A NEW NON-LINEAR IDENTITY CLASS FOR TERMS OF A GENERALISED LINEAR DEGREE FOUR RECURRENCE SEQUENCE

Peter J. Larcombe

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11K31; Secondary 15A24.
Keywords and phrases: Matrix algebra, non-linear recurrence identity class.

Abstract

We state, and prove by a succinct matrix method deployed previously, a result for terms of a sequence generated by a fully general (linear) fourth order recurrence equation which—being characterised by four additional independent parameters-describes a new class of highly non-linear identities.

1 The Result

Consider, with initial values $v_{0}=a, v_{1}=b, v_{2}=c$ and $v_{3}=d$, the linear recursion

$$
\begin{equation*}
v_{n+4}=p v_{n+3}+q v_{n+2}+r v_{n+1}+s v_{n}, \quad n \geq 0 \tag{1.1}
\end{equation*}
$$

of degree four. In this short paper we state, and prove by a succinct matrix method deployed previously (for recurrences of respective order two [1] and three [2]), an identity class for the sequence $\left\{v_{n}\right\}_{n=0}^{\infty}=\left\{v_{n}\right\}_{0}^{\infty}=\left\{v_{n}(a, b, c, d ; p, q, r, s)\right\}_{0}^{\infty}=\left\{a, b, c, d, v_{4}, v_{5}, \ldots\right\}$ which is characterised by four independent parameters (in addition to the variables p, q, r, s, a, b, c, d) and is highly non-linear in nature; when the order is two ($r=s=0, v_{2,3}=v_{2,3}(a, b, p, q)$ determined), the terms of any class instance can align themselves with those of the celebrated Horadam sequence $\left\{v_{n}(a, b ; p,-q)\right\}_{0}^{\infty}[1]$. We believe the technique underpinning the formulation presented here-though simple enough-is novel, and this article demonstrates its robustness.

Governing Identity. Let $s_{1}=(\gamma p+\epsilon) / s, s_{2}=\alpha=s_{5}, s_{3}=\beta=s_{9}, s_{4}=\gamma=s_{13}$, $s_{6}=[\beta s+\gamma p q+\epsilon q-\alpha p s] / s, s_{7}=r(\gamma p+\epsilon) / s+\gamma-\beta p=s_{10}, s_{8}=\epsilon=s_{14}, s_{11}=\alpha r-\beta q+\epsilon$, $s_{12}=\alpha s-\gamma q=s_{15}$, and $s_{16}=\beta s-\gamma r(s \neq 0$ assumed $)$, the variables s_{1}, \ldots, s_{16} being characterised by arbitrary constants α, β, γ and ϵ along with the recurrence parameters p, q, r, s of (1.1). Then, for $i, j \geq 0$ the following result holds, describing a class of identities:

$$
\begin{aligned}
& v_{i+3}\left(s_{1} v_{j+3}+s_{2} v_{j+2}+s_{3} v_{j+1}+s_{4} v_{j}\right)+v_{i+2}\left(s_{5} v_{j+3}+s_{6} v_{j+2}+s_{7} v_{j+1}+s_{8} v_{j}\right) \\
& +v_{i+1}\left(s_{9} v_{j+3}+s_{10} v_{j+2}+s_{11} v_{j+1}+s_{12} v_{j}\right)+v_{i}\left(s_{13} v_{j+3}+s_{14} v_{j+2}+s_{15} v_{j+1}+s_{16} v_{j}\right) \\
& \quad=\left(d s_{1}+c s_{5}+b s_{9}+a s_{13}\right) v_{i+j+3}+\left(d s_{2}+c s_{6}+b s_{10}+a s_{14}\right) v_{i+j+2} \\
& \quad+\left(d s_{3}+c s_{7}+b s_{11}+a s_{15}\right) v_{i+j+1}+\left(d s_{4}+c s_{8}+b s_{12}+a s_{16}\right) v_{i+j} .
\end{aligned}
$$

We present the proof of this generalised Governing Identity accordingly.

2 The Proof

Proof. Let $\mathbf{J}(p, q, r, s)$ be the matrix

$$
\mathbf{J}(p, q, r, s)=\left(\begin{array}{cccc}
p & q & r & s \tag{P.1}\\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

which captures the recurrence equation (1.1) and possesses the important property

$$
\left(\begin{array}{c}
v_{n+3} \tag{P.2}\\
v_{n+2} \\
v_{n+1} \\
v_{n}
\end{array}\right)=\mathbf{J}^{n}(p, q, r, s)\left(\begin{array}{c}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right), \quad n \geq 1
$$

The proof hinges partly on a so called 'quasi-commutativity' condition

$$
\begin{equation*}
\mathbf{S}\left(s_{1}, \ldots, s_{16}\right) \mathbf{J}(p, q, r, s)=[\mathbf{J}(p, q, r, s)]^{T} \mathbf{S}\left(s_{1}, \ldots, s_{16}\right) \tag{P.3}
\end{equation*}
$$

