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Abstract In this work, we establish the sufficient conditions for oscillation of the second
order neutral delay differential equations of the form:

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)xα(σ(t)) + v(t)xβ(η(t)) = 0

under the assumption that ∫ ∞
0

(
1
r(t)

) 1
γ

dt < ∞

for various ranges of p(t), where α, β and γ are the quotients of odd positive integers.

1 Introduction

Consider a class of nonlinear neutral delay differential equations of the form:

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)xα(σ(t)) + v(t)xβ(η(t)) = 0 (1.1)

where γ, α, β are quotients of odd positive integers, r, q, v, τ, σ, η ∈ C(R+,R+), p ∈
C(R+,R), τ(t) ≤ t, σ(t) ≤ t, η(t) ≤ t with limt→∞ τ(t) = ∞ = lim

t→∞
σ(t) = ∞ =

limt→∞ η(t). The objective of this work is to examine oscillatory behavior of all solutions to
(1.1) under the assumption

(H0)
∫∞

0

(
1
r(t)

) 1
γ

dt <∞,
for various range of p(t) with |p(t)| <∞.

In [28] and [29], Tripathy and Sethi have established the sufficient conditions for oscillation,
nonoscillation and asymptotic behaviour of solutions of

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)G(x(σ(t))) + v(t)H(x(η(t))) = 0 (1.2)

under the assumptions ∫ ∞
0

1
r(t)

dt =∞,
∫ ∞

0

1
r(t)

dt <∞,

where G,H ∈ C(R,R) such that G and H could be linear, sublinear or superlinear. When
G(x) = xγ = H(x) and with the nonlinear neutral term, (1.2) reduces to

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)xγ(σ(t)) + v(t)xγ(η(t)) = 0, (1.3)

where γ is a ratio of odd positive integers. The authors have studied the oscillation properties of
(1.3) in [24] and [30] by using the Riccati transformation technique under the assumptions∫ ∞

0

(
1
r(t)

) 1
γ

dt =∞,
∫ ∞

0

(
1
r(t)

) 1
γ

dt <∞
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and it was a quest to see the application of Riccati technique to nonlinear neutral delay differen-
tial equations in both forms 0 < γ < 1 and γ ≥ 1. In this work, we continue our study for (1.1)
with any α, β and γ. In [7] Baculkova and Dzurina, respectively have studied the oscillatory
behaviour of solutions of

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)x(σ(t)) + v(t)x(η(t)) = 0 (1.4)

by using the comparison results and same conclusion hold for the equations

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)xβ(σ(t)) = 0 (1.5)

and
(r(t)|z′(t)|α−1z′(t))′ + q(t)|x(σ(t))|α−1x(σ(t)) = 0 (1.6)

in the works [6] and [8] respectively. When nothing is known about the differential inequalities
concerned in the works [6] and [8], it is interesting to go through the works [28], [29], [24] and
[30] for v(t) = 0 or v(t) 6= 0. Indeed, the equations (1.3) - (1.6) are the special cases of (1.1).
Keeping in view of the above fact, we study (1.1) in general without following any comparison
results. In this direction, we refer the monographs [14], [16] and some of the works [1], [5],
[32]- [11], [17]-[23], [26], [27], [31] and the references cited therein.

Definition 1.1. By a solution of (1.1), we mean a continuously differentiable function x(t) which
is defined for t ≥ T ∗ = min{τ(t0), σ(t0), η(t0)} such that x(t) satisfies (1.1) for all t ≥
t0. In the sequel, it will always be assumed that the solutions of (1.1) exist on some half line
[t1,∞), t1 ≥ t0. A solution of (1.1) is said to be oscillatory, if it has arbitrarily large zeros;
otherwise, it is called non-oscillatory. Equation (1.1) is called oscillatory, if all its solutions are
oscillatory.

2 Oscillation Criteria when (0 ≤ p(t) < 1)

This section deals with the sufficient conditions for oscillation of all solutions of (1.1) under the
hypothesis (H0). Throughout our discussion, we use the notation

z(t) = x(t) + p(t)x(τ(t)). (2.1)

Lemma 2.1. [25] Assume that (H0) holds and r(t) ∈ C ′[(T0,∞),R) such that r′(t) > 0. Let
x(t) be an eventually positive solution of (1.1) such that (r(t)(x′(t))γ)′ ≤ 0, for t ≥ t0. Then
x′(t) > 0 and x′′(t) < 0 for t ≥ t1 > t0, where γ ≥ 1 is a quotient of odd positive integers.

Lemma 2.2. Assume that (H0) holds. Let u(t) be an eventually positive continuous function on
[t0,∞), t0 ≥ 0 such that r(t)u′(t) is continuous and differentiable function with (r(t)u′(t))γ)′ ≤
0, 6≡ 0 for large t ∈ [t0,∞), where r(t) is positive and continuous function defined on [t0,∞).
Then the following statements hold:
(i) If u′(t) > 0, then there exists a constant C > 0 such that u(t) > CR(t) for large t.

(ii) If u′(t) < 0, then u(t) ≥ −(r(t)(u′(t))γ)
1
γR(t), where R(t) =

∫∞
t

(
1
r(s)

) 1
γ

ds.

