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Abstract In this paper we show existence of positive solution to the system

(S)


−∆u+ a(x)u =

1
2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1
2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3.

We also prove a global compactness result for the associated energy functional similar to that
due to Struwe in [14]. The basic tool employed here is some information on a limit system of
(S) with a = b = 0, the concentration compactness due to P. L. Lions [12] and Brouwer degree
theory.

1 Introduction

In the celebrated paper [3], Benci and Cerami studied the following semilinear elliptic problem

(BC)

{
−∆u+ a(x)u = u

N+2
N−2 in RN ,

u ∈ D1,2(RN ), u ≥ 0, N ≥ 3,

where

(a1) a(x) ≥ 0 and a(x) ≥ a0 > 0, for all x ∈ RN in a neighborhood of a point x̄.

(a2) a ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N
2 < p2 with p2 <

N

4−N
if N = 3.

(a3) |a|LN/2(RN ) < S(22/N − 1), where S = inf
u∈D1,2(RN ),u6=0

∫
RN
|∇u|2dx(∫

RN
|u|2

∗
dx

)2/2∗ .

They used the properties of the solutions of a limit problem given by (BC) with a = 0, the
version to RN of Struwe’s Global Compactness result [14], Lions’s Concentration and Compact-
ness result [12] and arguments of Brouwer degree theory.

We would also like to mention that this kind of problem all these arguments were also used
by Cerami and Passasseo in [4] with Neumann boundary conditions in a half-space RN+ and by
Alves in [1] with p-laplacian operator. As far as the extension to the p-laplacian operator is
concerned, some technical difficulties as the lack of linearity and homogeneity must be faced.
The version of bi-Laplacian operator was studied by Alves and do Ó in [2]. A multiplicity
result involving category theory was studied in [6] by Chabrowski and Yang. More recently, in
[17] Xie, Ma and Xu proved a version for [3] considering the Kirchhoff operator. Nascimento
and Figueiredo show the same result of [3] considering the fractional Laplacian. A version for



POSITIVE SOLUTIONS OF A CRITICAL SYSTEM IN RN 503

Choquard equation was proved by Gao, E. da Silva, M. Yang, and J. Zhou in [10] and a version
for Schrödinger-Poisson system was studied by Cerami and Molle in [5]. In [7], Chen, Wei
and Yan showed existence of infinitely many non-radial solutions, whose energy can be made
arbitrarily large with a radial. In [13] Penga, Wang and Yan showed the existence of infinitely
many non-radial solutions with a partially radial.

A natural, still open question is to know whether Benci and Cerami’s results is true in the
system of equations case. In this paper, we give a first positive answer to this question. However,
the extension to system involves some technical difficulties which are overcome with some re-
fined estimates, as can be seen in Lemma 3.1, Theorem 3.2 and subsection 4.2. More precisely,
in these result we give the complete descriptions for the Palais-Smale (PS) sequences of the cor-
responding energy functionals and by using these descriptions, the existence results of solutions
are obtained. Moreover, the main feature of the system is a “double” lack of compactness due to
the unboundedness of the domain and the presence of the critical Sobolev exponent. The solu-
tions are sought by means of variational methods, although the functional related to the problem
does not satisfy the Palais-Smale compactness condition.

In this paper we show existence of positive solution to the system

(S)


−∆u+ a(x)u =

1
2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1
2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3.

Let R2
+ := [0,∞)× [0,∞) and set 2∗ := 2N/(N − 2). We state our main hypotheses on the

function K ∈ C2(R2
+,R) as follows.

(K0) K is 2∗-homogeneous, that is,

K(λs, λt) = λ2∗K(s, t) for each λ > 0, (s, t) ∈ R2
+.

(K1) there exists c1 > 0 such that

|Ks(s, t)|+ |Kt(s, t)| ≤ c1

(
s2∗−1 + t2

∗−1
)

for each (s, t) ∈ R2
+.

(K2) K(s, t) > 0 for each s, t > 0;

(K3) ∇K(0, 1) = ∇K(1, 0) = (0, 0);

(K4) Ks(s, t),Kt(s, t) ≥ 0 for each (s, t) ∈ R2
+.

(K5) the 1-homogeneous function G : R2
+ → R given by G(s2∗ , t2

∗
) := K(s, t) is concave.

To state our main result we need some previous definitions and notations. Let us denote by
S̃K the best constant of the immersion D1,2(RN )×D1,2(RN ) ↪→ L2∗(RN )× L2∗(RN ), that is,

S̃K := inf
u,v∈D1,2(RN ),u,v 6=0

∫
RN

(|∇u|2 + |∇v|2)dx(∫
RN

K(u, v)dx

)2/2∗ .

From now on, we consider the function Φδ,y ∈ D1,2(RN ) given by

Φδ,y(x) = c

(
δ

δ2 + |x− y|2

)(N−2)/2

, x, y ∈ RN and δ > 0, (1.1)
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where c is a positive constant. In [15] we can see that every positive solution of

(P∞)


−∆u = |u|2∗−2u in RN ,

u > 0 in RN ,
u ∈ D1,2(RN ), N ≥ 3.

is as (1.1). Moreover, it satisfies

‖Φδ,y‖2 = S and |Φδ,y|2∗ = 1, (1.2)

where S was defined in (a3).
By [9, Lemma 3], there exist so, to > 0 such that S̃K is attained by (soΦδ,y, toΦδ,y). More-

over,
MK S̃K = S, (1.3)

where MK = max
s2+t2=1

K(s, t)2/2∗ = K(so, to)
2/2∗ .

The hypotheses on the functions a, b : RN 7→ R+ are given by:

((a, b)1) The functions a, b are positive in a same set of positive measure.

((a, b)2) a, b ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N
2 < p2 and p2 <

N

4−N
if N = 3.

((a, b)3) sNo |a|LN/2(RN ) + tNo |b|LN/2(RN ) < S̃K(22/N − 1).

We say that (u, v) : RN × RN → R × R is a positive weak solution of (S) if u, v > 0 in
D1,2(RN ) and for all ϕ,ψ ∈ D1,2(RN ) we get∫

RN
∇u∇ϕdx+

∫
RN
∇v∇ψdx+

∫
RN

a(x)uϕdx+

∫
RN

b(x)vψdx

=
1
2∗

∫
RN

Ku(u, v)ϕdx+
1
2∗

∫
RN

Kv(u, v)ψdx.

In order to state the main result, we consider theC1 functional I : D1,2(RN )×D1,2(RN ) 7→ R
associated to system (S) given by

I(u, v) =
1
2
‖u‖2 +

1
2
‖v‖2 +

1
2

∫
RN

a(x)u2dx+
1
2

∫
RN

b(x)v2dx− 1
2∗

∫
RN

K(u, v)dx,

where ‖u‖2 =

∫
RN
|∇u|2dx, ‖v‖2 =

∫
RN
|∇v|2dx. Note that

I ′(u, v)(ϕ,ψ) =

∫
RN
∇u∇ϕdx+

∫
RN
∇v∇ψdx+

∫
RN

a(x)uϕdx+

∫
RN

b(x)vψdx

− 1
2∗

∫
RN

Ku(u, v)ϕdx−
1
2∗

∫
RN

Kv(u, v)ψdx,

for all (ϕ,ψ) ∈ D1,2(RN )×D1,2(RN ).
Using the above notation we are able to state our main result.

Theorem 1.1. Assume that ((a, b)1) − ((a, b)3) and (K0) − (K5) hold. Then, (S) has a positive
solution (u0, v0) ∈ D1,2(RN )×D1,2(RN ) with

1
N
S̃
N/2
K < I(u0, v0) <

2
N
S̃
N/2
K .

The paper is organized as follows. In Section 2 we study the limit system associated to
(S). In Section 3 we give the complete descriptions for the Palais-Smale (PS) sequences for the
functional I . The proof of the main result is in Section 4.
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2 Limit problem

We notice that we can use the homogeneity condition (K0) to conclude that

K(s, t) =
1
2∗
sKs(s, t) +

1
2∗
tKt(s, t). (2.1)

In this section we study the limit problem given by

(S∞)


−∆u =

1
2∗
Ku(u, v) in RN ,

−∆v =
1
2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3,

which the functional associated I∞ : D1,2(RN )×D1,2(RN ) 7→ R given by

I∞(u, v) =
1
2
‖u‖2 +

1
2
‖v‖2 − 1

2∗

∫
RN

K(u, v)dx.

Lemma 2.1. Let (un, vn) be sequence (PS)c for I∞. Then

(i) The sequence (un, vn) is bounded in D1,2(RN )×D1,2(RN ).

(ii) If un ⇀ u in D1,2(RN ) and vn ⇀ v in D1,2(RN ), then I ′∞(u, v) = 0.

(iii) If c ∈ (−∞, 1
N
S̃
N/2
K ), then I∞ satisfies the (PS)c condition, i.e, up to a subsequence,

(un, vn)→ (u, v) in D1,2(RN )×D1,2(RN ).

Proof. Since I∞(un, vn)→ c and I ′∞(un, vn)→ 0 and from (2.1), we conclude that there exists
C > 0 such that

C + ‖un‖+ ‖vn‖ ≥ I∞(unvn)−
1
2∗
I ′∞(un, vn)(un, vn) =

1
N
‖un‖2 +

1
N
‖vn‖2 + on(1)

and the proof of part (i) is over. Now we prove (ii). Since un ⇀ u in D1,2(RN ) and vn ⇀ v in
D1,2(RN ), up to a subsequence, we get

un → u in Lqloc(R
N ), vn → v in Lqloc(R

N ),

and
un(x)→ u(x) a.e in RN , vn(x)→ v(x) a.e in RN .

