. (1.6)

The Cauchy-Schwarz inequality together with the Parseval identity ensure that the Hadamard
multiplication is well defined. In fact,

‖x ∗ y‖ ≤ (
∞∑
n=0

|〈x, en〉|2)
1
2 (
∞∑
n=0

|〈y, en〉|2)
1
2 = ||x||||y||, (1.7)

and second is to obtain a characterization, in terms of multiplicative functions, the continuous of
the Hilbert space valued functional equation by Hadamard product:

χ1(y)f(xy) + χ2(y)f(σ(y)x) = 2f(x) ∗ f(y) , x, y ∈ S, (1.8)

where f : S → H are the unknown function.
In what follows N, R and C stand for the sets of all positive integers, real numbers and complex
numbers, respectively. S is a semigroup and H is a separable complex Hilbert space with a fixed
countable orthonormal basis {en, n ∈ N} and with the Hadamard product defined as in (1.6).

2 Solutions of the functional equation (1.5)

In this section, using elementary methods, we find all solutions of (1.5) on semigroups in terms
of multiplicative functions. We also note that the sine addition law on semigroups given in [6, 11]
is a key ingredient of the proof of Theorem 2.1. The following theorem is our main result which
we describe the solutions of equation (1.5).

Theorem 2.1. Let S be a semigroup, σ ∈ Hom(S, S) such that σ ◦ σ = id (where id denotes
the identity map) and χ1, χ2 be two characters of S with χ2(xσ(x)) = 1 for all x ∈ S. The
solutions f : S → C of (1.5) are the functions of the form f = µ+χ2χ1µ◦σ

2 , where µ : S → C is a
multiplicative function such that :

(i) χ2
1µ = µ and µ = χ2µ ◦ σ, or

(ii) χ1µ = µ and µ = χ2µ ◦ σ.
If S is a topological semigroup and f ∈ C(S), then µ, χ2χ1µ ◦ σ ∈ C(S).
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Proof. The computations in our proof are similar to the ones found in Stetkær [12]. Let x, y, z ∈
S be arbitrary. Replacing x by xy and y by z in (1.5), we get

χ1(z)f(xyz) + χ2(z)f(σ(z)xy) = 2f(xy)f(z). (2.1)

If we replace x by σ(z)x in (1.5), then we obtain

χ1(y)f(σ(z)xy) + χ2(y)f(σ(yz)x) = 2f(σ(z)x)f(y). (2.2)

Replacing y by z in (1.5), we obtain

χ1(z)f(xz) + χ2(z)f(σ(z)x) = 2f(x)f(z). (2.3)

Using χ2(zσ(z)) = 1, we get from (2.3) that

f(σ(z)x) = χ2(σ(z))[2f(x)f(z)− χ1(z)f(xz)]. (2.4)

It follows from (2.2) and (2.4) that

χ1(y)f(σ(z)xy) + χ2(y)f(σ(yz)x) = 2χ2(σ(z))f(y)[2f(x)f(z)− χ1(z)f(xz)]. (2.5)

Replacing y by yz in (1.5) and using the condition χ2(zσ(z)) = 1, we obtain

χ2(y)f(σ(yz)x) = χ2(σ(z))[2f(x)f(yz)− χ1(yz)f(xyz)], (2.6)

according to (2.5) and (2.6), we get

χ2(z)χ1(y)f(σ(z)xy)+[2f(x)f(yz)−χ1(yz)f(xyz)] = 2f(y)[2f(x)f(z)−χ1(z)f(xz)]. (2.7)

Subtracting this equation from χ1(y) and multiplying by equation (2.1), we get after some sim-
plifications that

χ1(yz)f(xyz)− f(x)f(yz) = f(y)[χ1(z)f(xz)− f(x)f(z)] + f(z)[χ1(y)f(xy)− f(x)f(y)].
(2.8)

With the notation fx(y) = χ1(y)f(xy)− f(x)f(y), we can reformulate (2.8) as the following

fa(xy) = fa(x)f(y) + fa(y)f(x). (2.9)