Theorem 2.3. Let 0 ≤ p(t) < 1 and γ < α < β. Assume that (H0), and η(t) ≥ σ(t), σ′(t) ≥ 1,
r′(t) > 0 hold for any large t. Furthermore, assume that
(H1)

∫∞
t0

[
q(s)(1− p(s))αRα(σ(s)) + v(s)(1− p(s))αRα(η(s))

]
ds =∞,

(H1α) a1(t) =
∫∞
t [(1− p(s))α{q(s) + v(s)}] ds, t ∈ [t0,∞) such that lim sup

t→∞
a1(t) <∞,

and
(H2α)

∫∞
t0

( 1
r(σ(s)))

1
γA1(s,K1α)ds =∞,

where K1α > 0 is an arbitrary constant and

A1(t,K1α) =

[
a1(t) +K1α

∫∞
t

(
1
r(s)

) 1
γ

(a1(s))
1+ 1

γ ds

] 1
γ

.

Then every solution of (1.1) oscillates.
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Proof. Suppose on the contrary that x(t) is a nonoscillatory solution of (1.1). Without loss
of generality, we may assume that x(t) > 0 for t ≥ t0. Hence, there exist t1 > t0 such that
x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0 and x(η(t)) > 0 for t ≥ t1. Using (2.1) in (1.1), we find

(r(t)(z′(t))γ)′ = −q(t)xα(σ(t))− v(t)xβ(η(t)) ≤ 0, 6≡ 0 for t ≥ t1. (2.2)

So, there exist t2 > t1 such that r(t)(z′(t))γ is nonincreasing on [t2,∞). Consequently, either
z′(t) > 0 or z′(t) < 0 for t ≥ t2. By Lemma 2.1, it follows that z′(t) > 0 for t ≥ t2. Therefore,
there exist t3 > t2 such that

z(t)− p(t)z(τ(t)) = x(t) + p(t)x(τ(t))− p(t)x(τ(t))
− p(t)p(τ(t))p(τ(τ(t)))

= x(t)− p(t)p(τ(t))p(τ(τ(t)))
≤ x(t)

implies that x(t) ≥ (1− p(t))z(t) on [t3,∞). Ultimately, (1.1) becomes

(r(t)(z′(t))γ)′+ q(t)(1− p(t))αzα(σ(t)) + v(t)(1− p(t))αzα(η(t)) ≤ 0(∵ γ < α < β). (2.3)

If z′(t) > 0 for t ≥ t3, then z(t) ≥ CR(t) due to Lemma 2.2(i). Therefore, (2.3) implies that

q(t)(1− p(t))αCαRα(σ(t)) + v(t)(1− p(t))αCαRα(η(t)) ≤ −(r(t)(z′(t))γ)′ (2.4)

for t ≥ t3. Integrating (2.4) from t3 to t, we get∫ t

t3

[
q(s)(1− p(s))αCαRα(σ(s)) + v(s)(1− p(s))αCαRα(η(s))

]
ds ≤ −[(r(s)(z′(s))γ)′]tt3

ds

≤ r(t3)z′(t3)γ <∞,

a contradiction to (H1). Ultimately, z′(t) < 0 for t ≥ t2.
Using η(t) ≥ σ(t) in (2.3) we obtain

(r(t)(z′(t))γ)′

zα(σ(t))
+ (1− p(t))α[q(t) + v(t)] ≤ 0 (2.5)

for t ≥ t3 > t2. Define Riccati transformation

w(t) = r(t)
(z′(t))γ

zα(σ(t))
, t ∈ [t3,∞) (2.6)

and by Lemma 2.1, w(t) > 0 for t ≥ t3. Since

w′(t) =
(r(t)(z′(t)γ)′

zα(σ(t))
− (r(t)(z′(t)γ)(zα(σ(t)))′

zα(σ(t))zα(σ(t))
,

then because of (2.5)

w′(t) ≤ −(1− p(t))α[q(t) + v(t)]− (r(t)(z′(t)γ)(zα(σ(t)))′

zα(σ(t))zα(σ(t))
≤ 0 (2.7)

for t ≥ t3. Noting that (zα(σ(t)))′ = α(z(σ(t)))α−1z′(σ(t))σ′(t) and using the fact that z(t) is
nondecreasing on [t3,∞), it is easy to verify that

(zα(σ(t)))′

zα(σ(t))
≥ αz′(σ(t))

z(σ(t))

for t ≥ t3. Therefore, (2.7) yields

w′(t) ≤ −(1− p(t))α[q(t) + v(t)]− αw(t)z
′(σ(t))

z(σ(t))
. (2.8)
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Indeed, (r
1
γ (σ(t))(z′(σ(t)) ≥ (r

1
γ (t))(z′(t)) implies that

(r
1
γ (σ(t))(z′(σ(t))

z
α
γ (σ(t))

≥ (r
1
γ (t)(z′(t))

z
α
γ (σ(t))

,

that is, w
1
γ (σ(t)) ≥ w

1
γ (t) and hence

z′(σ(t)) ≥ (r(σ(t)))−
1
γ z

α
γ (σ(t)w(t)

1
γ . (2.9)

Substituting (2.9) in (2.8), we get

w′(t) ≤ −(1− p(t))α[q(t) + v(t)]− α(r(σ(t)))−
1
γw(t)1+ 1

γ z
α
γ−1(σ(t)). (2.10)

Since z(t) is nondecreasing on [t3,∞), then there exist t4 > t3 and C > 0 such that (z(t))
α
γ−1 ≥

C for t ≥ t4. Consequently, (2.10) yields that

w′(t) ≤ −(1− p(t))α[q(t) + v(t)]− αCr(σ(t))−
1
γw(t)1+ 1

γ (2.11)

for t ≥ t4. Integrating (2.11) from t to u(t < u) for t, u ∈ (t4,∞) we obtain

−w(t) ≤ w(u)− w(t) ≤ −
∫ u

t

[
(1− p(s))α{q(s) + v(s)}+ αC(r(σ(s)))−

1
γw(s)1+ 1

γ

]
ds,

that is,

w(t) ≥ a1(t) +K1α

∫ ∞
t

r−
1
γ (σ(s))w(s)1+ 1

γ ds, t ≥ t5 > t4,

where K1α = Cα. Clearly, w(t) > a1(t) implies that

w(t) ≥ a1(t) +K1α

∫ ∞
t

r−
1
γ (σ(s))(a1(s))

1+ 1
γ ds = Aγ1 (t,K1α).