Using a density argument we obtain∫
RN

Ku(un, vn)ϕdx+

∫
RN

Kv(un, vn)ψdx→
∫
RN

Ku(u, v)ϕdx+

∫
RN

Kv(u, v)ψdx.

for all ϕ,ψ ∈ D1,2(RN ), which implies (ii).
In order to prove (iii), consider wn = un − u and zn = vn − v. Note that applying [11,

Lemma 4.6], we get

on(1) = I ′∞(un, vn)(un, vn) = ‖un‖2 + ‖vn‖2 − 1
2∗

∫
RN

Ku(un, vn)undx−
1
2∗

∫
RN

Kv(un, vn)vndx

= ‖wn‖2 + ‖u‖2 + ‖zn‖2 + ‖v‖2 − 1
2∗

∫
RN

Ku(wn + u, zn + v)(wn + u)dx

− 1
2∗

∫
RN

Kv(wn + u, zn + v)(zn + v)dx. (2.2)
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From [9, Lemma 8], we have

‖wn‖2 + ‖u‖2 + ‖zn‖2 + ‖v‖2 − 1
2∗

∫
RN

Ku(wn, zn)wndx

− 1
2∗

∫
RN

Kv(wnzn)zndx−
1
2∗

∫
RN

Ku(u, v)udx−
1
2∗

∫
RN

Kv(u, v)vdx = on(1).

Using the item (ii) and (2.1) we obtain

‖wn‖2 + ‖zn‖2 −
∫
RN

K(wn, zn)dx = on(1).

Up to a subsequence, we conclude that there exists ρ ≥ 0 such that

0 ≤ ρ = lim
n→∞

[
‖wn‖2 + ‖zn‖2

]
= lim

n→∞

∫
RN

K(wn, zn)dx.

Suppose, by contradiction, that ρ > 0. From the inequality

S̃K

(∫
RN

K(wn, zn)dx

)2/2∗

≤ ‖wn‖2 + ‖zn‖2,

we get

ρ ≥ S̃Kρ2/2∗ ⇒ ρ ≥ S̃N/2
K . (2.3)

Since

I∞(u, v) =

(
1
2
− 1

2∗

)
[‖u‖2 + ‖v‖2] =

1
N
[‖u‖2 + ‖v‖2] ≥ 0

and

c =
1
N
[‖wn‖2 + ‖zn‖2] + I∞(u, v) + on(1), (2.4)

we conclude

c =
1
N
[‖wn‖2 + ‖zn‖2] + I∞(u, v) + on(1) ≥

1
N
[‖wn‖2 + ‖zn‖2] + on(1) =

1
N
ρ ≥ 1

N
S̃
N/2
K ,

which is a contradiction. Hence ρ = 0 and

‖wn‖2 = ‖un − u‖2 → 0 and ‖zn‖2 = ‖vn − v‖2 → 0.

3 A compactness result

Now, we establish the following lemma which will be useful to prove a compactness result.

Lemma 3.1. Let (un, vn) be a (PS)c sequence for the functional I∞ with un ⇀ 0, vn ⇀ 0
and un 9 0, vn 9 0. Then, there are sequences (Rn) ⊂ R, (xn) ⊂ RN and (ϒ0,ϒ1) ∈
D1,2(RN )×D1,2(RN ) nontrivial solution of (P∞) and a sequence (τn, ζn) which is a (PS)c̃ for
the I∞ such that, up to a subsequence of (un, vn),

τn(x) = un(x)−R(N−2)/2
n ϒ0(Rn(x− xn)) + on(1)

and
ζn(x) = un(x) − R(N−2)/2

n ϒ1(Rn(x− xn)) + on(1).
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Proof. Let (un, vn) ⊂ D1,2(RN )×D1,2(RN ) be a (PS)c sequence for the functional I∞, i.e,

I∞(un, vn)→ c and I ′∞(un, vn)→ 0. (3.1)

From Lemma 2.1, (i), we get that (un, vn) is bounded in D1,2(RN )×D1,2(RN ). Since un ⇀ 0,
vn ⇀ 0 and un 9 0, vn 9 0 it follows from Lemma 2.1 (iii) that

c ≥ 1
N
S̃
N/2
K .

Note that from (2.1) we obtain

c+ on(1) = I∞(un, vn)−
1
2∗
I ′∞(un, vn)(un, vn) =

1
N

∫
RN

[|∇un|2 + |∇vn|2]dx,

which implies ∫
RN

[|∇un|2 + |∇vn|2]dx = S̃
N/2
K . (3.2)

Let L be a number such that B2(0) is covered by L balls of radius 1, (Rn) ⊂ R, (xn) ⊂ RN
such that

sup
y∈RN

∫
B
R
−1
n

(y)

[|∇un|2 + |∇vn|2]dx =

∫
B
R
−1
n

(xn)

[|∇un|2 + |∇vn|2]dx =
S̃
N/2
K

2L

and the function

(wn(x), zn(x)) =

(
R(2−N)/2
n un

(
x

Rn
+ xn

)
, R(2−N)/2

n vn

(
x

Rn
+ xn

))
.

Using a change of variable, we can prove that∫
B1(0)

[|∇wn|2 +∇zn|2]dx =
S̃
N/2
K

2L
= sup

y∈RN

∫
B1(y)

[|∇wn|2 + |∇zn|2]dx.

Now, for each (Φ1,Φ2) ∈ D1,2(RN )×D1,2(RN ), we define

( Φ̃1,n, Φ̃2,n)(x) = (R(N−2)/2
n Φ1(Rn(x − xn)), R(N−2)/2

n Φ2(Rn(x− xn)))

which satisfies∫
RN

[∇un∇Φ̃1,n +∇vn∇Φ̃2,n]dx =

∫
RN

[∇wn∇Φ1 +∇zn∇Φ2]dx (3.3)

and∫
RN

[Ku(un, vn)Φ̃1,n +Kv(un, vn)Φ̃2,n]dx =

∫
RN

[Kw(wn, zn)Φ1 +Kz(wn, zn)Φ2]dx, (3.4)

where we conclude that

I∞(wn, zn)→ c and I ′∞(wn, zn)→ 0. (3.5)

From Lemma 2.1, there exists (ϒ0,ϒ1) ∈ D1,2(RN ) × D1,2(RN ) such that, up to a subse-
quence, (wn, zn)⇀ (ϒ0,ϒ1) in D1,2(RN )×D1,2(RN ) and I ′∞(ϒ0,ϒ1) = 0.

As a consequence of [9, Lemma 6], we get∫
RN

K(wn, zn)φdx→
∫
RN

K(ϒ0,ϒ1)φdx+
∑
j∈J

φ(xj)νj , ∀φ ∈ C∞0 (RN ) (3.6)
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and

|∇wn|2 + |∇zn|2 ⇀ µ+ σ ≥ |∇ϒ0|2 + |∇ϒ1|2 +
∑
j∈J

φ(xj)µj +
∑
j∈J

φ(xj)σj , ∀φ ∈ C∞0 (RN ),

for some {xj}j∈J ⊂ RN and for some {νj}j∈J , {µj}j∈J , {σj}j∈J ⊂ R+.
Since S̃Kν

2/2∗s
j ≤ µj + σj , we can conclude that J is finite. From now on, we denote by

J = {1, 2, ...,m} and Γ ⊂ RN the set given by

Γ = {xj ∈ {xj}j∈J ; |xj | > 1}, (xj given by (3.6)).

We are going to show that (ϒ0,ϒ1) 6= (0, 0). Suppose, by contradiction, that (ϒ0,ϒ1) =
(0, 0). Then, by (3.6) we have∫

RN
K(wn, zn)φdx→ 0, ∀φ ∈ C∞0 (RN \ {x1, x2, ..., xm}). (3.7)

Since (φ1,n, φ2,n) = (φwn, φzn) with φ ∈ C∞0 (RN \ {x1, x2, ..., xm}) is bounded, we obtain

I ′∞(wn, zn)(φ1,n, φ2,n) = on(1),

that is,∫
RN

[∇wn∇φ1,n +∇zn∇φ2,n]dx−
1
2∗

∫
RN

[Kw(wn, zn)φ1,n +Kz(wn, zn)φ2,n]dx = on(1).

Using the definition of (φ1,n, φ2,n) and (2.1) , we have∫
RN

[|∇wn|2 + |∇zn|2]φdx+
∫
RN

[wn∇wn∇φ+ zn∇zn∇φ]dx−
∫
RN

K(wn, zn)φdx = on(1).

Then,∫
RN

[|∇wn|2+|∇zn|2]φdx ≤
∫
RN

[|wn||∇wn||∇φ|+|zn||∇zn||∇φ|]dx+
∫
RN

K(wn, zn)φdx = on(1).

Using Hölder inequality we get∫
RN

[|∇wn|2 + |∇zn|2]φdx ≤ |∇wn|2
(∫

RN
|wn|2|∇φ|2dx

)1/2

+ |∇zn|2
(∫

RN
|zn|2|∇φ|2dx

)1/2

+

∫
RN

K(wn, zn)φdx = on(1).

Since there exists R > 0 such that suppφ ⊂ BR(0), we have

∫
RN

[|∇wn|2 + |∇zn|2]φdx ≤ C|∇wn|2
(∫

BR(0)
|wn|2dx

)1/2

+ C|∇zn|2
(∫

BR(0)
|zn|2dx

)1/2

+

∫
RN

K(wn, zn)φdx = on(1).

Since (wn, zn) is bounded in D1,2(RN )×D1,2(RN ), from compact embedding and (3.7), we
obtain

∫
RN

[|∇wn|2 + |∇zn|2]φdx→ 0, ∀φ ∈ C∞0 (RN \ {x1, x2, ..., xm}). (3.8)

Let ρ ∈ R be a number that satisfies 0 < ρ < min{dist(Γ, B̄1(0)), 1)}. We will show that∫
B1+ρ(0)\B1+ ρ3

(0)
[|∇wn|2 + |∇zn|2]φdx→ 0. (3.9)
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We consider φ ∈ C∞0 (RN ) such that 0 ≤ φ(x) ≤ 1 and φ(x) = 1 if x ∈ B1+ρ(0). If φ̃ =
φ|RN\{x1,...,xm}, follows by (3.8) that

∫
RN

[|∇wn|2 + |∇zn|2]φ̃dx→ 0.

