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Abstract In this short note, Fatou type (pointwise) convergence theorems for integral opera-
tors equipped with infinite sum designated as

Ψν(f ;x) =
∞∑
m=1

b∫
a

fm(t)Hν,m(t− x)dt, ν ∈ Λ,

where Λ is a non-empty index set involving non-negative real numbers ν, to the function f ∈
Lp (a, b) (1 < p <∞) at its generalized type characteristic points are given. Here, (a, b) is an
arbitrary finite interval in R or (a, b) = R.

1 Introduction

Approximation features of various types of linear and nonlinear integral operators have been an
hot interest of many researchers for years. The fundamental form of linear integral operators
may be given as

L(f ;x, λ) =
π∫
−π

f(t)K(t− x, λ)dt, x ∈ (−π, π), (1.1)

where λ is a non-negative parameter and K (., λ) is a 2π−periodic kernel function satisfying
some properties. The convergence properties of operators of type (1.1) and its modifications ob-
tained by changing the domain of integration were detaily prensented in the famous monograph
by Butzer and Nessel [16]. The operators of type (1.1) were also considered as two-parameter
integral operators by Taberski [17] presenting pointwise convergence theorems including a ge-
neralization of well-known Natanson lemma [10]. Then, many generalizations of the operators
of type (1.1) were studied by many authors including Gadjiev [2], Rydzewska [3], Karsli and
Ibikli [9] and Esen Almali [19]. Musielak [11] considered the nonlinear analogues of the oper-
ators of type (1.1) and gave a solution method for the pointwise approximation problem of this
case. For further reading concerning this approach, we refer the reader to [5, 6, 7, 12, 23]. Also,
for some different approaches, we refer the reader to [1, 20].

As a continuation of [8], [15], [21] and [22], the main purpose of this manuscript is to obtain
Fatou type (pointwise) convergence of nonlinear integrals equipped with infinite sum in the
following setting:

Ψν(f ;x) =
∞∑
m=1

b∫
a

fm(t)Hν,m(t− x)dt, ν ∈ Λ, x ∈ (a, b) , (1.2)

where Λ is a non-empty index set involving non-negative real numbers ν, to the function f ∈
Lp (a, b) (1 < p <∞) , where (a, b) is an arbitrary finite interval in R, as (x, ν) tends to (x0, ν0).
Here, ν0 denotes either accumulation point of Λ or∞. Similar results are also obtained for the
case f ∈ Lp (R) .Here,Hν,m : R→ R+

0 , ν ∈ Λ andm = 1, 2, ... and fm representsm−th power
of f . The operators of type (1.2) are obtained by incorporating the operators and terminologies
used in [17] and [21].
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Remark 1.1. Let (a, b) denote any interval on R and (fm(t)Hν,m(t− x)) be a sequence of mea-
surable functions defined almost everywhere on (a, b) for each fixed x ∈ (a, b) and ν ∈ Λ. If

we suppose that
∞∑
m=1

a∫
b

|fm(t)Hν,m(t− x)| dt <∞ for each fixed x ∈ (a, b) and ν ∈ Λ, then by

a corollary of Lebesgue dominated convergence theorem (see page 29 in [24]), we see that the

series
∞∑
m=1

fm(t)Hν,m(t − x) converges for almost all t to a function in L1 (a, b) for each fixed

x ∈ (a, b) and ν ∈ Λ, and

∞∑
m=1

b∫
a

fm(t)Hν,m(t− x)dt =
b∫
a

∞∑
m=1

fm(t)Hν,m(t− x)dt

holds for each fixed x ∈ (a, b) and ν ∈ Λ. If, in addition, one assumes that all kernel functions

are equal, that is,Hν,m = Hν , m = 1, 2, ..., and
∞∑
m=1

fm(t) is summable to a function in L1 (a, b),

then the operators of type (1.2) may be considered as the operators of type (1.1). Using similar
ideas, one may set a relationship between the operators of type (1.2) and nonlinear counterparts
of the operators of type (1.1). In this work, we will consider similar problems constructed for
the operators of type (1.1) from another point of view, that is, we will mainly follow the steps in
the previous works, such as [21, 2, 17].