For δ > 1, we notice that (
z1−δ(σ(t))

)′
≤ (1− δ)z(σ(t))−δz′(σ(t)). (2.12)

Further, from (2.9) it follows that

(z′(σ(t))z−
α
γ (σ(t)) ≥ (r(σ(t))−

1
γ

(
Aγ1 (t,K1α)

) 1
γ

which in turn

z(σ(t))−δz′(σ(t)) ≥ (r(σ(t))−
1
γ

(
A1(t,K1α)

)
,

where δ =
(
α
γ

)
> 1). Therefore, (2.12) becomes

(z1−δ(σ(t)))′

1− δ
≥ (r(σ(t))−

1
γ

(
A1(t,K1α)

)
(2.13)

for t ≥ t5. Integrating (2.13) from t5 to t, we get∫ t

t5

(r(σ(s))−
1
γ

(
A1(s,K1α)

)
ds <∞,

a contradiction to (H2α). This completes the proof of the theorem. 2

Theorem 2.4. Let 0 ≤ p(t) < 1 and γ < β < α. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H1), (H1β) and (H2β) hold, then every solution of (1.1)
oscillates.
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Proof. The proof of the theorem follows from the proof of Theorem 2.3 and hence the details
are omitted. 2

Theorem 2.5. Let 0 ≤ p(t) ≤ a < 1 and γ = α = β. Assume that r′(t) > 0, η(t) ≥ σ(t) and
σ′(t) ≥ 1 for any large t. If (H0), (H1), (H1α) and
(H3α) lim sup

t→∞

( ∫ σ(t)
T

r(s)−
1
γ ds
)
A1(t,K1α) > 1, T > t0 > 0,

where A1 is defined in Theorem 2.3 hold, then every solution of (1.1) oscillates.

Proof. On the contrary, we proceed as in the proof of Theorem 2.3 to obtain that w(t) ≥
Aγ(t,K1α) for t ∈ [t5,∞). Since (r(t)(z′(t))γ)′ ≤ 0 due to 2.3, then for t5 < s ≤ t

r(s)(z′(s))γ ≥ r(t)(z′(t))γ

implies that z′(s) ≥ r(t)
1
γ z′(t)

r(s)
1
γ

, that is,

∫ t

t5

z′(s)ds ≥ r(t)
1
γ z′(t)

∫ t

t5

1

r(s)
1
γ

ds.

Therefore,

z(t) ≥ r(t)
1
γ z′(t)

∫ t

t5

r(s)−
1
γ ds

implies that

r(t)
1
γ z′(t)

z(t)
≤
(∫ t

t5

r(s)−
1
γ ds
)−1

(2.14)

for t ≥ t5. As a result,

A1(t,K1α) ≤ w
1
γ (t) =

r(t)
1
γ z′(t)

z(σ(t))
≤ r(σ(t))

1
γ z′(σ(t))

z(σ(t))
≤
(∫ σ(t)

t5

r(s)−
1
γ ds
)−1

,

implies that

(∫ σ(t)

t5

r(s)−
1
γ ds
)
A1(t,K1α) ≤ 1,

which is a contradiction to (H3α). Hence, the theorem is proved. 2

Theorem 2.6. Let 0 ≤ p(t) < 1 and α < β < γ. Assume that (H0), (H1) and (H1α), and
r′(t) > 0, η(t) ≥ σ(t), σ′(t) ≥ 1 hold for any large t. If

(H4α) lim sup
t→∞

(a1(t))
(γ−α)
αγ

( ∫ σ(t)
T

(r(s))−
1
γ ds
)[
a1(t) + K2α

∫∞
t
r−

1
γ (σ(s))(a1(s))1+ 1

α ds
] 1

γ

=

∞,
where T > t0 > 0, K2α > 0 is a constant, then every solution of (1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.3, we obtain (2.2), (2.3) and (2.5) and hence
w(t) > a1(t) for t ∈ [t5,∞). It follows from (2.6) that

r(σ(t))
1
γ z′(σ(t)) ≥ z

α
γ (σ(t))a

1
γ

1 (t)

for t ≥ t5. Since (r(t)(z′(t))γ)′ ≤ 0, then there exist constant C > 0 and t6 > t5 such that

r(σ(t))
1
γ z′(σ(t)) ≤ C for t ≥ t6, that is, C ≥ r(σ(t))

1
γ z′(σ(t)) ≥ z

α
γ (σ(t))a

1
γ

1 (t) implies that
C

γ
α ≥ z(σ(t))a1(t)

1
α and hence

z(σ(t)) ≤ C
γ
α (a1(t))

− 1
α for t ∈ [t6,∞). (2.15)
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As α < β < γ, then (2.15) becomes

z(σ(t))
α−γ
γ ≥

(
C

γ
α

)α−γ
γ
(
(a1(t))

− 1
α

)α−γ
γ

≥ C
α−γ
α (a1(t))

(γ−α)
αγ . (2.16)