Since

0 ≤
∫
B1+ρ(0)\B1+ ρ3

(0)
[|∇wn|2 + |∇zn|2]dx ≤

∫
B1+ρ(0)

[|∇wn|2 + |∇zn|2]dx

=

∫
B1+ρ(0)

[|∇wn|2 + |∇zn|2]φ̃dx ≤
∫
RN

[|∇wn|2 + |∇zn|2]φ̃dx,

we have that (3.9) is true.
Let Ψ ∈ C∞0 (RN ) be such that 0 ≤ Ψ(x) ≤ 1 for all x ∈ RN and

Ψ(x) =

{
1, x ∈ B1+ ρ

3
(0),

0, x ∈ Bc
1+ 2ρ

3
(0)

and consider the sequence (Ψ1,n,Ψ2,n) given by (Ψ1,n,Ψ2,n)(x) = (Ψ(x)wn(x),Ψ(x)zn(x)).
Note that ∫

B1+ρ(0)\B1+ ρ3
(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

≤ 4
∫
[B1+ρ(0)\B1+ ρ3

(0)]2
|Ψ|2|∇wn|2dx+ 4

∫
[B1+ρ(0)\B1+ ρ3

(0)]2
|Ψ|2|∇zn|2dx

+ 4
∫
[B1+ρ(0)\B1+ ρ3

(0)]2
|wn|2|∇Ψ|2dx+ 4

∫
[B1+ρ(0)\B1+ ρ3

(0)]2
|zn|2|∇Ψ|2dx.

From (3.9) we obtain

∫
B1+ρ(0)\B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx→ 0. (3.10)

Since (Ψ1,n,Ψ2,n) is bounded in D1,2(RN )×D1,2(RN ), we derive that

∫
B1+ρ(0)\B1+ ρ3

(0)
∇wn∇Ψ1,ndx+

∫
B1+ ρ3

(0)
∇wn∇Ψ1,ndx

+

∫
B1+ρ(0)\B1+ ρ3

(0)
∇zn∇Ψ2,ndx+

∫
B1+ ρ3

(0)
∇zn∇Ψ2,ndx

− 1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ1,nKw(wn, zn)dx−

1
2∗

∫
B1+ ρ3

(0)
Ψ1,nKw(wn, zn)dx

− 1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ2,nKz(wn, zn)dx−

1
2∗

∫
B1+ ρ3

(0)
Ψ2,nKz(wn, zn)dx = on(1).

From definition of Ψ we have
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∫
B1+ρ(0)\B1+ ρ3

(0)
∇wn∇Ψ1,ndx+

∫
B1+ ρ3

(0)
|∇Ψ1,n|2dx

+

∫
B1+ρ(0)\B1+ ρ3

(0)
∇zn∇Ψ2,ndx+

∫
B1+ ρ3

(0)
|∇Ψ2,n|2dx

− 1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ1,nKw(wn, zn)dx−

1
2∗

∫
B1+ ρ3

(0)
Ψ1,nKw(Ψ1,n,Ψ2,n)dx

− 1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ2,nKz(wn, zn)dx−

1
2∗

∫
B1+ ρ3

(0)
Ψ2,nKz(Ψ1,n,Ψ2,n)dx = on(1).(3.11)

Note that from Hölder inequality and (3.10) we get∫
B1+ρ(0)\B1+ ρ3

(0)
∇wn∇Ψ1,ndx+

∫
B1+ρ(0)\B1+ ρ3

(0)
∇zn∇Ψ2,ndx→ 0 when n→∞. (3.12)

Moreover, from a direct calculations we have

1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ1,nKw(wn, zn)dx+

1
2∗

∫
B1+ρ(0)\B1+ ρ3

(0)
Ψ2,nKz(wn, zn)dx = on(1).(3.13)

From (3.11), (3.12) and (3.13) we obtain∫
B1+ ρ3

(0)
|∇Ψ1,n|2dx+

∫
B1+ ρ3

(0)
|∇Ψ2,n|2dx−

1
2∗

∫
B1+ ρ3

(0)
Ψ1,nKw(Ψ1,n,Ψ2,n)dx

− 1
2∗

∫
B1+ ρ3

(0)
Ψ2,nKz(Ψ1,n,Ψ2,n)dx = on(1). (3.14)

Note that∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx =

∫
B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

=

∫
B1+ρ(0)\B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx+

∫
B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

= on(1) +
∫
B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

and using (2.1), we get∫
RN

K(Ψ1,n,Ψ2,n)dx =

∫
B1+ρ(0)

K(Ψ1,n,Ψ2,n)dx

=

∫
B1+ρ(0)\B1+ ρ3

(0)
K(Ψ1,n,Ψ2,n)dx+

∫
B1+ ρ3

(0)
K(Ψ1,n,Ψ2,n)dx

=

∫
B1+ρ(0)\B1+ ρ3

(0)
K(Ψ1,n,Ψ2,n)dx+

∫
B1+ ρ3

(0)
K(Ψ1,n,Ψ2,n)dx,

we conclude that∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx−
∫
RN

K(Ψ1,n,Ψ2,n)dx = on(1).
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From definition of S̃K , we have

‖Ψ1,n‖2 + ‖Ψ2,n‖2
[

1−
(

1

S̃
2∗/2
K

)
[‖Ψ1,n‖2 + ‖Ψ2,n‖2]2

∗−2
]

= [‖Ψ1,n‖2 + ‖Ψ2,n‖2]− 1

S̃
2∗/2
K

[‖Ψ1,n‖2 + ‖Ψ2,n‖2]2
∗

≤
∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx−
∫
RN

K(Ψ1,n,Ψ2,n)dx = on(1). (3.15)

Note that

‖Ψ1,n‖2 + ‖Ψ2,n‖2 =

∫
B1+ρ(0)\B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx+

∫
B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

= on(1) +
∫
B1+ ρ3

(0)
[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx.

Since Φ1,n = wn, Φ2,n = zn in B1+ ρ
3 (0)

and that B1+ ρ
3 (0)
⊂ B2(0), we obtain

‖Ψ1,n‖2 + ‖Ψ2,n‖2 ≤ on(1) +
∫
B2(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx,

which implies

‖Ψ1,n‖2 + ‖Ψ2,n‖2 ≤ on(1) +
∫
⋃L
k=1 B1(yk)

[|∇wn|2 + |∇zn|2]dx

≤ on(1) +
L∑
k=1

∫
B1(yk)

[|∇w2
n + |∇zn|2]dx

≤ on(1) + L sup
y∈RN

∫
B1(y)

[|∇wn|2 + |∇zn|2]dx ≤ on(1) +
S̃
N/2
K

2
.

Then, (
‖Ψ1,n‖2 + ‖Ψ2,n‖2

)1/2

≤ on(1) +
S̃
N/4
K

21/2

implies (
‖Ψ1,n‖2 + ‖Ψ2,n‖2

)(2∗−2)/2

≤ on(1) +
(
S̃
N/4
K

21/2

)2∗−2

. (3.16)

Using (3.15) and (3.16), we have that

[‖Ψ1,n‖2 + ‖Ψ2,n‖2]

[
1 + on(1)−

1

S̃
2∗/2
K

(
S̃
N/4
K

21/2

)2∗−2]

= [‖Ψ1,n‖2 + ‖Ψ2,n‖2]

{
1 +

1

S̃
2∗/2
K

[
on(1)−

(
S̃
N/4
K

21/2

)2∗−2]}

≤ [‖Ψ1,n‖2 + ‖Ψ2,n‖2]

[
1− 1

S̃
2∗/2
K

[‖Ψ1,n‖2 + ‖Ψ2,n‖2]2
∗−2
]
= on(1).

But the equality
N

4
(2∗ − 2)− 2∗

2
=
N

4

(
4

N − 2

)
− N

N − 2
= 0,
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implies

‖Φn‖2
[

1−
(

1
2

)(2∗−2)/2]
≤ on(1),

where we conclude that (Φ1,n,Φ1,n)→ (0, 0) in D1,2(RN )×D1,2(RN ).
Since wn = Φ1,n, zn = Φ2,n in B1(0), we obtain

0 ≤
∫
B1(0)

[|∇wn|2 + |∇zn|2]dx ≤ |Ψ1,n‖2 + ‖Ψ2,n‖2,

which implies ∫
B1(0)

[|∇wn|2 + |∇zn|2]dx→ 0 when n→∞.

But this last convergence it is a contradiction with∫
B1(0)

[|∇wn|2 + |∇zn|2]dx =
S̃
N/2
K

2L
, ∀n ∈ N.

Then, (ϒ0,ϒ1) 6= (0, 0). Now we are going to show that there is (τn, ζn) inD1,2(RN )×D1,2(RN )
such that (τn, ζn) is a (PS)c̃ sequence for I∞ satisfying

τn(x) = un(x)−R(N−2)/2
n ϒ0(Rn(x− xn)) + on(1),

ζn(x) = vn(x)−R(N−2)/2
n ϒ1(Rn(x− xn)) + on(1),

for some subsequence of (un, vn) that still denote by (un, vn). For this, we consider ψ ∈
C∞0 (RN ) such that 0 ≤ ψ(x) ≤ 1 for all x ∈ RN and

ψ(x) =

{
1, if x ∈ B1(0),
0, if x ∈ Bc2(0)

and consider (τn, ζn) a sequence defined by

τn(x) = un(x)−R(N−2)/2
n ϒ0(Rn(x− xn))ψ(R̄n(x− xn)), (3.17)

ζn(x) = vn(x)−R(N−2)/2
n ϒ1(Rn(x− xn))ψ(R̄n(x− xn)), (3.18)

where (R̄n) satisfies R̃n =
Rn

R̄n
→∞. From (3.17) and (3.18), we obtain

R(2−N)/2
n τn(x) = R(2−N)/2

n un(x)− ϒ0(Rn(x− xn))ψ(R̄n(x− xn))

and
R(2−N)/2
n ζn(x) = R(2−N)/2

n vn(x)− ϒ1(Rn(x− xn))ψ(R̄n(x− xn)).