Definition 1.2. Let δ1 > 0 be a given fixed real number and δ1 > h > 0. A point x0 ∈ (a, b)
(or x0 ∈ R) is called µ−generalized Lebesgue point of the function f ∈ Lp (a, b) (or f ∈ Lp (R))
if the following relation:

lim
h→0

 1
µ(h)

x0±h∫
x0

|f(t)− f(x0)|
p
dt

p

= 0, 1 ≤ p <∞,

holds, where the function µ is increasing and absolutely continuous on [0, δ1] with µ(0) = 0 (see,
for example, [2, 3, 19]).

The following definition, which gives a characterization of class, is adopted from [21].

Definition 1.3. (Class A) Let Λ be a non-empty index set involving non-negative real numbers
ν with accumulation point ν0. For m = 1, ..., a family {Hν,m}ν∈Λ

consisting of the globally
integrable functions Hν,m : R→ R+

0 , for each fixed m = 1, ..., and ν ∈ Λ is named as Class A,
if there hold the following features:

a.
∞∫
−∞

Hν,m(t)dt = Im,

where Im > 0 are certain finite real numbers which are independent of ν ∈ Λ with
∞∑
m=1

Im <∞.

b. For every ξ > 0,

lim
ν→ν0

∞∑
m=1

[
sup
|t|>ξ

Hν,m(t)

]
= 0.

c. For every ξ > 0,

lim
ν→ν0

∞∑
m=1

 ∫
|t|>ξ

Hν,m(t)dt

 = 0.

d. Let δ0 be a certain positive real number satisfying 0 < δ0 ≤ δ1 such that Hν,m(t) is non-
decreasing on [−δ0, 0] and non-increasing on [0, δ0] with respect to t for each fixed m =
1, ..., and ν ∈ Λ.

From now on, we suppose that Hν,m is taken from the Class A.
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2 Main Results

Let (a, b) be finite interval in R. First main theorem, which is similar to that of given in [2, 17,
21], is

Theorem 2.1. If x0 ∈ (a, b) is a µ−generalized Lebesgue point of f ∈ Lp(a, b) (1 < p <∞)
and f is bounded on (a, b) with sup

t∈(a,b)
|f(t)| = A, then

lim
(x,ν)→(x0,ν0)

Ψν(f ;x) =
∞∑
m=1

Imf
m(x0)

provided that the function given by

∞∑
m=1


x0+δ∫
x0−δ

Hν,m(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt+ 2Hν,m(0)µ(|x0 − x|)

 ,

is bounded on a set S consisting of (x, ν) ∈ (a, b)×Λ, as (x, ν) tends to (x0, ν0), where 0 < δ <
δ0, and sup

m
(mpAmp), m ∈ {1, 2, ...} is finite for each fixed 1 ≤ p <∞.

Proof. First of all, notice that, the sum
∞∑
m=1

Imf
m(x0) achives a finite sum in view of condition

(a) of Class A and hypothesis of the theorem. Now, we set σν =

∣∣∣∣Ψν(f ;x)−
∞∑
m=1

Imf
m(x0)

∣∣∣∣ .
Let gm(t) := fm(t) on (a, b) and gm(t) := 0 on R\ (a, b) . By condition (a) of Class A and the
inequality given by (w1 + w2)

p ≤ 2pwp1 + 2pwp2 , provided that w1 and w2 are certain positive
real numbers (see, for example, [24]), we can write

σpν ≤ 22p

 ∞∑
m=1

b∫
a

|fm(t)− fm(x0)|Hν,m(t− x)dt

p

+2p

 ∞∑
m=1

|fm(x0)|

∣∣∣∣∣∣
∞∫
−∞

Hν,m(t− x)dt− Im

∣∣∣∣∣∣
p

+22p

 ∞∑
m=1

|fm(x0)|
∫

R\(a,b)

Hν,m(t− x)dt


p

= 22pσp1 + 2pσp2 + 22pσp3 .

We proceed further for the case f ∈ Lp (a, b) with 1 < p < ∞. The case f ∈ L1 (a, b) is
analogues.

Suppose that δ < b− x0, x0 − δ > a and 0 < x0 − x < δ
2 .

By a simple observation , we see that sup
m
|fm(x0)| ≤ sup

m
(mAm) <∞ by the hypothesis, and

by conditions (a) and (c) of Class A, σp2 converges to 0 and σp3 converges to 0 as (x, ν) tends to
(x0, ν0), respectively.