Using (2.16) in (2.10) and then integrating as in Theorem 2.3, we obtain

w(t) ≥ a1(t) +K2α

∫ ∞
t

r−
1
γ (σ(s))(a1(s))

1+ 1
α ds,

where K2α = αC
(α−γ)

γ which in turn

(z(σ(t)))
(γ−α)

γ
r

1
γ (σ(t))z′(σ(t))

z(σ(t))
≥
[
a1(t) +K2α

∫ ∞
t

r−
1
γ (σ(s))(a1(s))

1+ 1
α ds

] 1
γ

(2.17)

due to (2.6). Using (2.14) in (2.17) and then using (2.16), we get

C
γ−α
α (a1(t))

(α−γ)
αγ

(∫ σ(t)

t5

(r(s))−
1
γ ds
)−1
≥
[
a1(t) +K2α

∫ ∞
t

r−
1
γ (σ(s))(a1(s))

1+ 1
α ds

] 1
γ

for t ≥ t5, that is,

(a1(t))
(γ−α)
αγ

(∫ σ(t)

t5

(r(s))−
1
γ ds
)[
a1(t) +K2α

∫ ∞
t

r−
1
γ (σ(s))(a1(s))

1+ 1
α ds

] 1
γ

≤ C
α−γ
α

which contradicts (H4α). This completes the proof of the theorem. 2

Theorem 2.7. Let 0 ≤ p(t) < 1 and β < α < γ. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H1), (H1β) and (H4β) hold, then every solution of (1.1)
oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 2.6 and hence the details
are omitted. 2

Theorem 2.8. Let 0 ≤ p(t) < 1 and α < γ < β. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H1), (H1α) and (H3α) hold, then every solution of (1.1)
oscillates.

Proof. Proceeding as in the proof of Theorem 2.3, we obtain w(t) ≥ Aγ1 (t,K1α) for t ≥ t5 and
then using (2.15) we obtain a contradiction to (H3α). This completes the proof of the theorem.
2

Theorem 2.9. Let 0 ≤ p(t) < 1 and β < γ < α. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H1), (H1β) and (H3β) hold, then every solution of (1.1)
oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 2.8 and hence the details
are omitted. 2

3 Oscillation Criteria when (1 ≤ p(t) <∞)

In this section we establish sufficient conditions for oscillation of all solutions of (1.1) under the
hypothesis (H0) when (1 ≤ p(t) <∞).

Theorem 3.1. Let 1 ≤ p(t) ≤ a < ∞ and γ < α < β. Let (H0) hold. Assume that
τ(σ(t)) = σ(τ(t)), τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large
t. Furthermore, assume that
(H5) there exists a λ > 0 such that uγ(x) + uγ(y) ≥ λuγ(x+ y);x, y > 0, x, y ∈ R,
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(H6) there exists a µ > 0 such that vγ(x) + vγ(y) ≥ µvγ(x+ y);x, y > 0, x, y ∈ R,
(H7) Q(t) = min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))} for t ≥ t0,
(H8)

∫∞
t0

[
Q(s)Rγ(σ(s)) + V (s)Rγ(η(s))

]
ds =∞,

(H9) a2(t) =
∫∞
t

[λQ(s) + µV (s)]ds, t ∈ [t0,∞), lim sup
t→∞

a2(t) <∞,

(H10) τ−1, σ−1, η−1 : R→ R such that τ−1, σ−1, η−1 are continuous functions and τ−1(t) ≥
t, σ−1(t) ≥ t and η−1(t) ≥ t,
(H11α)

∫∞
t0

( 1
r(σ(s)))

1
γA2(s,K3α)ds =∞

hold, where K3α > 0 is an arbitrary constant and

A2(t,K3α) =

[
a2(τ

−1(t))
1+aα +K3α

∫∞
τ−1(t)

(
1

r(σ(s))

) 1
γ

((a2(τ−1(s))1+ 1
γ ds

] 1
γ

.

Then every solution of (1.1) oscillates.

Proof. We proceed as in the proof of Theorem 2.3 to obtain (2.3) for t ∈ [t1,∞). In what
follows, we consider two possible cases z′(t) > 0 or z′(t) < 0 for t ≥ t3 > t2. From (1.1), it is
easy to verify that

(r(t)(z′(t))γ)′+aα(r(τ(t))(z′(τ(t))γ)′ + q(t)xα(σ(t)) + aαq(τ(t))xα(σ(τ(t))+

v(t)xβ(η(t)) + aαv(τ(t))xβ(η(τ(t)) = 0. (3.1)

Using (H5) and (H6) in (3.1), we get

(r(t)(z′(t))γ)′ + aα(r(τ(t))(z′(τ(t))γ)′ + λQ(t)zα(σ(t)) + µV (t)zα(η(t)) ≤ 0(∵ γ < α < β).