Making change of variable, we conclude

R(2−N)/2
n τn

(
z

Rn
+ xn

)
= R(2−N)/2

n un

(
z

Rn
+ xn

)
− ϒ0ψ

(
z

R̃n

)
and

R(2−N)/2
n ζn

(
z

Rn
+ xn

)
= R(2−N)/2

n vn

(
z

Rn
+ xn

)
− ϒ1ψ

(
z

R̃n

)
.

Now we define

τ̃n = R(2−N)/2
n τn

(
z

Rn
+ xn

)
and

ζ̃n = R(2−N)/2
n ζn

(
z

Rn
+ xn

)
.
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Since

wn(x) = R(2−N)/2
n un

(
x

Rn
+ xn

)
and

zn(x) = R(2−N)/2
n vn

(
x

Rn
+ xn

)
,

we get,

τ̃n(z) = wn(z)− ϒ0(z)ψ

(
z

R̃n

)
(3.19)

and

ζ̃n(z) = ζn(z)− ϒ1(z)ψ

(
z

R̃n

)
. (3.20)

If

ψn(z) = ψ

(
z

R̃n

)
(3.21)

we have that

ψn(z) =

{
1, if z ∈ BR̃n(0),
0, if z ∈ Bc2R̃n(0).

From (3.19), (3.20) and (3.21), we derive that

τ̃n(z) = wn(z)− ϒ0(z)ψn(z)

and
ζ̃n(z) = zn(z)− ϒ1(z)ψn(z).

Since R̃n →∞, it is not difficult to show that ϒiψn → ϒi in D1,2(RN ), i = 0, 1. Then

τ̃n(z) = wn(z)− ϒ0(z) + on(1) (3.22)

and

ζ̃n(z) = zn(z)− ϒ1(z) + on(1). (3.23)

To finish the proof, it is enough to show that (τn, ζn) is a (PS)c̃ sequence for I∞. Note that
making a change of variable we get

I∞(τn, ζn) = I∞(τ̃n, ζ̃n)

Using (3.22) and (3.23) and applying [11, Lemma 4.6], [9, Lemma 8] and (3.5), we have

I∞(τn, ζn) = I∞(wn, zn)− I∞(ϒ0,ϒ1) + on(1) = c̃+ on(1),

where c̃ = c− I∞(ϒ0,ϒ1).
Now, since

0 ≤ ‖I ′∞(τn, ζn)‖D′ ≤ ‖I ′∞(τ̃n, ζ̃n)‖D′ ,

it is sufficient to prove that ‖I ′∞(τ̃n, ζ̃n)‖D′ → 0 which is equivalent to show that

‖I ′∞(τ̃n, ζ̃n)− I ′∞(wn, zn) + I ′∞(ϒ0,ϒ1)‖D′ → 0. (3.24)

But the last convergence is a direct consequence of [9, Lemma 8].
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The next result is a version for a gradient system in RN of the result due to Struwe that can
be found in [14].

Theorem 3.2. (A global compactness result) Let (un, vn) be a (PS)c sequence for I with un ⇀
u0 in D1,2(RN ) and vn ⇀ v0 in D1,2(RN ). Then, up to a subsequence, (un, vn) satisfies either,

(a) (un, vn)→ (u0, v0) in D1,2(RN )×D1,2(RN ) or,

(b) there exists k ∈ N and nontrivial solutions (z1
0 , ζ

1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 ) for the system

(S∞), such that

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 +
k∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2]

and

I(un, vn)→ I(u0, v0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ).

Proof. From the weak convergence and a density argument, we have that (u0, v0) is a critical
point of I . Suppose that un 9 u0, vn 9 v0 in D1,2(RN ) and let (w1

n, z
1
n) ⊂ D1,2(RN ) ×

D1,2(RN ) be the sequence given by w1
n = un − u0 and z1

n = vn − v0. Then, w1
n ⇀ 0, z1

n ⇀ 0 in
D1,2(RN ) and w1

n 9 0, z1
n 9 0 in D1,2(RN ).

Applying [11, Lemma 4.6] and [9, Lemma 8], we obtain

I∞(w
1
n, z

1
n) = I(un, vn)− I(u0, v0) + on(1) (3.25)

and

I ′∞(w
1
n, z

1
n) = I ′(un, vn)− I ′(u0, v0) + on(1). (3.26)

Then, we conclude from (3.25) and (3.26) that (w1
n, z

1
n) is a (PS)c1 sequence for I∞. Hence,

by Lemma 3.1, there are sequences (Rn,1) ⊂ R, (xn,1) ⊂ RN , (z1
0 , ζ

1
0 ) ∈ D1,2(RN )×D1,2(RN )

nontrivial solution for the system (P∞) and a (PS)c2 sequence (w2
n, z

2
n) ⊂ D1,2(RN )×D1,2(RN )

for I∞ such that

w2
n(x) = w1

n(x)−R
(N−2)/2
n,1 z1

0(Rn,1(x− xn,1)) + on(1)

and
z2
n(x) = z1

n(x)−R
(N−2)/2
n,1 ζ1

0 (Rn,1(x− xn,1)) + on(1).

If we define

Φ
1
n(x) = R

(2−N)/2
n,1 w1

n

(
x

Rn,1
+ xn,1

)
, (3.27)

Ψ
1
n(x) = R

(2−N)/2
n,1 z1

n

(
x

Rn,1
+ xn,1

)
(3.28)

and

w̃2
n(x) = R

(2−N)/2
n,1 w2

n

(
x

Rn,1
+ xn,1

)
,

z̃2
n(x) = R

(2−N)/2
n,1 z2

n

(
x

Rn,1
+ xn,1

)
,

we get

w̃2
n(x) = Φ

1
n(x)− z1

0(x) + on(1), (3.29)

z̃2
n(x) = Ψ

1
n(x)− ζ1

0 (x) + on(1) (3.30)
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and

‖Φ1
n‖ = ‖w1

n‖, ‖Ψ1
n‖ = ‖z1

n‖ and
∫
RN

K(Φ1
n,Ψ

1
n)dx =

∫
RN

K(w1
n, z

1
n)dx. (3.31)

Hence,

I∞(Φ
1
n,Ψ

1
n) = I∞(w

1
n, z

1
n) (3.32)

and

I ′∞(Φ
1
n,Ψ

1
n)→ 0 in (D1,2(RN ))′. (3.33)

From (3.32), (3.33) and from item (a) by lemma 2.1, we have that (Φ1
n,Ψ

1
n) is a bounded

sequence in D1,2(RN )×D1,2(RN ) and, up to a subsequence,

Φ
1
n ⇀ z1

0 , Ψ
1
n ⇀ ζ1

0 in D1,2(RN ). (3.34)

Applying [11, Lemma 4.6] and [9, Lemma 8] again, we obtain

I∞(w̃
2
n, z̃

2
n) = I∞(Φ

1
n,Ψ

1
n)− I∞(z1

0 , ζ
1
0 ) + on(1) = I(un, vn)− I(u0, v0)− I∞(z1

0 , ζ
1
0 ) + on(1).(3.35)

and

I ′∞(w̃
2
n, z̃

2
n) = I ′∞(Φ

1
n,Ψ

1
n)− I ′∞(z1

0 , ζ
1
0 ) + on(1). (3.36)

If w̃2
n, z̃

2
n → 0 in D1,2(RN ), the proof is over for k = 1, because in this case, we have

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 + ‖z1
0‖2 + ζ1

0‖2.

Moreover, from continuity of I∞, we get

I(un, vn)→ I(u0, v0) + I∞(z
1
0 , ζ

1
0 ).

If w̃2
n 9 0, z̃2

n 9 0 in D1,2(RN ), using (3.30) and (3.34) that w̃2
n, z̃

2
n ⇀ 0 D1,2(RN ), by

(3.35) and (3.36), we conclude that (w̃2
n, z̃

2
n) is a (PS)c2 sequence for I∞.

By Lemma 3.1, there are sequences (Rn,2) ⊂ R, (xn,2) ⊂ RN , (z2
0 , ζ

2
0 ) ∈ D1,2(RN ) ×

D1,2(RN ) nontrivial solutions of (S∞) and a (PS)c3 sequence (w3
n, z

3
n) ⊂ D1,2(RN )×D1,2(RN )

for I∞ such that

w3
n(x) = w̃2

n(x)−R
(N−2)/2
n,2 z2

0(Rn,2(x− xn,2)) + on(1),

z3
n(x) = z̃2

n(x)−R
(N−2)/2
n,2 ζ2

0 (Rn,2(x− xn,2)) + on(1).

If

Φ
2
n(x) = R

(2−N)/2
n,2 w̃2

n

(
x

Rn,2
+ xn,2

)
,

Ψ
2
n(x) = R

(2−N)/2
n,2 z̃2

n

(
x

Rn,2
+ xn,2

)
and

w̃3
n(x) = R

(2−N)/2
n,2 w3

n

(
x

Rn,2
+ xn,2

)
,

z̃3
n(x) = R

(2−N)/2
n,2 z3

n

(
x

Rn,2
+ xn,2

)
,

we have that

w̃3
n(x) = Φ

2
n(x)− z2

0(x) + on(1), (3.37)
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z̃3
n(x) = Ψ

2
n(x)− ζ2

0 (x) + on(1). (3.38)

Arguing as before, we conclude

‖w̃3
n‖2 + ‖z̃3

n‖2 = ‖un‖2 + ‖vn‖2 − ‖u0‖2 − ‖v0‖2 − ‖z1
0‖2 − ‖ζ1

0‖2 − ‖z2
0‖2 − ‖ζ2

0‖2 + on(1),(3.39)

I∞(w̃
3
n, z̃

3
n) = I(un, vn)− I(u0, v0)− I∞(z1

0 , ζ
1
0 )− I∞(z2

0 , ζ
2
0 ) + on(1). (3.40)

and

I ′∞(w̃
3
n, z̃

3
n) = I ′∞(Φ

2
n,Ψ

2
n)− I ′∞(z2

0 , ζ
2
0 ) + on(1). (3.41)

If w̃3
n, z̃

3
n → 0 in D1,2(RN ), the proof is over with k = 2, because ‖w̃3

n‖2 → 0 , ‖z̃3
n‖2 → 0

and from (3.39), we have

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 +
2∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2].