Now, we consider σ1.Applying Hölder’s inequality integral part of it (see, for example, [24]),
we have

σ1 ≤
∞∑
m=1

 b∫
a

|fm(t)− fm(x0)|
p
Hν,m(t− x)dt


1
p
 ∞∫
−∞

Hν,m(t)dt

 1
q

.
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Now, we apply Hölder’s inequality for infinite sums (see, for example, [14]) as follows:

∞∑
m=1

 b∫
a

|fm(t)− fm(x0)|
p
Hν,m(t− x)dt


1
p
 ∞∫
−∞

Hν,m(t)dt

 1
q

≤

 ∞∑
m=1

 b∫
a

|fm(t)− fm(x0)|
p
Hν,m(t− x)dt


1
p
 ∞∑
m=1

∞∫
−∞

Hν,m(t)dt

 1
q

= σ
1
p

11

 ∞∑
m=1

∞∫
−∞

Hν,m(t)dt

 1
q

,

where
∞∑
m=1

∞∫
−∞

Hν,m(t)dt <∞ by condition (a) of ClassA and p and q are conjugate exponents

such that 1
p +

1
q = 1.

For a fixed real number δ satisfying 0 < δ < δ0, we split the integral σ11 into four terms as
follows:

σ11 =
∞∑
m=1

 x0−δ∫
a

+

x0∫
x0−δ

+

x0+δ∫
x0

+

b∫
x0+δ

 |fm(t)− fm(x0)|
p
Hν,m(t− x)dt

= σ111 + σ121 + σ131 + σ141.

In view of condition (d) of Class A, there holds:

σ111 ≤ 2psup
m


x0−δ∫
a

|fm(t)|p dt+
x0−δ∫
a

|fm(x0)|
p
dt


∞∑
m=1

[
sup
|u|> δ

2

Hν,m(u)

]

≤ 2p
{

sup
m
‖fm‖pLp(a,b) + (b− a)sup

m
Amp

} ∞∑
m=1

[
sup
|u|> δ

2

Hν,m(u)

]
and

σ141 ≤ 2psup
m


b∫

x0+δ

|fm(t)|p dt+
b∫

x0+δ

|fm(x0)|
p
dt


∞∑
m=1

[
sup
|u|> δ

2

Hν,m(u)

]

≤ 2p
{

sup
m
‖fm‖pLp(a,b) + (b− a)sup

m
Amp

} ∞∑
m=1

[
sup
|u|> δ

2

Hν,m(u)

]
.

By condition (b) of Class A and hypothesis, σ111 → 0 and σ141 → 0 as (x, ν) tends to (x0, ν0).
To continue proof, we need the following identity (see, for example, [13]):

(qn1 − qn2 ) = (q1 − q2)
(
qn−1

1 + qn−2
1 q2 + ...+ qn−1

2

)
,

where q1, q2 ∈ R, n ∈ N. Using this fact and boundedness of f on (a, b), we easily see that there
are finite real numbers mpA(m−1)p > 0 so that the inequality

|fm(t)− fm(x0)|
p

=
∣∣(f(t)− f(x0))

(
f(t)m−1 + f(t)m−2f(x0) + ...+ f(x0)

m−1)∣∣p
≤ mpA(m−1)p |f(t)− f(x0)|

p
,

where m = 1, ... holds.
Using this inequality in σ121 and σ131, we obtain

|σ121| ≤
∞∑
m=1

mpA(m−1)p

x0∫
x0−δ

|f(t)− f(x0)|
p
Hν,m(t− x)dt
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and

|σ131| ≤
∞∑
m=1

mpA(m−1)p

x0+δ∫
x0

|f(t)− f(x0)|
p
Hν,m(t− x)dt.