If z′(t) > 0 for t ≥ t3, then z(t) ≥ CR(t) due to Lemma 2.2(i). Therefore, the above inquality
implies that,

(r(t)(z′(t))γ)′ + aα(r(τ(t))(z′(τ(t))γ)′ + λQ(t)CαRα(σ(t)) + µV (t)CαRα(η(t)) ≤ 0. (3.2)

Integrating (3.2) from t3 to t, we get∫ t

t3

[
λQ(s)CγRγ(σ(s)) + µV (s)CγRγ(η(s))

]
ds

≤ − [(r(s)(z′(s))γ)′ + (aγr(τ(s))(z′(τ(s)))γ)′]
t
t3
ds

≤ r(t3)z′(t3)γ + aγr(τ(t3))(z
′(τ(t3)))

γ <∞,

a contradiction to (H8). Ultimately, z′(t) < 0 for t ≥ t2. Using the fact η(t) ≥ σ(t)) in the
preciding inequality, we obtain

(r(t)(z′(t))γ)′

zα(σ(t))
+
aα(r(τ(t))(z′(τ(t))γ)′

zα(σ(t))
+ λQ(t) + µV (t) ≤ 0 (3.3)

for t ≥ t2 > t1. Considering the Riccati substitution (2.6) and then proceeding as in Theorem
2.3, we get

w′(t) + aαw′(τ(t)) ≤ (r(t)(z′(t))γ)′

zα(σ(t))
− w(t)αz

′(σ(t))

z(σ(t))

+ aα
(r(τ(t))(z′(τ(t)))γ)′

zα(σ(τ(t)))
− w(τ(t))αz

′(σ(τ(t)))

z(σ(τ(t))

≤ (r(t)(z′(t))γ)′

zα(σ(t))
− w(t)1+ 1

γ αr(σ(t))−
1
γ z

α
γ−1(σ(t))

+ aα
(r(τ(t))(z′(τ(t)))γ)′

zα(σ(τ(t))
− w(τ(t))1+ 1

γ αr(σ(τ(t)))−
1
γ z

α
γ−1(σ(τ(t)))

(3.4)
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for t ≥ t3 > t2. Since z(t) is nondecreasing, then there exist t4 > t3 and C > 0 such that
(z(t))

α
γ−1 ≥ C and hence (3.4) becomes

w′(t) + aαw′(τ(t)) ≤ (r(t)(z′(t))γ)′

zα(σ(t))
− w(t)1+ 1

γ αCr(σ(t))−
1
γ

+ aα
(r(τ(t))(z′(τ(t)))γ)′

zα(σ(τ(t))
− w(τ(t))1+ 1

γ αCr(σ(τ(t))−
1
γ .

Consequently,

w′(t) + aαw′(τ(t)) ≤ −{λQ(t) + µV (t)}

− αC
[
w(t)1+ 1

γ r(σ(t))−
1
γ + aαw(τ(t))1+ 1

γ r(σ(τ(t))−
1
γ

]
(3.5)

for t ≥ t4, that is,

w′(t) + aαw′(τ(t)) ≤ −{λQ(t) + µV (t)}

− αCr(σ(t))−
1
γ (1 + aα)w(t)1+ 1

γ (3.6)

due to nonincreasing w(t) and r′(t) ≥ 0. Integrating (3.6) from t to v(t < v) for t, v ∈ [t4,∞),
we obtain

−w(t)− aαw(τ(t)) < w(v)− w(t) + aαw(τ(v))− aαw(τ(t))

≤ −
∫ v

t

{λQ(s) + µV (s)}ds

− αC(1 + aα)

∫ v

t

[
w(s)1+ 1

γ r(σ(s))−
1
γ

]
ds,

that is,

w(t) + aαw(τ(t)) ≥
∫ ∞
t

{λQ(s) + µV (s)}ds

+ αC(1 + aα)

∫ ∞
t

[
w(s)1+ 1

γ r(σ(s))−
1
γ

]
ds

= a2(t) + αC(1 + aα)

∫ ∞
t

[
w(s)1+ 1

γ r(σ(s))−
1
γ

]
ds.

Ultimately,

(1 + aα)w(τ(t)) ≥ a2(t) + αC(1 + aα)

∫ ∞
t

[
w(s)1+ 1

γ r(σ(s))−
1
γ

]
ds. (3.7)

Due to (H10), (3.7) yields that

w(t) ≥ (a2(τ−1(t))

(1 + aα)
+ αC

∫ ∞
τ−1(t)

[
w(s)1+ 1

γ r(σ(s))−
1
γ

]
ds

that is, w(t) ≥ (a2(τ
−1(t))

(1+aα) implies that

w(t) ≥ (a2(τ−1(t))

(1 + aα)
+ αC

∫ ∞
τ−1(t)

[
r(σ(s))−

1
γ

( 1
1 + aα

)1+ 1
γ

(a2(τ
−1(σ(s))1+ 1

γ

]
ds = Aγ2 (t,K3α),

where K3α = αC
(

1
1+aα

)1+ 1
γ

. The rest of the proof follows Theorem 2.3. Hence the theorem is
proved. 2

Theorem 3.2. Let 1 ≤ p(t) ≤ a < ∞ and γ < β < α. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and (H11β) hold, then every solution of (1.1) oscillates.
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Proof. The proof of the theorem follows from the proof of Theorem 3.1 and hence the details
are omitted. 2

Theorem 3.3. Let 1 ≤ p(t) ≤ a < ∞ and γ = β = α. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and
(H12α) lim sup

t→∞

( ∫ σ(t)
T

r(s)−
1
γ ds
)
A2(t,K3α) > 1, T > t0 > 0,

where A2 is defined in Theorem 3.1 hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 3.1 and Theorem 2.5 and
hence the details are omitted. 2

Theorem 3.4. Let 1 ≤ p(t) ≤ a < ∞ and α < β < γ. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and

(H13α) lim sup
t→∞

(a2(t))
(γ−α)
αγ

( ∫ σ(t)
T

(r(s))−
1
γ ds
)[
a2(t) +K4α

∫∞
t
r−

1
γ (σ(s))(a2(s))1+ 1

α ds
] 1

γ

=

∞,
T > t0 > 0, K4α > 0 is a constant, where A2 is defined in Theorem 3.1, then every solution of
(1.1) oscillates.