(where T denotes transposition) that must exist between $\mathbf{J}(p, q, r, s)$ and a matrix

$$
\mathbf{S}=\mathbf{S}\left(s_{1}, s_{2}, \ldots, s_{16}\right)=\left(\begin{array}{cccc}
s_{1} & s_{2} & s_{3} & s_{4} \tag{P.4}\\
s_{5} & s_{6} & s_{7} & s_{8} \\
s_{9} & s_{10} & s_{11} & s_{12} \\
s_{13} & s_{14} & s_{15} & s_{16}
\end{array}\right)
$$

say, which generates the system of equations

$$
\begin{align*}
s_{2} & =s_{5} \\
q s_{1}+s_{3} & =p s_{2}+s_{6} \\
r s_{1}+s_{4} & =p s_{3}+s_{7} \\
s_{1} & =p s_{4}+s_{8} \\
p s_{5}+s_{6} & =q s_{1}+s_{9} \\
q s_{5}+s_{7} & =q s_{2}+s_{10} \\
r s_{5}+s_{8} & =q s_{3}+s_{11} \\
s_{5} & =q s_{4}+s_{12} \\
p s_{9}+s_{10} & =r s_{1}+s_{13} \\
q s_{9}+s_{11} & =r s_{2}+s_{14} \\
r s_{9}+s_{12} & =r s_{3}+s_{15} \\
s s_{9} & =r s_{4}+s_{16} \\
p s_{13}+s_{14} & =s s_{1} \\
q s_{13}+s_{15} & =s s_{2} \\
r s_{13}+s_{16} & =s s_{3} \\
s_{13} & =s_{4} \tag{P.5}
\end{align*}
$$

whose (infinite) solution set for s_{1}, \ldots, s_{16} (containing six arbitrary (that is, 'free') constants $\alpha, \beta, \gamma, \delta, \epsilon, \theta)$ forms the entries of \mathbf{S} :

$$
\begin{align*}
\mathbf{S} & =\mathbf{S}(p, q, r, s, \alpha, \beta, \gamma, \delta, \epsilon, \theta) \\
& =\left(\begin{array}{cccc}
(\gamma p+\epsilon) / s & {[(\gamma p+\epsilon) q+(\beta-\alpha p) s] / s} & \delta & \gamma \\
\alpha & \delta & \beta & \epsilon \\
\beta & \epsilon & \theta & \beta s-\gamma r
\end{array}\right) \tag{P.6}
\end{align*}
$$

However, with \mathbf{S} evidently symmetric it follows that the product matrices $\mathbf{S J}$ and $\mathbf{J}^{T} \mathbf{S}$, as well as being equal (by (P.3)), will also each be symmetric (trivial reader exercise, or else see the Remark of [2, p. 12]). This is found to force relations

$$
\begin{align*}
\delta & =\delta(p, r, s, \beta, \gamma, \epsilon)=r(\gamma p+\epsilon) / s+\gamma-\beta p \\
\theta & =\theta(q, s, \alpha, \gamma)=\alpha s-\gamma q \tag{P.7}
\end{align*}
$$

and reduces the number of independent parameters involved from six to four (the interested reader is referred to the Appendix for details); we now write the matrix \mathbf{S} as $\mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r$, s) whose δ and θ entries in (P.6) take the form seen in (P.7) and so become redundant ones in themselves (as reflected in the listing of s_{1}, \ldots, s_{16} in the statement of the Governing Identity).

To construct the result itself, we proceed in a routine algebraic fashion as follows. First, we define a function

$$
\begin{aligned}
\mathbf{L}_{n}^{[\alpha, \beta, \gamma, \epsilon]} & \left(p, q, r, s ; v_{0}, v_{1}, v_{2}, v_{3}\right) \\
= & \left(v_{3}, v_{2}, v_{1}, v_{0}\right) \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s)\left(\begin{array}{c}
v_{n+3} \\
v_{n+2} \\
v_{n+1} \\
v_{n}
\end{array}\right) \\
= & \left(v_{3} s_{1}+v_{2} s_{5}+v_{1} s_{9}+v_{0} s_{13}\right) v_{n+3}+\left(v_{3} s_{2}+v_{2} s_{6}+v_{1} s_{10}+v_{0} s_{14}\right) v_{n+2} \\
& \quad+\left(v_{3} s_{3}+v_{2} s_{7}+v_{1} s_{11}+v_{0} s_{15}\right) v_{n+1}+\left(v_{3} s_{4}+v_{2} s_{8}+v_{1} s_{12}+v_{0} s_{16}\right) v_{n},
\end{aligned} \quad \begin{aligned}
& \text { P.8) }
\end{aligned}
$$