Now, consider first the inequality in σ121. Let x0 ∈ (a, b) be a µ−generalized Lebesgue point
of f ∈ Lp(a, b). By definition, for all ε > 0 there exists δ > 0 satisfying 0 < δ < δ0 such that

x0∫
x0−h

|f (t)− f (x0)|p dt ≤ εpµ (h) (2.1)

hold provided that 0 < h ≤ δ, respectively. Define the following new function as

F (t) =

x0∫
t

|f(z)− f(x0)|
p
dz. (2.2)

Then, for every t satisfying the conditions 0 < x0 − t ≤ δ, we have

|F (t)| ≤ εpµ(x0 − t). (2.3)

Hence, from (2.2) and (2.3), we can write

|σ121| =
∞∑
m=1

∣∣∣∣∣∣mpA(m−1)p

(LS) x0∫
x0−δ

Hν,m(t− x)d(−F (t))

∣∣∣∣∣∣
where (LS) denotes Lebesgue- Stieltjes integral. Applying integration by parts method to the
Lebesgue-Stieltjes integral, we have

|σ121| ≤ εp
∞∑
m=1

mpA(m−1)p {Hν,m(x0 − δ − x)µ(δ)

+

x0∫
x0−δ

µ(x0 − t)
(
∂

∂t
Hν,m(t− x)

)
dt

 .

Now, we define the variations:

Vm(t) =


t∨

x0−x−δ
Hν,m(s) , x0 − x− δ < t ≤ x0 − x

0 , t = x0 − x− δ
. (2.4)

Taking above variations and applying integration by parts method to last inequality, we get

|σ121| ≤ εp
∞∑
m=1

mA(m−1)p {Hν,m(x0 − δ − x)µ(δ)+

+

x0−x∫
x0−x−δ

Vm(t) {µ(x0 − x− t)}
′

t dt

 .

Let us consider the definition of Vm (see (2.4)) function and condition (d) of Class A. Firstly,
we shall write

|σ121| ≤ εp
∞∑
m=1

mA(m−1)p {Hν,m(x0 − δ − x)µ(δ)+

+

0∫
x0−x−δ

 t∨
x0−x−δ

Hν,m(s)

 {µ(x0 − x− t)}
′

t dt

+

x0−x∫
0

 0∨
x0−x−δ

Hν,m(s) +
t∨
0

Hν,m(s)

 {µ(x0 − x− t)}
′

t dt
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and then

|σ121| = εp
∞∑
m=1

mA(m−1)p {2Hν,m(0)µ(|x0 − x|)

+

x0∫
x0−δ

Hν,m(t− x) {µ(x0 − t)}
′

t dt

 . (2.5)

We can use a similar method for estimating σ131. Then we find the inequality

|σ131| ≤ εp
∞∑
m=1

mA(m−1)p

x0+δ∫
x0

Hν,m(t− x) {µ(t− x0)}
p

t dt. (2.6)

Consequently, from (2.5) and (2.6), we can write the following inequality:

|σ121|+ |σ131| ≤ εp sup
m∈N

(
mA(m−1)p

) ∞∑
m=1


x0+δ∫
x0−δ

Hν,m(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt
+2Hν,m(0)µ(|x0 − x|)} .

Since Apsup
m

(
mpA(m−1)p

)
= sup

m
(mpAmp) <∞ and the right hand side of the above inequality

is bounded on S by the hypotheses, the assertion follows, that is,

lim
(x,ν)→(x0,ν0)

Ψν(f ;x) =
∞∑
m=1

Imf
m(x0).

Note that same result is valid for the case 0 < x− x0 <
δ
2 . Thus, the proof is completed.

Let (a, b) = (−∞,∞) . Our next result is

Theorem 2.2. If x0 ∈ R is a µ−generalized Lebesgue point of function f ∈ Lp(R) (1 < p <∞)
and f is bounded on R with sup

t∈R
|f(t)| = B, then

lim
(x,ν)→(x0,ν0)

Ψν(f ;x) =
∞∑
m=1

Imf
m(x0)

provided that the function given by

∞∑
m=1


x0+δ∫
x0−δ

Hν,m(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt+ 2Hν,m(0)µ(|x0 − x|)

 ,

is bounded on some sets S
′

consisting of (x, ν) ∈ R × Λ, as (x, ν) tends to (x0, ν0), where
0 < δ < δ0, and sup

m
(mpBmp) and sup

m
‖fm (t)‖pLp(R) , m ∈ {1, 2, ...} are finite for each fixed

1 ≤ p <∞.