Proof. The proof of the theorem follows from the proofs of Theorem 3.1 and Theorem 2.6 and
hence the details are omitted. 2

Theorem 3.5. Let 1 ≤ p(t) ≤ a < ∞ and β < α < γ. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and (H13β) hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 3.4 and hence the details
are omitted. 2

Theorem 3.6. Let 1 ≤ p(t) ≤ a < ∞ and α < γ < β. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and (H12α) hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proofs of Theorem 3.1 and Theorem 3.3 and
hence the details are omitted. 2

Theorem 3.7. Let 1 ≤ p(t) ≤ a < ∞ and β < γ < α. Assume that τ(σ(t)) = σ(τ(t)),
τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ′(t) ≥ 1 and r′(t) > 0 for any large t. If (H0), (H5) − (H10)
and (H12β) hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem is similar to the proof of Theorem 3.6. 2

4 Oscillation Criteria when (−1 < p(t) ≤ 0)

In this section we establish sufficient conditions for oscillation of all solutions of (1.1) under the
hypothesis (H0) when (−1 < p(t) ≤ 0).

Theorem 4.1. Let −1 < p ≤ p(t) ≤ 0 and γ < α < β. Let (H0) hold. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1 and r′(t) > 0 for any large t. Furthermore, assume that
(H13)

∫∞
t0

[
q(s)Rγ(σ(s)) + v(s)Rγ(η(s))

]
ds =∞,

(H14) a3(t) =
∫∞
t

[q(s) + v(s)]ds, t ∈ [t0,∞), lim supt→∞ a3(t) <∞
and
(H15α)

∫∞
t0

( 1
r(σ(s)))

1
γA3(s,K1α)ds =∞,

where K1α > 0 is an arbitrary constant and

A3(t,K1α) =

[
a3(t) +K1α

∫∞
t

(
1
r(s)

) 1
γ

(a3(s))
1+ 1

γ ds

] 1
γ

hold. Then every unbounded solution of (1.1) oscillates.
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Proof. Let x(t) be an unbounded nonoscillatry solution of (1.1). Proceeding as in the proof of
Theorem 2.3, we get (2.2) for t ∈ [t1,∞). Since z(t) is monotonic, then either z(t) > 0 or
z(t) < 0 for t ≥ t2 > t1. Suppose that z(t) < 0 for t ≥ t2. As x(t) is unbounded, we can find a
sequence {ρn} such that ρn→∞ and x(ρn)→∞ as n→∞ and x(ρn) = max{x(s) : t2 ≤ s ≤
ρn}. Indeed,

z(ρn) = x(ρn) + p(ρn)x(τ(ρn))

≥ x(ρn) + px(τ(ρn))

≥ x(ρn) + px(ρn)

= (1 + p)x(ρn)(∵ 1 + p > 0)

implies that z(t) > 0, which is absurd. Ultimately, z(t) > 0 for t ≥ t2. Since z(t) ≤ x(t), (1.1)
reduces to

(r(t)(z′(t))γ)′ + q(t)zα(σ(t)) + v(t)zα(η(t)) ≤ 0 (∵ γ < α < β) (4.1)

for t ≥ t3 > t2. Using Lemma 2.2(i) and then integrating from t3(> t2) to ∞, we get a
contradiction to (H13) and hence (4.1) can be written as

(r(t)(z′(t))γ)′

zα(σ(t))
+ q(t) + v(t) ≤ 0 (∵ η(t) ≥ σ(t)).

For t ≥ t3, we define the Riccati transformation as in (2.6) and w(t) > 0. The rest of the proof
follows from the proof of Theorem 2.3. Hence the theorem is proved. 2

Theorem 4.2. Let −1 < p ≤ p(t) ≤ 0 and γ < β < α. Assume that r′(t) > 0, η(t) ≥ σ(t) and
σ′(t) ≥ 1 for any large t. If (H0), (H13), (H14), (H15β) hold, then every unbounded solution of
(1.1) oscillates.

Proof. The proof of the theorem follows from the proof of the Theorem 4.1. Hence the details
are omitted. 2

Theorem 4.3. Let −1 < p ≤ p(t) ≤ 0 and γ = α = β. Assume that r′(t) > 0, η(t) ≥ σ(t) and
σ′(t) ≥ 1 for any large t. If (H0), (H13), (H14) and
(H16α) lim sup

t→∞

( ∫ σ(t)
T

r(s)−
1
γ ds
)
A3(t,K1α) > 1, T > t0 > 0,

hold, where A3 is defined in Theorem 4.1, then every unbounded solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proofs of Theorem 2.5 and Theorem 4.1.
Hence the details are omitted. 2

Theorem 4.4. Let −1 < p ≤ p(t) ≤ 0 and α < β < γ. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H13), (H14) and

(H17α) lim sup
t→∞

(a3(t))
(γ−α)
αγ

( ∫ σ(t)
T

(r(s))−
1
γ ds
)[
a3(t) +K2α

∫∞
t
r−

1
γ (σ(s))(a3(s))1+ 1

α ds
] 1

γ

=

∞,
T > t0 > 0, K2α > 0 is a constant hold, then every unbounded solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proofs of Theorem 2.6 and Theorem 4.1.
Hence the details are omitted. 2

Theorem 4.5. Let −1 < p ≤ p(t) ≤ 0 and β < α < γ. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H13), (H14) and (H17β) hold, then every unbounded solution
of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 4.4 and hence the details
are omitted. 2