after a little algebra; in other words,

$$
\begin{align*}
& \mathbf{L}_{i+j}^{[\alpha, \beta, \gamma, \epsilon]}\left(p, q, r, s ; v_{0}, v_{1}, v_{2}, v_{3}\right) \\
& \quad=\quad\left(d s_{1}+c s_{5}+b s_{9}+a s_{13}\right) v_{i+j+3}+\left(d s_{2}+c s_{6}+b s_{10}+a s_{14}\right) v_{i+j+2} \\
& \quad \quad+\left(d s_{3}+c s_{7}+b s_{11}+a s_{15}\right) v_{i+j+1}+\left(d s_{4}+c s_{8}+b s_{12}+a s_{16}\right) v_{i+j} . \tag{P.9}
\end{align*}
$$

On the other hand, we may write

$$
\begin{align*}
& \mathbf{L}_{i+j}^{[\alpha, \beta, \gamma, \epsilon]}\left(p, q, r, s ; v_{0}, v_{1}, v_{2}, v_{3}\right) \\
& \quad=\quad\left(v_{3}, v_{2}, v_{1}, v_{0}\right) \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s) \mathbf{J}^{i+j}(p, q, r, s)\left(\begin{array}{c}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right) \tag{P.10}
\end{align*}
$$

using (P.2) (with $n=i+j$),

$$
\begin{align*}
& =\left(v_{3}, v_{2}, v_{1}, v_{0}\right) \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s) \mathbf{J}^{i}(p, q, r, s) \mathbf{J}^{j}(p, q, r, s)\left(\begin{array}{l}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right) \\
& =\left(v_{3}, v_{2}, v_{1}, v_{0}\right)\left[\mathbf{J}^{i}(p, q, r, s)\right]^{T} \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s) \mathbf{J}^{j}(p, q, r, s)\left(\begin{array}{c}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right) \tag{P.11}
\end{align*}
$$

where (P.3) has been applied (we have used the derivative property that if the matrix S quasicommutes with \mathbf{J}, then it does so with any power of \mathbf{J}-see Remark 2.1 overleaf). This in turn

$$
\begin{align*}
& =\left[\mathbf{J}^{i}(p, q, r, s)\left(\begin{array}{c}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right)\right]^{T} \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s) \mathbf{J}^{j}(p, q, r, s)\left(\begin{array}{l}
v_{3} \\
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right) \\
& =\left(\begin{array}{c}
v_{i+3} \\
v_{i+2} \\
v_{i+1} \\
v_{i}
\end{array}\right) \mathbf{S}^{[\alpha, \beta, \gamma, \epsilon]}(p, q, r, s)\left(\begin{array}{c}
v_{j+3} \\
v_{j+2} \\
v_{j+1} \\
v_{j}
\end{array}\right) \tag{P.12}
\end{align*}
$$

by (P.2) again,

$$
\begin{gather*}
=v_{i+3}\left(s_{1} v_{j+3}+s_{2} v_{j+2}+s_{3} v_{j+1}+s_{4} v_{j}\right)+v_{i+2}\left(s_{5} v_{j+3}+s_{6} v_{j+2}+s_{7} v_{j+1}+s_{8} v_{j}\right) \\
+v_{i+1}\left(s_{9} v_{j+3}+s_{10} v_{j+2}+s_{11} v_{j+1}+s_{12} v_{j}\right) \\
+v_{i}\left(s_{13} v_{j+3}+s_{14} v_{j+2}+s_{15} v_{j+1}+s_{16} v_{j}\right) \tag{P.13}
\end{gather*}
$$

when expanded; the Governing Identity is immediate on reconciling (P.9) and (P.13).
Remark 2.1. The proof (for arbitrary matrices \mathbf{J}, \mathbf{S} satisfying the quasi-commutativity condition (P.3)) that $\mathbf{S J}=\mathbf{J}^{T} \mathbf{S} \Rightarrow \mathbf{S J}^{n}=\left(\mathbf{J}^{n}\right)^{T} \mathbf{S}$ (for $n \geq 1$) is a simple one by induction (this has been omitted in [1] and [2], and is included here merely for completeness): Proof. Assuming the result holds for some $n=k \geq 1$ (it is valid automatically at $n=1$), then we consider $\mathbf{S} \mathbf{J}^{k+1}=\mathbf{S}\left(\mathbf{J}^{k} \mathbf{J}\right)=\left(\mathbf{S} \mathbf{J}^{k}\right) \mathbf{J}=\left(\left(\mathbf{J}^{k}\right)^{T} \mathbf{S}\right) \mathbf{J}$ (by assumption) $=\left(\mathbf{J}^{k}\right)^{T}(\mathbf{S J})=\left(\mathbf{J}^{k}\right)^{T}\left(\mathbf{J}^{T} \mathbf{S}\right)=$ $\left(\left(\mathbf{J}^{k}\right)^{T} \mathbf{J}^{T}\right) \mathbf{S}=\left(\mathbf{J} \mathbf{J}^{k}\right)^{T} \mathbf{S}=\left(\mathbf{J}^{k+1}\right)^{T} \mathbf{S}$. Q.E.D.