This shows that the pair (fa, f) satisfies the sine addition formula for any a ∈ S.
Thus, we study the following cases:
Case 1: If fa = 0 for all a ∈ S, then f satisfies the functional equation

χ1(y)f(xy) = f(x)f(y) for all x, y ∈ S. (2.10)

This implies that
χ2(y)f(σ(y)x) = f(x)f(y) for all x, y ∈ S. (2.11)

Making the substitutions (y, σ(x)) in (1.5), we obtain

χ1(σ(x))f(yσ(x)) + χ2(σ(x))f(xy) = 2f(y)f(σ(x)). (2.12)

By similar method, we get

χ2(σ(x))f(xy) = χ1(σ(x))f(yσ(x)) = f(y)f(σ(x)). (2.13)

Multiplying equation (2.13) by χ2(x), we get

f(xy) = χ2(x)f(y)f(σ(x)) (2.14)

and
χ1(y)f(xy) = χ1(y)χ2(x)f(y)f(σ(x)) = f(x)f(y) for all x, y ∈ S. (2.15)
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Since f 6= 0, we obtain

f(y) = χ1(y)f(y) = χ2
1(y)f(y) and χ2(x)f(σ(x)) = f(x) for all x, y ∈ S. (2.16)

Hence, it is not hard, by a simple computations, to check that f is a multiplicative function.
This implies that f = ϕ+χ2χ1ϕ◦σ

2 , where f = ϕ is multiplicative .

Case 2: If fa 6= 0 for some a ∈ S, we get, from the known solution of the sine addition
law (see, for instance [6] or [11, Theorem 4.1]), that there exist two multiplicative functions
ψ1, ψ2 : S → C such that

f =
ψ1 + ψ2

2
.

If ψ1 = ψ2, then letting η := ψ1, we have f = η. Substituting f = η into (1.5) we get that

χ1η + χ2η ◦ σ = 2η.

Therefore, η = χ1η = χ2η ◦ σ (see, for instance, [11, Corollary 3.19]). Then, f has the desired
form with f = η.
If ψ1 6= ψ2, substituting f = ψ1+ψ2

2 into (1.5), we find after a reduction that

ψ1(x)[χ1(y)ψ1(y) + χ2(y)ψ1 ◦ σ(y)− ψ1(y)− ψ2(y)]

+ψ2(x)[χ1(y)ψ2(y) + χ2(y)ψ2 ◦ σ(y)− ψ1(y)− ψ2(y)] = 0

for all x, y ∈ S. Since ψ1 6= ψ2, we get from the theory of multiplicative functions (see, for
instance, [11, Theorem 3.18]) that both terms are 0, so

ψ1(x)[χ1(y)ψ1(y) + χ2(y)ψ1 ◦ σ(y)− ψ1(y)− ψ2(y)] = 0

ψ2(x)[χ1(y)ψ2(y) + χ2(y)ψ2 ◦ σ(y)− ψ1(y)− ψ2(y)] = 0

(2.17)

for all x, y ∈ S. Since ψ1 6= ψ2, at last one of ψ1 and ψ2 is not zero.
Subcase 2.1: If ψ2 = 0, then ψ1 6= 0. From (2.17), we infer that

ψ1 = χ1ψ1 + χ2ψ1 ◦ σ.

Therefore, χ1ψ1 = 0 or χ2ψ1 ◦ σ = 0.
In either case, ψ1 = 0 because σ is surjective. But that contradicts ψ1 6= 0. Therefore, this
subcase is void. The same is true for ψ1 = 0 and ψ2 6= 0.
Subcase 2.2: ψ1 6= 0 and ψ2 6= 0. From (2.17), we have

ψ1 + ψ2 = χ1ψ1 + χ2ψ1 ◦ σ = χ1ψ2 + χ2ψ2 ◦ σ. (2.18)

Using (2.18) and the fact that ψ1 6= ψ2, we see that ψ1 = χ2ψ1 ◦ σ = χ1ψ2 and ψ2 = χ1ψ1 =
χ2ψ2 ◦ σ. Thus ψ1 = χ2