Theorem 4.6. Let −1 < p ≤ p(t) ≤ 0 and α < γ < β. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H13), (H14) and (H16α) hold, then every unbounded solution
of (1.1) oscillates.
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Proof. The proof of the theorem follows from the proofs of Theorem 4.1 and Theorem 4.3.
Hence the details are omitted. 2

Theorem 4.7. Let −1 < p ≤ p(t) ≤ 0 and β < γ < α. Assume that η(t) ≥ σ(t), σ′(t) ≥ 1 and
r′(t) > 0 for any large t. If (H0), (H13), (H14) and (H16β) hold, then every unbounded solution
of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 4.6. Hence the details are
omitted. 2

5 Discussion and Examples

Often it is challenging to study the second order differential equations of the form (1.1), of course
it is interesting for any α, β and γ. In this work, we have made an attempt to establish sufficient
conditions for oscillation of all solutions of (1.1).

Theorem 5.1. Let −∞ < a ≤ p(t) ≤ d < −1 and γ < α < β. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, r′(t) > 0, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) for any large t. If (H0), (H13),
(H14), (H15α),

(H18)
∫∞
T

[ 1
r(s)

∫ θ
t3
[q(θ) + v(θ)]dθ

] 1
γ ds =∞,

(H19)
∫ t
t0

[
1
r(θ)

∫ θ
t0
[Rα(σ(s))q(s) +Rα(σ(s))v(s)ds]

] 1
γ

dθ =∞
and
(H20)

∫∞
t0

[q(τ(s)) + v(τ(s))] ds =∞, hold, then every bounded solution of (1.1) either oscil-
lates or converges to zero.

Proof. Let x(t) be a bounded nonoscillatory solution of (2.1). Proceeding as in the proof of
Theorem 4.1, we have four possible cases for t ∈ [t2,∞).

(i) z(t) > 0, z′(t) > 0, (ii) z(t) < 0, z′(t) > 0,

(iii) z(t) > 0, z′(t) < 0, (iv) z(t) < 0, z′(t) < 0.

Case(i) In this case, z(t) ≤ x(t) and (2.1) reduces to

(r(t)(z′(t))γ)′ + q(t)zα(σ(t)) + v(t)zα(η(t)) ≤ 0.(∵ γ < α < β)

for t ≥ t3 > t2. Proceeding as in the proof of Theorem 4.1, we get a contradiction to (H13).
Case(ii) lim

t→∞
z(t) exists. Let lim

t→∞
z(t) = ζ, ζ ∈ (−∞, 0]. We claim that ζ = 0. If not, then there

exist l < 0 and t3 > t2 such that z(σ(t)) ≤ z(t) < l, z(η(t)) ≤ z(t) < l for t ≥ t3. From (2.1),
it follows that z(t) > ax(τ(t)) and hence x(τ(σ(t))) > 1

az(σ(t)), that is, x(σ(τ(t))) >
(
l
a

)
for

t ≥ t3. Also, x(η(τ(t))) >
(
l
a

)
for t ≥ t3. Since (2.1) can be written as

(r(τ(t))(z′(τ(t))γ)′ + q(τ(t))xα(σ(τ(t)) + v(τ(t))xβ(η(τ(t)) = 0,

then for t ≥ t3, it follows that

(r(τ(t))(z′(τ(t))γ)′ +

(
l

a

)α
q(τ(t)) +

(
l

a

)α
v(τ(t)) ≤ 0.

Consequently,(
l

a

)α [∫ t

t3

q(τ(s)) +

∫ t

t3

v(τ(s))

]
ds ≤ − [(r(τ(t))(z′(τ(t))γ)′]

t
t3

< −r(τ(t))(z′(τ(t)))γ <∞ as t→∞
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contradicts (H19). So, our claim holds and hence

0 = lim
t→∞

z(t) = lim inf
t→∞

z(t)

≤ lim inf
t→∞

(x(t) + dx(τ(t)))

≤ lim sup
t→∞

x(t) + lim inf
t→∞

(dx(τ(t)))

= lim sup
t→∞

x(t) + d lim sup
t→∞

x(τ(t))

= (1 + d) lim sup
t→∞

x(t) (∵ (1 + d) < 0)

implies that lim sup
t→∞

x(t) = 0, that is, lim
t→∞

x(t) = 0.

Case(iii) In this case, z(t) ≤ x(t). Since (r(t)(z′(t))γ) is nonincreasing there exists a
constant C < 0 such that (r(t)(z′(t))γ) ≤ C, t ≥ t2. From Lemma 2.2(ii), it follows that
z(t) ≥ (−C)

1
γR(t), t ≥ t2. Hence, (4.1) can be written as

(r(t)(z′(t))γ)′ + q(t)(−C)
1
γRα(σ(t)) + v(t)(−C)

1
γRα(η(t)) ≤ 0.

Let y(t) = (r(t)(z′(t))γ) Then the last inequality becomes

y′(t) ≤ −(−C)
1
γ [Rα(σ(t))q(t) +Rα(σ(t))v(t)].

Integrating from t3(> t2) to t, we get∫ t

t3

y′(s)ds ≤ −(−C)
1
γ
∫ t
t3
[Rα(σ(s))q(s) +Rα(σ(s))v(s)]ds

implies that,

y(t)− y(t3) ≤ −(−C)
1
γ
∫ t
t3
[Rα(σ(s))q(s) +Rα(σ(s))v(s)]ds

that is,

y(t) ≤ y(t3)− (−C)
1
γ

∫ t

t3

[Rα(σ(s))q(s) +Rα(σ(s))v(s)]ds.