Moreover, from continuity of I∞, we have that I∞(z̃3
n)→ 0, now using (3.40) we get

I(un, vn)→ I(u0, v0) +
2∑
j=1

I∞(z
j
0 , ζ

j
0 ).

If w̃3
n, z̃

3
n 9 0 in D1,2(RN ), we can repeat the same arguments before and we can find

(z1
0 , ζ

1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k−1
0 , ζk−1

0 ) nontrivial solutions for the system (S∞) satisfying

‖w̃kn‖2 + ‖z̃kn‖2 = ‖un‖2 + ‖vn‖2 − ‖u0‖2 − ‖v0‖2 −
k−1∑
j=1

[‖zj0‖
2 − ‖ζj0‖

2] + on(1), (3.42)

and

I∞(z̃
k
n, z̃

k
n) = I(un, vn)− I(u0, v0)−

k−1∑
j=1

I∞(z
j
0 , ζ

j
0 ) + on(1). (3.43)

From definition of S̃K , we conclude that(∫
RN

K(zj0 , ζ
j
0 )dx

)2/2∗

S̃K ≤ ‖zj0‖
2 + ‖ζj0‖

2, j = 1, 2, ..., k − 1. (3.44)

Since (zj0 , ζ
j
0 ) is nontrivial solution of (S∞), for all j = 1, 2, ..., k − 1, we get

‖zj0‖
2 + ‖ζj0‖

2 =

∫
RN

K(zj0 , ζ
j
0 )dx.

Hence,

−‖zj0‖
2 − ‖ζj0‖

2 ≤ −S̃N/2
K , j = 1, 2, ..., k − 1. (3.45)

From (3.42) and (3.45), we have

‖w̃kn‖2 + ‖z̃kn‖2 = ‖un‖2 + ‖vn‖2 − ‖u0‖2 − ‖v0‖2

−
k−1∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2] + on(1)

≤ ‖un‖2 + ‖vn‖2 − ‖u0‖2 − ‖v0‖2 − (k − 1)S̃N/2
K + on(1). (3.46)

Since (un, vn) is bounded in D1,2(RN )×D1,2(RN ), for k sufficient large, we conclude that
w̃kn, z̃

k
n → 0 in D1,2(RN ) and the proof is over.
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Corollary 3.3. Let (un, vn) be a (PS)c sequence for I with c ∈ (0, 1
N S̃

N/2
K ). Then, up to a

subsequence, (un, vn) strong converges in D1,2(RN )×D1,2(RN ).

Proof. We have that (un, vn) is bounded in D1,2(RN )×D1,2(RN ),

un ⇀ u0, vn ⇀ v0 in D1,2(RN )

and by a density argument I ′(u0, v0) = 0. Suppose, by contradiction, that

un 9 u0, vn 9 v0 in D1,2(RN ).

From Theorem 3.2, there are k ∈ N and nontrivial solutions (z1
0 , ζ

1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 ) of the

system (S∞) such that,

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 +
k∑
j=1

[|zj0‖
2 + |ζj0‖

2]

and

I(un, vn)→ I(u0, v0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ).

Note that by (2.1) we have

I(u0, v0) =
1
2
‖u0‖2 +

1
2
‖v0‖2 +

1
2

∫
RN

a(x)u2
0dx+

1
2

∫
RN

b(x)v2
0dx−

1
2∗

∫
RN

K(u0, v0)dx

=
1
2
‖u0‖2 +

1
2
‖v0‖2 +

1
2

(∫
RN

K(u0, v0)dx− ‖u0‖2 − ‖v0‖2
)
− 1

2∗

∫
RN

K(u0, v0)dx

=
1
N

∫
RN

K(u0, v0)dx ≥ 0.

Then,

c = I(u0, v0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ) ≥

k∑
j=1

I∞(z
j
0 , ζ

j
0 ) ≥

k

N
S̃
N/2
K ≥ 1

N
S̃
N/2
K ,

which is a contradiction with c ∈ (0, 1
N S̃

N/2
K ).

Corollary 3.4. The functional I : D1,2(RN )×D1,2(RN )→ R satisfies the Palais-Smale condi-
tion in ( 1

N S̃
N/2
K , 2

N S̃
N/2
K ).

Proof. Let (un, vn) be a sequence in D1,2(RN )×D1,2(RN ) that satisfies

I(un, vn)→ c and I ′(un, vn)→ 0.

Since (un, vn) is bounded in D1,2(RN )×D1,2(RN ), up to a subsequence, we have

un ⇀ u0, vn ⇀ v0 in D1,2(RN ).

Moreover, I(u0, v0) ≥ 0. Suppose, by contradiction, that

un 9 u0, vn 9 v0 in D1,2(RN ).

From Theorem 3.2, there are k ∈ N and nontrivial solutions (z1
0 , ζ

1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 ) of the

system (S∞) such that

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 +
k∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2]
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and

I(un, vn)→ I(u0, v0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ) = c.

Since I(u0, v0) ≥ 0, then k = 1 and z1
0 , ζ

1
0 cannot change of the sign. Hence,

c = I(u0, v0) + I∞(z
1
0 , ζ

1
0 ) = I(u0, v0) +

1
N
S̃
N/2
K .

From definition of S̃K , I ′(u0, v0)(u0, v0) = 0 and

I(u0, v0) =
1
N

∫
RN

K(u0, v0)dx,

we have,
2
N
S̃
N/2
K ≤ I(u0, v0) +

1
N
S̃
N/2
K = c,

which a contradiction with c ∈ ( 1
N S̃

N/s
K , 2

N S̃
N/2
K ).

Corollary 3.5. Let (un, vn) ⊂ D1,2(RN ) × D1,2(RN ) be a (PS)c sequence for I with c ∈
( kN S̃

N/2
K , (k+1)

N S̃
N/2
K ), where k ∈ N. Then, the weak limit (u0, v0) of (un, vn) is not trivial.

Proof. Suppose, by contradiction, that u0, v0 ≡ 0. Since c > 0, then un, vn 9 0 in D1,2(RN ).
From Theorem 3.2, up to subsequence, we get

‖un‖2 + ‖vn‖2 → ‖u0‖2 + ‖v0‖2 +
k∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2] =
k∑
j=1

[‖zj0‖
2 + ‖ζj0‖

2]

and

I(un, vn)→ I(u0, v0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ) =

k∑
j=1

I∞(z
j
0 , ζ

j
0 ) = c ≥ (k + 1)

N
S̃
N/2
K ,

which a contradiction with c ∈ ( kN S̃
N/2
K , (k+1)

N S̃
N/2
K ).

From now on we consider the functional f : D1,2(RN )×D1,2(RN )→ R given by

f(u, v) =

∫
RN
|∇u|2dx+

∫
RN
|∇v|2dx+

∫
RN

a(x)u2dx+

∫
RN

b(x)v2dx

and the manifoldM⊂ D1,2(RN )×D1,2(RN ) given by

M =

{
(u, v) ∈ D1,2(RN )×D1,2(RN ) :

∫
RN

K(u, v)dx = 1
}
.

The next results are direct consequence of the corollaries above.

Lemma 3.6. Let (un, vn) ⊂M be a sequence that satisfies

f(un, vn)→ c and f ′|M(un, vn)→ 0.

Then, the sequence (wn, zn) ⊂ D1,2(RN ), where (wn, zn) = (c(N−2)/4un, c
(N−2)/4vn), satisfies

the following limits.

I(wn, zn)→
1
N
cN/2 and I ′(wn, zn)→ 0.

Lemma 3.7. Suppose that there are a sequence (un, vn) ⊂M and c ∈ (S̃K , 22/N S̃K) such that

f(un, vn)→ c and f ′|M(un, vn)→ 0.

Then, up to a subsequence, un → u, vn → v in D1,2(RN ), for some u, v ∈ D1,2(RN ).

Corollary 3.8. Suppose that there are a sequence (un, vn) ⊂ M and c ∈ (S̃K , 22/N S̃K) such
that

f(un, vn)→ c and f ′(un, vn)→ 0.

Then I has a critical point (u0, v0) ∈ D1,2(RN )×D1,2(RN ) with I(u0, v0) =
1
N
cN/2.
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4 Existence of positive solution to (P )

Now we recall some properties on the function Φδ,y given by in (1.1). Note that

(Φδ,y,Φδ,y) ∈ Σ =

{
(u, v) ∈ D1,2(RN )×D1,2(RN );u, v ≥ 0

}
. (4.1)

Moreover, making a change of variable we can prove that

Φδ,y ∈ Lq(RN ) for q ∈
(

N

N − 2
, 2∗
]
, ∀δ > 0 and ∀y ∈ RN . (4.2)

The proof of next result can be seen in [1, Lemma 4].

Lemma 4.1. For each y ∈ RN , we have

(i) ‖Φδ,y‖H1,∞(RN ) → 0 when δ → +∞,

(ii) |Φδ,y|q → 0 when δ → 0, ∀q ∈
(

N

N − 2
, 2∗
)

,

(iii) |Φδ,y|q → +∞ when δ → +∞, ∀q ∈
(

N

N − 2
, 2∗
)

.

The proof of next result can be seen in [1, Lemma 5].

Lemma 4.2. For each ε > 0, we have∫
RN\Bε(0)

|∇Φδ,0|2dx→ 0 when δ → 0.

4.1 Technical Lemmas

Lemma 4.3. Suppose that a, b ∈ Lq(RN ), ∀q ∈ [p1, p2], where 1 < p1 <
N

2
< p2 with p2 < 3

if N = 3. Then, for each ε > 0, there are δ = δ(ε) > 0 and δ̄ = δ̄(ε) > 0 such that

sup
y∈RN

f(soΦδ,y, toΦδ,y) < S̃K + ε, δ ∈ (0, δ] ∪ [δ̄,∞).