1ψ1 and ψ2 = χ2ψ1 ◦ σ.
Next, we use (2.18) to get that ψ1 = χ1ψ1 = χ2ψ2 ◦ σ and ψ2 = χ1ψ2 = χ2ψ1 ◦ σ, hence

ψ1 = χ1ψ1 and ψ2 = χ2ψ1 ◦ σ. Therefore, we have in the solution stated in the theorem with
ψ1 = µ.
Finally, in view of these cases, we deduce that f has the form stated in Theorem 2.1.
The other direction of the proof is trivial to verify. The continuity statement follows from [11,
Theorem 3.18 (d)].
2
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3 Applications

Corollary 3.1. [8] Let S be a semigroup and σ ∈ Hom(S, S) such that σ ◦ σ = id (where
id denotes the identity map) and χ is a character of S with χ(xσ(x)) = 1 for all x ∈ S. The
solutions f : S → C of (1.4) are the functions of the form f = µ+χµ◦σ

2 , where µ : S → C is a
multiplicative function.
If S is a topological semigroup and f ∈ C(S), then µ, χµ ◦ σ ∈ C(S).

Proof. It suffices to take χ1(y) = 1 and χ2(y) = χ(y) for all y ∈ S in Theorem 2.1. 2

Corollary 3.2. [12] Let S be a semigroup and σ ∈ Hom(S, S) such that σ ◦ σ = id (where
id denotes the identity map). The solution f : S → C of the functional equation (1.2) are the
functions of the form f = µ+µ◦σ

2 , where µ : S → C is a mutiplicative function.
If S is a topological semigroup and f ∈ C(S), then µ, µ ◦ σ ∈ C(S).

Proof. It suffices to take χ1(y) = χ2(y) = 1 for all y ∈ S in Theorem 2.1. 2

Corollary 3.3. Let S be a semigroup. The solution f : S → C of the functional equation (1.1) is
a multiplicative function.
If S is a topological semigroup and f ∈ C(S), then µ ∈ C(S). where µ : S → C is a multiplica-
tive function.

Proof. It suffices to take σ(y) = y and χ1(y) = χ2(y) = 1 for all y ∈ S in Theorem 2.1. 2

Example 3.4. For a non-abelian example of a group, consider the set of complex 2× 2 matrices
under matrix multiplication

S :=

{(
a b

c d

)
|a, b, c, d ∈ C, |ad− bc| = 1

}
,

and take as homomorphisms

σ

(
a b

c d

)
=

(
ā b̄

c̄ d̄.

)
.

You may use similar method of [11, Exercise3.14] combined with [11, Example3.10], we can
get the continuous non- zero multiplicative function on S as follows:

χ2(X) = (det(X))n,

where n ∈ Z.
Simple computations show that χ2(X(σ(X)) = 1 for all X ∈ S.
Therefore, any continuous multiplicative function µ on S satisfies χ1µ = µ and χ2µ ◦ σ = µ,
with µ(X) = (det(X))m, µ ◦ σ = (det(X̄))m where n = 2m and

χ1(X) :=

(
1 0
0 1

)

In conclusion, using Theorem 2.1, the non-zero continuous solutions f : S → C of (1.5) are

f

(
a b

c d

)
= (ad− bc)m,

for all a, b, c, d ∈ C.

Remark 3.5. In particular, if we take S = SL(2,C) in the Example 3.4, then the unique non-
zero continuous solution f : S → C of (1.5) is f ≡ 1.
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4 Solutions of the functional equation (1.8)

Now we shall extend results about equation (1.5) to the case about Hilbert space valued solutions
in terms of multiplicative functions by Hadamard product.
We give a characterization of solutions for the following equation:

χ1(y)f(xy) + χ2(y)f(σ(y)x) = 2f(x) ∗ f(y) , x, y ∈ S.

Theorem 4.1. Let H be a separable real Hilbert space, S be a semigroup, let σ ∈ Hom(S, S)
such that σ ◦ σ = id (where id denotes the identity map) and χ1, χ2 be two characters of S with
χ2(xσ(x)) = 1 for all x ∈ S. Assume that the function f : S → H satisfy (1.8).
Then, there exists a positive integer N such that

f(x) =
∑N
n=1〈f(x), en〉en

for all x ∈ S such that

f(x) =
1
2

N∑
k=1

εk(µk(x) + χ2(x)χ1(x)µk ◦ σ(x))ek, x ∈ S,

where εk = 1 or 0 for every k ∈ {1, 2, ....., N}, for all x ∈ S, where µk is a non-zero multiplica-
tive function of S.