Further integrating of the last inequality, we obtain∫ t

t3

z′(s)ds ≤ −(−C)
1
γ

∫ t

t3

[ 1
r(θ)

∫ θ

t3

[Rα(σ(s))q(s) +Rα(σ(s))v(s)ds]
] 1

γ

dθ,

z(t) ≤ z(t3)− (−C)
1
γ
∫ t
t3

[
1
r(θ)

∫ θ
t3
[Rα(σ(s))q(s) +Rα(σ(s))v(s)ds]

] 1
γ

dθ → −∞ as t→∞,

a contradiction to the fact that z(t) > 0.
Case(iv) We have x(t)+p(t)x(τ(t)) < 0 implies that z(t) > p(t)x(τ(t)) ≥ ax(τ(t)). Hence,

z(t) > ax(τ(t)). Therefore,

z(τ−1(σ(t))) > ax(τ(τ−1(σ(t)))) > ax(σ(t)).

Since z(t) is nonincreasing, there exists a constant C > 0 such that −C ≥ z(τ−1(σ(t))) >
ax(σ(t)), that is, −Ca ≤ x(σ(t)). Now

(r(t)(z′(t))γ)′ + q(t)xα(σ(t)) + v(t)xα(η(t)) ≤ 0.(∵ γ < α < β)

implies that

(r(t)(z′(t))γ)′ ≤ −
(−C
a

)α
q(t)−

(−C
a

)α
v(t). t ≥ t2
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Defining the function y(t) = (r(t)(z′(t))γ , the last inequality becomes

y′(t) ≤ −
(−C
a

)α
q(t)−

(−C
a

)α
v(t).

Integrating from t3(> t2) to t, we get∫ t

t3

y′(s)ds ≤ −
(−C
a

)α ∫ t

t3

[q(s) + v(s)]ds,

that is,

y(t) ≤ y(t3)−
(−C
a

)α ∫ t
t3
[q(s) + v(s)]ds,

≤ −
(−C
a

)α ∫ t
t3
[q(s) + v(s)]ds.

Further integrating of last inequaity, we obtain∫ t

t3

z′(s)ds ≤ −
(−C
a

)α
γ

∫ t

t3

[ 1
r(s)

∫ θ

t3

q(θ) + v(θ)dθ
] 1

γ ds,

that is,

z(t) ≤ z(t3)−
(−C
a

)α
γ

∫ t

t3

[ 1
r(s)

∫ θ

t3

q(θ) + v(θ)dθ
] 1

γ ds → −∞ as t→∞

which is a contradiction to the fact that z(t) is bounded and lim
t→∞

z(t) exists. This completes the
proof of the theorem. 2

Theorem 5.2. Let −∞ < a ≤ p(t) ≤ d < −1 and γ < β < α. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, r′(t) > 0, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) for any large t. If (H0),
(H13), (H14), (H15β), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either
oscillates or converges to zero.

Theorem 5.3. Let −∞ < a ≤ p(t) ≤ d < −1 and γ = α = β. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) hold for all large t. If (H0), (H13), (H14),
(H16α), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either oscillates or
converges to zero.

Theorem 5.4. Let −∞ < a ≤ p(t) ≤ d < −1 and α < β < γ. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) hold for all large t. If (H0), (H13),
(H14), (H15), (H17α), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either
oscillates or converges to zero.

Theorem 5.5. Let −∞ < a ≤ p(t) ≤ d < −1 and β < α < γ. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) hold for all large t. If (H0), (H13), (H14)
(H17β), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either oscillates or
converges to zero.

Theorem 5.6. Let −∞ < a ≤ p(t) ≤ d < −1 and α < γ < β. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) hold for all large t. If (H0), (H13), (H14),
(H16α), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either oscillates or
converges to zero.

Theorem 5.7. Let −∞ < a ≤ p(t) ≤ d < −1 and β < γ < α. Assume that η(t) ≥ σ(t),
σ′(t) ≥ 1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) = η(τ(t)) hold for all large t. If (H0), (H13), (H14),
(H16β), (H18), (H19) and (H20) hold, then every bounded solution of (1.1) either oscillates or
converges to zero.

Note that the above results can be proved in the light of the results of Section 4. We conclude
this section with the following example:
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Example 5.8. Consider

(t(x(t) + x(t− 3π))′)′ + e−tx3(t− 2) + te−tx5(t− 1) = 0, t > 3π, (5.1)

where r(t) = t, p(t) = −1, q(t) = e−t, v(t) = te−t. Here, R(t) =
∫∞
t0

(
1
tγ

) 1
γ

dt = ∞ and

a1(t) =
∫∞
t

[q(s) + v(s)]ds =
∫∞
t

[e−s + se−s]ds = e−t(t+ 2),

A1(t,K1α) =

[
a1(t) +K1α

∫ ∞
t

( 1
r(s)

) 1
γ

(a1(s))
1+ 1

γ ds

] 1
γ

=

[
e−t(t+ 2) +K1α

∫ ∞
t

( 1
sγ

) 1
γ

(e−s(s+ 2))1+ 1
γ ds

] 1
γ

= [e−t(t+ 2) +K1α

(∫ ∞
t

se−2sds+ 4
∫ ∞
t

e−2sds+

∫ ∞
t

4
s
ds

)
] ≥ K1α

∫ ∞
t

4
s
ds

and
∫∞
t0

(
1

r(σ(s))

) 1
γ

A1(t,K1α) = ∞. Hence, all conditions of Theorem 4.1 are satisfied. There-
fore, (5.1) is oscillatory.
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