Proof. Consider y ∈ RN , q ∈
(
N

2
, p2

]
and t ∈ (1,+∞) with

1
q
+

1
t
= 1. Making a direct

calculations we have

N

N − 2
< 2t < 2∗. (4.3)

Since Φδ,b ∈ Ld(RN ),∀d ∈
(

N

N − 2
, 2∗
)

, we get |Φδ,b|2 ∈ Lt(RN ). Then, using Hölder

inequality and change of variable, we have∫
RN

a(x)|Φδ,b|2dx ≤ |a|q|Φδ,0|22t, ∀y ∈ RN

and ∫
RN

b(x)|Φδ,b|2dx ≤ |b|q|Φδ,0|22t, ∀y ∈ RN .

From item (iii) of Lemma 4.1, given ε > 0, there exists δ = δ(ε) > 0 such that

sup
y∈RN

f(soΦδ,y, toΦδ,y) ≤ S̃K +
ε

2
< S̃K + ε, ∀δ ∈ (0, δ].



520 Giovany M. Figueiredo and Leticia S. Silva

Suppose that q ∈
[
p1,

N

2

)
with t ∈ (1,+∞) and

1
q
+

1
t
= 1. Note that 2t− 2∗ > 0 and for

δ > 1,

|Φδ,y| ∈ L∞(RN ) (4.4)

and |Φδ,y|2
∗ ∈ L1(RN ). Then, |Φδ,y|2 ∈ Lt(RN ). Using Hölder inequality with q and t, we get

s2
o

∫
RN

a(x)|Φδ,y|2dx ≤ s2
o|a|q

(∫
RN
|Φδ,0|2tdz

)1/t

= s2
o|a|q

(∫
RN
|Φδ,0|2

∗
s |Φδ,0|2t−2∗sdz

)1/t

≤ s2
o|a|q|Φδ,0|(2t−2∗)/t

∞

(∫
RN
|Φδ,0|2

∗
dz

)1/t

≤ s2
o|a|q|Φδ,0|(2t−2∗)/t

∞

≤ s2
o|a|qc(2t−2∗)/tδ((2−N)/2)((2t−2∗)/t), ∀y ∈ RN .

Then, given ε > 0, there is δ̄ = δ̄(ε) > 1 such that

δ((2−N)/2)/2)((2t−2∗)/t) <
ε

2s2
o|a|qc(2t−2∗)/t , ∀δ ∈ [δ̄,∞).

Arguing as the same way, we have

t2o

∫
RN

b(x)|Φδ,y|2dx ≤ t2o|b|qc(2t−2∗)/tδ((2−N)/2)((2t−2∗)/t), ∀y ∈ RN .

Then

f(soΦδ,y, toΦδ,y) = S̃K + s2
o

∫
RN

a(x)|Φδ,y|2dx+ t2o

∫
RN

b(x)|Φδ,y|2dx

≤ S + s2
o sup
y∈RN

∫
RN

a(x)|Φδ,y|2dx+ t2o sup
y∈RN

∫
RN

b(x)|Φδ,y|2dx

≤ S̃K +
ε

2
< S̃K + ε, ∀y ∈ RN and ∀δ ∈ [δ̄,∞).

Lemma 4.4. Suppose that (a, b)3 is true. Then,

sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/N S̃K .

Proof. Using Hölder inequality with N/2 and N/(N − 2), we get

f(soΦδ,y, toΦδ,y) ≤ S̃K + sNo |a|LN/2(RN ) + tNo |b|LN/2(RN ).

From (a, b)3 we conclude

sup
y∈RN
δ∈(0,∞)

f(soΦδ,y, toΦδ,y) ≤ S̃K + S̃K(22/N − 1) = 22/N S̃K .

Consider the function

ξ(x) =

{
0, if |x| < 1
1, if |x| ≥ 1
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and define α : D1,2(RN )×D1,2(RN )→ RN+1 by

α(u, v) =
1
S̃K

∫
RN

(
x

|x|
, ξ(x)

)
[s2
o|∇u|2 + t2o|∇v|2]dx = (β(u, v), γ(u, v)),

where

β(u, v) =
1
S̃K

∫
RN

x

|x|
[s2
o|∇u|2 + t2o|∇v|2]dx

and

γ(u, v) =
1
S̃K

∫
RN

ξ(x)[s2
o|∇u|2 + t2o|∇v|2]dx.

Lemma 4.5. If |y| ≥ 1
2

, then

β(Φδ,y,Φδ,y) =
y

|y|
+ oδ(1) when δ → 0.

Proof. Given ε > 0, from Lemma 4.2, there is δ̂ > 0 such that∫
RN\Bε(y)

|∇Φδ,y|2dx =

∫
RN\Bε(0)

|∇Φδ,0|2dz < ε, ∀δ ∈ (0, δ̂).

Then,∣∣∣∣β(Φδ,y,Φδ,y)−
s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣ ≤ s2
o + t20

S̃K

∫
RN\Bε(y)

|∇Φδ,y|2dx

< ε, ∀δ ∈ (0, δ̂). (4.5)

Note that∣∣∣∣ y|y| − s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣ < 4ε+ ε = Cε, ∀δ ∈ (0, δ̂). (4.6)

From (4.5) and (4.6), we have∣∣∣∣β(Φδ,y,Φδ,y)−
y

|y|

∣∣∣∣ =

∣∣∣∣β(Φδ,y,Φδ,y)−
s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

+
s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx−

y

|y|

∣∣∣∣
≤

∣∣∣∣β(Φδ,y,Φδ,y)−
s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣
+

∣∣∣∣s2
o + t20

S̃K

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx−

y

|y|

∣∣∣∣
< ε+ Cε

= Kε, ∀δ ∈ (0, δ̂).

Lemma 4.6. Suppose that a, b ∈ Lq(RN ), ∀q ∈ [p1, p2], where 1 < p1 <
N

2
< p2 with p2 < 3

if N = 3. Then, for every δ > 0, we have

lim
|y|→∞

f(soΦδ,y, toΦδ,y) = S̃K .
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Proof. Since

f(soΦδ,y, toΦδ,y)) = S̃K + s2
o

∫
RN

a(x)|Φδ,y|2dx+ t2ods

∫
RN

b(x)|Φδ,y|2dx,

we need to prove that

lim
|y|→∞

∫
RN

a(x)|Φδ,y|2dx = 0, ∀δ > 0 (4.7)

and

lim
|y|→∞

∫
RN

b(x)|Φδ,y|2dx = 0, ∀δ > 0. (4.8)

Note that given ε > 0, there is k0 > 0 such that(∫
RN\Bρ(0)

a(x)N/2dx

)2/N

< ε, ∀ρ > k0.

and (∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)1/2∗

=

(∫
RN\Bρ(0)

|Φδ,0|2
∗
dz

)1/2∗

< ε, ∀ρ > k0. (4.9)

Consider

k0 < 2ρ < |y| (ρ fixed) (4.10)

and note that

Bρ(0) ∩Bρ(y) = ∅. (4.11)

Using Hölder inequality with N/2 and N/(N − 2), we get∫
RN

a(x)|Φδ,y|2dx ≤
(∫

RN\(Bρ(0)∪Bρ(y))
aN/2dx

)2/N(∫
RN\(Bρ(0)∪Bρ(y))

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
Bρ(0)

aN/2dx

)2/N(∫
Bρ(0)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
Bρ(y)

aN/2dx

)2/N(∫
Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

≤
(∫

RN\Bρ(0)
aN/2dx

)2/N(∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
RN

aN/2dx

)2/N(∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
RN\Bρ(0)

aN/2dx

)2/N(∫
RN
|Φδ,y|2

∗
dx

)(N−2)/N

=

(∫
RN\Bρ(0)

aN/2dx

)2/N

< εε2 + |a|N/2ε
2 + ε.

Arguing of the same way for the term (4.8), the proof is over.
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Now we define the set

= =

{
(u, v) ∈M;α(u, v) =

(
0,

1
2

)}
.

and note that from Lemma 4.2 and Lemma 4.1, item (i), there is δ1 > 0 such that (Φδ1,0,Φδ1,0) ∈
=.

Lemma 4.7. The number c0 = inf
u∈=

f(u, v) satisfies the inequality c0 > S̃K .

Proof. Since = ⊂M, we have
S̃K ≤ c0.

Suppose, by contradiction, that S̃K = c0. By Ekeland variational principle [16], there exists
(un, vn) ⊂ D1,2(RN )×D1,2(RN ) such that∫

RN
K(un, vn)dx = 1, α(un, vn)→

(
0,

1
2

)
(4.12)

and

f(un, vn)→ S̃K , f ′|M(un, vn)→ 0. (4.13)

Then, (un, vn) is bounded inD1,2(RN )×D1,2(RN ) and, up to a subsequence, un ⇀ u0, vn ⇀ v0
in D1,2(RN ).

If wn = S(N−2)/4un, zn = S(N−2)/4vn and w0 = S(N−2)/4u0, z0 = S(N−2)/4v0, we have that
wn ⇀ w0, zn ⇀ z0 in D1,2(RN ). Moreover, from (4.13) and Lemma 3.6, we get

I(wn, zn)→
1
N
S̃
N/2
K and I ′(wn, zn)→ 0.

We are going to show that (w0, z0) ≡ (0, 0). Note that

un 9 u0, un 9 u0 in D1,2(RN ), (4.14)

since otherwise, (u0, v0) ∈M implies u0 6= 0, v0 6= 0. Then,

S̃K ≤

∫
RN
|∇u0|2dx+

∫
RN
|∇v0|2dx(∫

RN
K(u0, v0)dx

)2/2∗ =

∫
RN
|∇u0|2dx+

∫
RN
|∇v0|2dx

<

∫
RN
|∇u0|2dx+

∫
RN
|∇v0|2dx+

∫
RN

a(x)|u0|2dx+
∫
RN

b(x)|v0|2dx = S̃K ,

which it is an absurd. Hence, wn 9 w0, zn 9 z0 in D1,2(RN ) and, since (wn, zn) is a (PS)c
sequence for I , by Theorem 3.2 we obtain that

I(wn.zn)→ I(w0, z0) +
k∑
j=1

I∞(z
j
0 , ζ

j
0 ) =

1
N
S̃
N/2
K .

Since I ′∞(z
j
0 , ζ

j
0 ) = 0, we have that

I(w0, z0) = 0, (4.15)

k = 1, (4.16)

z1
0 , ζ

1
0 > 0, (4.17)
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I(w0, z0) =
1
N

∫
RN

K(w0, z0)dx

and from (4.15), we conclude that w0 ≡ 0 and z0 ≡ 0. Then, (wn, zn) is a (PS)c sequence for I
such that wn ⇀ 0, zn ⇀ 0 and wn 9 0, zn 9 0.