Proof. We set γν =
∣∣∣∣Ψν(f ;x)−

∞∑
m=1

Imf
m(x0)

∣∣∣∣. Following the similar strategy as in the Theo-

rem 2.1, for the case f ∈ Lp(R) (1 < p <∞), we have

γpν ≤ 2p

 ∞∑
m=1

∞∫
−∞

|fm(t)− fm(x0)|Hν,m(t− x)dt

p

+2p

 ∞∑
m=1

|fm(x0)|

∣∣∣∣∣∣
∞∫
−∞

Hν,m(t− x)dt− Im

∣∣∣∣∣∣
p

= 2pγp1 + 2pγp2 .
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The integral γp2 is calculated as in the previous proof. It is sufficient to examine the integral γp1
for proof. Now, let’s show that γ1 tend to zero as (x, ν) → (x0, ν0). Using the same way as in
Theorem 2.1, we can write

γ1 ≤

 ∞∑
m=1

∞∫
−∞

|fm(t)− fm(x0)|
p
Hν,m(t− x)dt

 1
p

×

 ∞∑
m=1

∞∫
−∞

Hν,m(t)dt

 1
q

= γ
1
p

11

 ∞∑
m=1

∞∫
−∞

Hν,m(t)dt

 1
q

,

where
∞∑
m=1

∞∫
−∞

Hν,m(t)dt < ∞ by condition (a) of Class A and also p and q are conjugate

exponents such that 1
p +

1
q = 1. For a fixed real number δ satisfying 0 < δ < δ0, we can write

γ11 =
∞∑
m=1

 x0−δ∫
−∞

+

x0∫
x0−δ

+

x0+δ∫
x0

+

∞∫
x0+δ

 |fm(t)− fm(x0)|
p
Hν,m(t− x)dt

= γ111 + γ121 + γ131 + γ141.

Firstly, we consider the integrals γ111 and γ141. By condition (d) of Class A, we obtain

γ111 ≤ 2p
∞∑
m=1


[

sup
|u|> δ

2

Hν,m(u)

]
sup
m
‖fm‖pLp(R) + sup

m
(mpBmp)

x0−δ∫
−∞

Hν,m(t− x)dt


and

γ141 ≤ 2p
∞∑
m=1


[

sup
|u|> δ

2

Hν,m(u)

]
sup
m
‖fm‖pLp(R) + sup

m
(mpBmp)

∞∫
x0+δ

Hν,m(t− x)dt

 .

By condition (a) and (b) of Class A and hypothesis, γ111 → 0 and γ141 → 0 as (x, ν) tends to
(x0, ν0). On the other hand, taking into account the previous theorem, we can write

|γ121|+|γ131| ≤ εp sup
m

(mpBmp)
∞∑
m=1


x0+δ∫
x0−δ

Hν,m(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt+ 2Hν,m(0)µ(|x0 − x|)

 .

Consequently, the right hand side of the above inequality is bounded on S
′

by the hypotheses,
this completes the proof.

3 Rate of Convergence

Theorem 3.1. Suppose that the hypotheses of Theorem 2.1 are satisfied. Let

∆(ν, δ, x) =
∞∑
m=1


x0+δ∫
x0−δ

Hν,m(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt+ 2Hν,m(0)µ(|x0 − x|)

 ,

where 0 < δ < δ0 and m = 1, 2, ... and the following conditions are satisfied:
i. For δ > 0, lim

(x,ν)→(x0,ν0)
∆(ν, δ, x) = 0.

ii. For every ξ > 0,

lim
ν→ν0

∞∑
m=1

[
sup
|t|>ξ

Hν,m(t)

]
= o (∆(ν, δ, x)) .
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iii. For every ξ > 0,

lim
ν→ν0

∞∑
m=1

 ∫
|t|>ξ

Hν,m(t)dt

 = o (∆(ν, δ, x)) .

iv.

lim
ν→ν0

∣∣∣∣∣∣
∞∫
−∞

Hν,m(t)dt− Im

∣∣∣∣∣∣ = o (∆(ν, δ, x)) ,

where Im > 0 are certain finite real numbers which are independent of ν ∈ Λ with
∞∑
m=1

Im <∞.

Then, at each µ-generalized Lebesgue point of function f ∈ Lp(a, b), we have∣∣∣∣∣Ψν(f ;x)−
∞∑
m=1

Imf
m(x0)

∣∣∣∣∣
p

= o (∆(ν, δ, x)) .

Proof. The claim is obvious by the hypothesis of Theorem 2.1.
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