Proof. Let {ek, k ∈ N} be an orthonormal basis for H. For every integer k ≥ 0, consider the
function fk : S → C defined by

fk(x) = 〈f(x), ek〉 for x ∈ S.

Since f satisfies (1.8), we have for all x, y ∈ S

+∞∑
k=0

{〈χ1(y)f(xy), ek〉+ 〈χ2(y)f(σ(y)x), ek〉}ek =
+∞∑
k=0

〈{χ1(y)f(xy) + χ2(y)f(σ(y)x)}, ek〉ek

= χ1(y)f(xy) + χ2(y)f(σ(y)x)

= 2f(x) ∗ f(y)

= 2
+∞∑
k=0

〈f(x), ek〉〈f(y), ek〉 ek.

This yields for all k ∈ N,

χ1(y)fk(xy) + χ2(y)fk(σ(y)x) = 2fk(x)fk(y) (4.1)

for all x, y ∈ S. In view of Theorem 2.1, one the following statements holds:
(a) fk = 0.

(b) fk =
µk(x)+χ2(x)χ1(x)µk◦σ(x)

2 .
We have

f(x) =
+∞∑
k=0

〈f(x), ek〉ek

=
+∞∑
k=0

fk(x)ek.

The continuation of the proof depends on the dimension ofH. In fact ifH is infinite dimensional,
since

fk(x)→ 0 as k → +∞,
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for every x ∈ S. The statement (b) is not possible for infinitely many positive integers k. Hence,
there exists some positive integer N such that fk = 0 for every k > N.
Thus f can be represented as

f(x) =
N∑
k=0

〈f(x), ek〉ek.

In the case that, H is of finite-dimensional type the proof is clear. Then the function f satisfying
(1.8). 2

Corollary 4.2. Let H be a separable real Hilbert space, S be a semigroup, let σ ∈ Hom(S, S)
such that σ ◦ σ = id (where id denotes the identity map) and χ2 be a character of S with
χ2(xσ(x)) = 1 for all x ∈ S.

Assume that the function f : S → H satisfy

f(xy) + χ2(y)f(σ(y)x) = 2f(x) ∗ f(y) , x, y ∈ S,

where f : S → H are the unknown function. Then, there exists a positive integer N such that

f(x) =
∑N
n=1〈f(x), en〉en

for all x ∈ S such that

f(x) =
1
2

N∑
k=1

εk(µk(x) + χ2(x)µk ◦ σ(x))ek, x ∈ S,

where εk = 1 or 0 for every k ∈ {1, 2, ....., N}, where µk is a non-zero multiplicative function of
S.
If S is a topological semigroup and f ∈ C(S), then µk, χ2(x)µk ◦ σ ∈ C(S).

Proof. It suffices to take χ1(y) = 1 for all y ∈ S in Theorem 4.1. 2

Corollary 4.3. Let H be a separable real Hilbert space, S be a semigroup, let σ ∈ Hom(S, S)
such that σ ◦ σ = id (where id denotes the identity map). Assume that the function f : S → H
satisfy

f(xy) + f(σ(y)x) = 2f(x) ∗ f(y) , x, y ∈ S,

where f : S → H are the unknown function. Then, there exists a positive integer N such that

f(x) =
∑N
n=1〈f(x), en〉en

for all x ∈ S such that

f(x) =
1
2

N∑
k=1

εk(µk(x) + µk ◦ σ(x))ek, x ∈ S,

where εk = 1 or 0 for every k ∈ {1, 2, ....., N}, where µk is a non-zero multiplicative function of
S.
If S is a topological semigroup and f ∈ C(S), then µk, µk ◦ σ ∈ C(S).

Proof. It suffices to take χ1(y) = χ2(y) = 1 for all y ∈ S in Theorem 4.1. 2
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