Note that
∫
RN

a(x)|wn|2dx = on(1) and
∫
RN

b(x)|zn|2dx = on(1). Then,

1
N
S̃
N/2
K + on(1) = I(wn, zn) = I∞(wn, zn) +

∫
RN

a(x)|wn|2dx+
∫
RN

b(x)|zn|2dx = I∞(vn) + on(1)(4.18)

and

‖I ′∞(wn, zn)‖D′ ≤ ‖I ′(wn, zn)‖D′ + on(1). (4.19)

From (4.18) and (4.19) we conclude that (wn, zn) is a (PS)c sequence for I∞ and by Lemma
3.1, there are sequences (Rn) ⊂ R, (xn) ⊂ RN , (z1

0 , ζ
1
0 ) nontrivial solution of (S∞) and

(Φn,Ψn) a (PS)c sequence for I∞ such that

wn(x) = Φn(w) +R(N−2)/2
n z1

0(Rn(x− xn)) + on(1) and zn(x) = Ψn(w) +R(N−2)/2
n ζ1

0 (Rn(x− xn)) + on.(4.20)

Note that if we define

Φ̃n(x) = R(N−2)/2
n z1

0(Rn(x− xn)), Ψ̃n(x) = R(N−2)/2
n ζ1

0 (Rn(x− xn)),

making change of variable, we have

I ′∞(Φ̃n, Ψ̃n)(ϕ,ψ) = I ′∞(z
1
0 , ζ

1
0 )(ϕn, ψn) = 0, ∀(ϕ,ψ) ∈ D1,2(RN )×D1,2(RN ), ∀n ∈ N,

i.e, (Φ̃n, Ψ̃n) is a solution of (S∞) , for all n ∈ N.
Moreover, from definition of (Φ̃n, Ψ̃n) and by (4.17), we get

Φ̃n(x) = Ψ̃n(x) = c

(
δn

δ2
n + |x− yn|2

)(N−2)/2

.

By (4.20), we obtain

un(x) = Φ̂n(x) + Φδn,yn(x) + on(1), vn(x) = Ψ̂n(x) + Φδn,yn(x) + on(1)

where
Φ̂n(x) =

1

S̃
(N−2)/4
K

Φn(x), Ψ̂n(x) =
1

S̃
(N−2)/4
K

Ψn(x).

Using (4.16), we derive that Φn → 0, Ψn → 0 in D1,2(RN ), which implies that Φ̂n → 0,
Ψ̂n → 0 in D1,2(RN ). From (4.12) we have(

0,
1
2

)
+on(1) = α(un, vn) = α(Φ̂n(x)+Φδn,yn(x), Ψ̂n(x)+Φδn,yn(x))+on(1)) = α(Φδn,yn ,Φδn,yn)

which implies
(i) β(Φδn,yn ,Φδn,yn)→ 0

and
(ii) γ(Φδn,yn ,Φδn,yn)→

1
2
.

Passing to a subsequence, one of these cases can occur.

(a) δn → +∞ when n→ +∞;

(b) δn → δ̃ 6= 0 when n→ +∞;

(c) δn → 0 and yn → ỹ when n→ +∞ with |ỹ| < 1
2

;
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(d) δn → 0 when n→ +∞ and |yn| ≥
1
2

for n sufficient large.

Suppose that (a) is true. Then,

γ(Φδn,yn) = 1−
s2
o + t20

S̃K

∫
B1(0)

|∇Φδn,yn |2dx,

which implies by Lemma 4.1,

|γ(Φδn,bn)− 1| =
s2
o + t20

S̃K

∫
B1(0)

|∇Φδn,yn |2dx ≤
s2
o + t20

S̃K

∫
RN
|∇Φδn,yn |2dx = on(1),

which contradicts (ii).
Suppose that (b) is true. In this case we can suppose that |yn| → +∞, because if yn → ỹ, we

can prove that
Φδn,yn → Φδ̃,ỹ in D1,2(RN ).

Since Φ̂n, Ψ̂n → 0 in D1,2(RN ) and un = Φ̂n + Φδn,yn + on(1), vn = Ψ̂n + Φδn,yn + on(1),
we have that (un, vn) converges in D1,2(RN )×D1,2(RN ) but this is a contradiction with (4.14).

Then,

γ(Φδn,yn ,Φδn,yn) =
s2
o + t20

S̃K

∫
RN

ξ(x)|∇Φδn,yn |2dx =
s2
o + t20

S̃K

∫
RN\B1(0)

|∇Φδn,yn |2dx

= 1−
s2
o + t20

S̃K

∫
B1(−yn)

|∇Φδn,0|2dx. (4.21)

From Lebesgue Theorem we can prove that∫
B1(−bn)

|∇Φδn,0|2dx→ 0

and from (4.21), we obtain

γ(Φδn,yn ,Φδn,yn)→ 1 when n→ +∞,

which is a contradiction with (ii).
Suppose that (c) is true. We have that

γ(Φδn,yn ,Φδn,yn) =
s2
o + t20

S̃K

∫
RN

ξ(x)|∇Φδn,yn |2dx =
s2
o + t20

S̃K

∫
RN\B1(0)

|∇Φδn,yn |2dx

=
s2
o + t20

S̃K

∫
RN
|∇Φδn,yn |2dx−

s2
o + t20

S̃K

∫
B1(−yn)

|∇Φδn,0|2dz

= 1−
s2
o + t20

S̃K

∫
B1(−yn)

|∇Φδn,0|2dz. (4.22)

Note that using Lebesgue Theorem again, we can prove that

lim
n→+∞

s2
o + t20

S̃K

∫
B1(−yn)

|∇Φδn,0|2dz = 1.

Then, by (4.22) we have that
γ(Φδn,yn ,Φδn,yn)→ 0,

which is a contradiction with (ii).

Suppose that (d) is true. Since |yn| ≥
1
2

for n large, then yn 9 0 in RN . From Lemma 4.5,
we get

β(Φδn,yn ,Φδn,yn) =
yn
|yn|

+ on(1).

Hence,
β(Φδn,yn ,Φδn,yn) 9 0,

which is a contradiction with (i). The, we conclude that S̃K < c0 and the proof is over.
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Lemma 4.8. There is δ1 ∈ (0, 1/2) such that

(a) f(s0Φδ1,y, t0Φδ1,y) <
S̃K + c0

2
, ∀y ∈ RN ;

(b) γ(Φδ1,y,Φδ1,y) <
1
2
, ∀y ∈ RN such that |y| < 1

2
;

(c)
∣∣∣∣β(Φδ1,y,Φδ1,y)−

y

|y|

∣∣∣∣ < 1
4
, ∀y ∈ RN such that |y| ≥ 1

2
.

Proof. From Lemma 4.3, we can choose ε =
c0 − S

2
> 0, δ2 < min{δ, 1/2} and conclude that

f(s0Φδ,y, t0Φδ,y) ≤ sup
y∈RN

f(s0Φδ,y, t0Φδ,y) < S̃K +
c0 − S̃K

2
=
S̃K + c0

2
, ∀y ∈ RN . (4.23)

Now by definition of ξ, we have

γ(Φδ,y,Φδ,y) = 1−
s2
o + t20

S̃K

∫
B1(−y)

|∇Φδ,0|2dz.

From Lebesgue Theorem

s2
o + t20

S̃K

∫
B1(−y)

|∇Φδ,0|2dz = 1

and the proof of this item is over.
Note that from Lemma 4.5, we conclude that

β(Φδ,y,Φδ,y) =
y

|y|
+ oδ(1) when δ → 0, ∀y ∈ RN ; |y| ≥ 1

2

and the proof is finished.

Lemma 4.9. There is δ2 > 1 such that

(a) f(s0Φδ2,y, t0Φδ2,y) <
S̃K + c0

2
, ∀y ∈ RN ,

(b) γ(Φδ2,y,Φδ2,y) >
1
2
, ∀y ∈ RN .

Proof. From Lemma 4.3, we can choose ε =
c0 − S

2
> 0, δ3 > max{δ̄, 1} we have

f(s0Φδ,y, t0Φδ,y) ≤ sup
y∈RN

f(s0Φδ,y, t0Φδ,y) < S̃K +
c0 − S̃K

2
=
S̃K + c0

2
, ∀y ∈ RN . (4.24)

Moreover, from definition of ξ and Lemma 4.1, we can conclude that

γ(Φδ,y,Φδ,y)→ 1 when δ → +∞

and the proof is over.

Lemma 4.10. There is R > 0 such that

(a) f(s0Φδ,y, t0Φδ,y) <
S̃K + c0

2
, ∀y; |y| ≥ R and δ ∈ [δ1, δ2],

(b) (β(Φδ,y,Φδ,y)|y))RN > 0 ∀y; |y| ≥ R and δ ∈ [δ1, δ2].

Proof. The first item follows by Lemma 4.3 and the choose of ε =
c0 − S

2
> 0. The second item

follows of the definition of β and Φδ,y and adaptations the same arguments explored in [3]
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Consider the set

V = {(y, δ) ∈ RN × (0,∞); |y| < R and δ ∈ (δ1, δ2)},

where δ1, δ2 and R are given by Lemmas 4.8, 4.9 and 4.10, respectively.
Let Q : RN × (0,+∞)→ D1,2(RN ) be the continuous function given by

Q(y, δ) = Φδ,y.