Remark 2.2. The aforementioned redundancy of δ and θ by use of (P.7) is not a unique move. For instance, computational tests have validated the Governing Identity using alternative re-writes $\alpha=(\gamma q+\theta) / s, \gamma=(\alpha s-\theta) / q, \beta=[r(\gamma p+\epsilon) / s+\gamma-\delta] / p$ and $\epsilon=s(\beta p+\delta-\gamma) / r-\gamma p$, both separately and in combination (with further choices available, too); while this necessarily alters some of $s_{1}, \ldots s_{16}$ as stated, the structure and complexity of the identity remain unchanged however the reduction of the parameter set $\{\alpha, \beta, \gamma, \delta, \epsilon, \theta\}$ (from six to four) is effected.

3 Summary

A known methodology to establish an identity class for terms of a linear recurrence sequenceapplied recently to the degree 2 and 3 cases [1,2]-has been used here in the degree 4 case for the first time. The result has been verified algebraically, by computer, for a host of numeric i, j values (using terms of the sequence $\left\{v_{n}(a, b, c, d ; p, q, r, s)\right\}_{0}^{\infty}$ generated, in the absence of a general term closed form, from the recurrence equation (1.1)) with all parameters $a, b, c, d, p, q, r, s, \alpha, \beta, \gamma, \epsilon$ in symbolic form.

The approach taken here has been demonstrated to be robust, but algebraic complexity limits its use in specific instances of even higher order-for this reason similar treatment of an arbitrary degree recurrence sequence would seem to be an intractable one, and is left as an open problem.

Appendix

With \mathbf{S}, \mathbf{J} as in (P.6),(P.1), the product matrices $\mathbf{S J}$ and $\mathbf{J}^{T} \mathbf{S}$ are, respectively,

$$
\left(\begin{array}{cccc}
p(\gamma p+\epsilon) / s+\alpha & q(\gamma p+\epsilon) / s+\beta & r(\gamma p+\epsilon) / s+\gamma & \gamma p+\epsilon \tag{A.1}\\
q(\gamma p+\epsilon) / s+\beta & \alpha q+\delta & \alpha r+\epsilon & \alpha s \\
\beta p+\delta & \alpha r+\epsilon & \beta r+\theta & \beta s \\
\gamma p+\epsilon & \gamma q+\theta & \beta s & \gamma s
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccc}
p(\gamma p+\epsilon) / s+\alpha & q(\gamma p+\epsilon) / s+\beta & \beta p+\delta & \gamma p+\epsilon \tag{A.2}\\
q(\gamma p+\epsilon) / s+\beta & \alpha q+\delta & \alpha r+\epsilon & \gamma q+\theta \\
r(\gamma p+\epsilon) / s+\gamma & \alpha r+\epsilon & \beta r+\theta & \beta s \\
\gamma p+\epsilon & \alpha s & \beta s & \gamma s
\end{array}\right),
$$

with

$$
\mathbf{S J}-\mathbf{J}^{T} \mathbf{S}=\left(\begin{array}{cccc}
0 & 0 & -f_{2} & 0 \tag{A.3}\\
0 & 0 & 0 & f_{1} \\
f_{2} & 0 & 0 & 0 \\
0 & -f_{1} & 0 & 0
\end{array}\right)
$$

where $f_{1}=\alpha s-\gamma q-\theta, f_{2}=\beta p+\delta-r(\gamma p+\epsilon) / s-\gamma$. Solving $f_{1}=0$ for θ and $f_{2}=0$ for δ yields (P.7), forcing (as required) $\mathbf{S J}$ and $\mathbf{J}^{T} \mathbf{S}$ to be both equal and symmetric.

References

[1] P. J. Larcombe and E. J. Fennessey, A new non-linear recurrence identity class for Horadam sequence terms, Palest. J. Math. 7, 406-409 (2018).
[2] P. J. Larcombe and E. J. Fennessey, A non-linear recurrence identity class for terms of a generalized linear recurrence sequence of degree three, Fib. Quart. 57, 10-13 (2019).

Author information

Peter J. Larcombe, Department of Computing and Mathematics, College of Engineering and Technology, University of Derby, Kedleston Road, Derby DE22 1GB, U.K.
E-mail: p.j.larcombe@derby.ac.uk
Received: July 17, 2020.
Accepted: September 27, 2020.