Consider now the sets

Θ = {(Q(y, δ), Q(y, δ)); (y, δ) ∈ V},

H =

{
h ∈ C(Σ ∩M);h(u, v) = (u, v),∀(u, v) ∈ Σ ∩M; f(sou, tov) <

S̃K + c0

2

}
and

Γ = {A ⊂ Σ ∩M;A = h(Θ), h ∈ H}.

Note that Θ ⊂ Σ ∩ M, Θ = Q(V) × Q(V) is compact and H 6= ∅, because the identity
function is in H.

Lemma 4.11. Let F : V → RN+1 be a function given by

F(y, δ) = (α ◦ (Q,Q))(y, δ) =
s2
o + t20

S̃K

∫
RN

(
x

|x|
, ξ(x)

)
|∇Φδ,y|2dx.

Then,
d(F ,V, (0, 1/2)) = 1. (Topological degree)

Proof. Let
Z : [0, 1]× V → RN+1

be the homotopy given by

Z(t, (y, δ)) = tF(y, δ) + (1− t)IV(y, δ),

where IV is the identity operator. Using lemma 4.8 and Lemma 4.9, we can show that (0, 1/2) /∈
Z([0, 1]× (∂V)), i.e,

tβ(Φδ,y,Φδ,y) + (1− t)y 6= 0, ∀t ∈ [0, 1] and ∀(y, δ) ∈ ∂V (4.25)

or

tγ(Φδ,y,Φδ,y) + (1− t)δ 6= 1
2
, ∀t ∈ [0, 1] and ∀(y, δ) ∈ ∂V. (4.26)

Hence (0, 1/2) /∈ Z([0, 1]×∂V) where we conclude that d(F ,V, (0, 1/2)), d(iV ,V, (0, 1/2))
and d(Z(t, ·),V, (0, 1/2)) are well defined and

d(F ,V, (0, 1/2)) = d(iV ,V, (0, 1/2)) = 1.

Lemma 4.12. If A ∈ Γ, then A ∩ = 6= ∅.

Proof. It is sufficient to prove that for all h ∈ H, there exists (y0, δ0) ∈ V such that

(α ◦ H ◦ (Q,Q))(y0, δ0) =

(
0,

1
2

)
.

Given h ∈ H, let
Fh : V → RN+1
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be the continuous function given by

Fh(y, δ) = (α ◦ h ◦ (Q,Q))(y, δ).

We are going to show that Fh = F in ∂V . Note that

∂V = Π1 ∪Π2 ∪Π3, (4.27)

where
Π1 = {(y, δ1); |y| ≤ R},

Π2 = {(y, δ2); |y| ≤ R}

and
Π3 = {(y, δ); |y| = R and δ ∈ [δ1, δ2]}.

If (y, δ) ∈ Π1, then (y, δ) = (y, δ1) and by item (a) from Lemma 4.8, we have

f(soQ(y, δ), toQ(y, δ)) = f(soQ(y, δ1), toQ(y, δ1)) = f(s0Φδ1,y, t0Φδ1,y) <
S̃K + c0

2
, ∀(y, δ) ∈ Π1.(4.28)

If (y, δ) ∈ Π2, then (y, δ) = (y, δ2) and by item(a) from Lemma 4.9, we get

f(soQ(y, δ), toQ(y, δ)) = f(soQ(y, δ2), toQ(y, δ2)) = f(s0Φδ2,y, t0Φδ2,y) <
S̃K + c0

2
, ∀(y, δ) ∈ Π2.(4.29)

If (y, δ) ∈ Π3, then |y| = R and δ ∈ [δ1, δ2] and by item (a) from Lemma 4.10, we obtain

f(soQ(y, δ), toQ(y, δ)) = f(s0Φδ,y, t0Φδ,y) <
S̃K + c0

2
, ∀(y, δ) ∈ Π3. (4.30)

From (4.27), (4.28), (4.29) and (4.30) we conclude that

f(soQ(y, δ), toQ(y, δ)) <
S̃K + c0

2
, ∀(y, δ) ∈ ∂V.

Hence,

Fh(y, δ) = (α ◦ h ◦ (Q,Q))(y, δ) = (α ◦ h)(Q(y, δ), Q(y, δ))
= α(h((Q(y, δ), Q(y, δ)))) = α((Q(y, δ), Q(y, δ)))

= (α ◦ (Q,Q))(y, δ) = F(y, δ), ∀(y, δ) ∈ ∂V.

Since (0, 1/2) /∈ F(∂V), we have

d(F ,V, (0, 1/2)) = d(Fh,V, (0, 1/2)).

From Lemma 4.11, we get

d(Fh,V, (0, 1/2)) = d(F ,V, (0, 1/2)) = 1,

and there exists (y0, δ0) ∈ V such that

Fh(y0, δ0) = (α ◦ h ◦ (Q,Q))(y0, δ0) =

(
0,

1
2

)
and the proof is over.
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4.2 Proof of Theorem 1.1

Consider the number

c = inf
A∈Γ

max
(u,v)∈A

f(u, v)

and for each q ∈ R,
fq = {(u, v) ∈ Σ ∩M; f(u, v) ≤ q}.

We are going to show that

S̃K < c < 22/N S̃K . (4.31)

Note that

c = inf
A∈Γ

max
(u,v)∈A

f(u, v) ≤ max
(u,v)∈Θ

f(u, v) ≤ sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/N S̃K .

On the other hand, from Lemma 4.12, we have that

c0 = inf
u∈=

f(u, v) ≤ c = inf
A∈Γ

max
u∈A

f(sou, tov) ≤ sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/N S̃K . (4.32)

From Lemma 4.7, we have that S̃K < c0 and the proof is over.
Using the definition of c, there exists (un, vn) ⊂ Σ ∩M such that

f(un, vn)→ c. (4.33)

Suppose, by contradiction, that

f ′|M(un, vn) 9 0.

Then, there exists (unj , vnj) ⊂ (un, vn) such that

‖f ′|M(unj , vnj)‖∗ ≥ C > 0, ∀j ∈ N.

Using a Deformation Lemma [16], there exists a continuous application η : [0, 1]× (Σ ∩M)→
(Σ ∩M), ε0 > 0 such that

(1) η(0, u, v) = (u, v);

(2) η(t, u, v) = (u, v), ∀(u, v) ∈ f c−ε0 ∪ {(Σ ∩M) \ f c+ε0}, ∀t ∈ [0, 1];

(3) η(1, f c+
ε0
2 ) ⊂ f c−

ε0
2 .

From definition of c, there exists Ã ∈ Γ such that

c ≤ max
(u,v)∈Ã

f(u, v) < c+
ε0

2
,

where

Ã ⊂ f c+
ε0
2 . (4.34)

Since Ã ∈ Γ, we have Ã ⊂ (Σ ∩M) and there exists h̄ ∈ H such that

h̄(Θ) = Ã. (4.35)

From definition of η, we have

η(1, Ã) ⊂ (Σ ∩M). (4.36)
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Let ĥ : (Σ ∩M) → (Σ ∩M) be the function given by ĥ(u, v) = η(1, h̄(u, v)) and note that
ĥ ∈ C(Σ ∩M). We are going to show that

f c+ε0 \ f c−ε0 ⊂ f22s/NS \ f (S+c0)/2. (4.37)

Considering (u, v) ∈ f c+ε0 \ f c−ε0 , we have

c− ε0 < f(u, v) ≤ c+ ε0

and by (4.31), for ε0 sufficiently small, we get

c− ε0 < f(u, v) ≤ c+ ε0 < 22/N S̃K . (4.38)

Now from Lemma 4.7 and (4.32), we obtain

S̃K + c0

2
< c0 − ε0 < c− ε0 < 22/N S̃K

and

S̃K + c0

2
< c0 − ε0 ≤ c− ε0 < f(u, v), (4.39)

which implies
(u, v) ∈ f22/N S̃K \ f (S̃K+c0)/2.

Consider (u, v) ∈ (Σ ∩M) such that

f(u, v) <
S̃K + c0

2
. (4.40)

Then,
h̄(u, v) = (u, v)

and from (4.40), we have that (u, v) /∈ f22/N S̃K \ f (S̃K+c0)/2 and by (4.37), we get

(u, v) /∈ f c+ε0 \ f c−ε0 .

Then,
(u, v) ∈ f c−ε0 ∪ {(Σ ∩M) \ f c+ε0}

and from Deformation Lemma, we obtain

η(1, u, v) = (u, v).

Hence,
ĥ(u, v) = η(1, h̄(u, v)) = η(1, u, v) = (u, v)

where we conclude that ĥ ∈ H, which implies

ĥ(Θ) = η(1, h̄(Θ))

and from (4.35), we conclude that

ĥ(Θ) = η(1, h̄(Θ)) = η(1, Ã). (4.41)

From (4.36), we have η(1, Ã) ∈ Γ, which implies

c = inf
A∈Γ

max
u∈A

f(u, v) ≤ max
u∈η(1,Ã)

f(u, v). (4.42)

From Deformation Lemma again and by (4.34), we get

η(1, Ã) ⊂ η(1, f c+
ε0
2 ) ⊂ f c−

ε0
2 .



POSITIVE SOLUTIONS OF A CRITICAL SYSTEM IN RN 531

Then,
f(u, v) ≤ c− ε0

2
, ∀(u, v) ∈ η(1, Ã),

which implies
max

u∈η(1,Ã)
f(u, v) ≤ c− ε0

2

and using (4.42), we conclude that

c ≤ max
u∈η(1,Ã)

f(u, v) ≤ c− ε0

2
,

which is an absurd.
Then,

f(un, vn)→ c and f ′|M(un, vn)→ 0

and from Lemma 3.7, up to a subsequence, un → ũ0, vn → ṽ0 in D1,2(RN ), which implies that
ũ0, ṽ0 ≥ 0,

f(ũ0, ṽ0) = c and f ′|M(ũ0, (ṽ0) = 0

and from(4.31)
S̃K < f(ũ0, ṽ0) < 22/N S̃K .

The positivity of ũ0 and ṽ0 is a consequence of the classical maximum principle.
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