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Abstract In this paper we show existence of positive solution to the system

1
—Au+ a(x)u = ﬁKu(u,v) in RY,
1
(S) —Av + b(z)v = ﬁKv(u,v) in RY,

u,v>0 in RV,
u,v € DV2(RN), N >3,

We also prove a global compactness result for the associated energy functional similar to that
due to Struwe in [14]. The basic tool employed here is some information on a limit system of
(S) with a = b = 0, the concentration compactness due to P. L. Lions [12] and Brouwer degree
theory.

1 Introduction

In the celebrated paper [3], Benci and Cerami studied the following semilinear elliptic problem

— e N
(BO) { Au+a(z)u=u in RV,

we DV2RN), >0, N>3,

where

(a1) a(x) > 0and a(z) > ap > 0, for all z € RY in a neighborhood of a point z.

(a2) a € LIRN) forall g € [py,p2] with 1 < p; < § < p, with p, < 1 ivN if N =3.
/ \Vul|>da
2/N _ - RN
(a3) |alpvomny < SN — 1), where S = ueD“Ql(I]llg;V),u#O o
(/ |u|? dx)
RN

They used the properties of the solutions of a limit problem given by (BC) with a = 0, the
version to R™ of Struwe’s Global Compactness result [14], Lions’s Concentration and Compact-
ness result [12] and arguments of Brouwer degree theory.

We would also like to mention that this kind of problem all these arguments were also used
by Cerami and Passasseo in [4] with Neumann boundary conditions in a half-space RY and by
Alves in [1] with p-laplacian operator. As far as the extension to the p-laplacian operator is
concerned, some technical difficulties as the lack of linearity and homogeneity must be faced.
The version of bi-Laplacian operator was studied by Alves and do O in [2]. A multiplicity
result involving category theory was studied in [6] by Chabrowski and Yang. More recently, in
[17] Xie, Ma and Xu proved a version for [3] considering the Kirchhoff operator. Nascimento
and Figueiredo show the same result of [3] considering the fractional Laplacian. A version for
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Choquard equation was proved by Gao, E. da Silva, M. Yang, and J. Zhou in [10] and a version
for Schrodinger-Poisson system was studied by Cerami and Molle in [5]. In [7], Chen, Wei
and Yan showed existence of infinitely many non-radial solutions, whose energy can be made
arbitrarily large with « radial. In [13] Penga, Wang and Yan showed the existence of infinitely
many non-radial solutions with a partially radial.

A natural, still open question is to know whether Benci and Cerami’s results is true in the
system of equations case. In this paper, we give a first positive answer to this question. However,
the extension to system involves some technical difficulties which are overcome with some re-
fined estimates, as can be seen in Lemma 3.1, Theorem 3.2 and subsection 4.2. More precisely,
in these result we give the complete descriptions for the Palais-Smale (PS) sequences of the cor-
responding energy functionals and by using these descriptions, the existence results of solutions
are obtained. Moreover, the main feature of the system is a “double” lack of compactness due to
the unboundedness of the domain and the presence of the critical Sobolev exponent. The solu-
tions are sought by means of variational methods, although the functional related to the problem
does not satisfy the Palais-Smale compactness condition.

In this paper we show existence of positive solution to the system

—Au+ a(z)u = 2—1*Ku(u,v) in RY,
(S) —Av + b(z)v = 2—1*K1,(u,v) in RY,

u,v >0 in RY,
u,v € DV2(RYN), N >3,

Let RZ :=[0,00) x [0, 00) and set 2* := 2N /(NN — 2). We state our main hypotheses on the
function K € C*(R?%,R) as follows.

(Ko) K is 2*-homogeneous, that is,
K(\s,\t) = A K(s,t) foreach A >0, (s,t) € R%.
(K1) there exists ¢; > 0 such that
[Ks(s,t)] + | Ki(s,t)] < (sz**l —l—tz**l) for each (s,t) € R2.
K,) K(s,t) >0 foreachs,t>0;

)
Ks) VE(0,1) = VE(1,0) = (0,0);
Ks4) Ks(s,t), Ki(s,t) >0 foreach (s,t) € R%.
)

(
(
(
(Ks) the 1-homogeneous function G : R%Z — R given by G(s*,#*") := K (s, t) is concave.

To state our main result we need some previous definitions and notations. Let us denote by
Sk the best constant of the immersion D'2(RY) x D'2(RN) < L2"(RN) x L>" (RY), that is,

/ (IVul + [Vo2)de
Sk = inf RY

u,v€DL2(RN ) u,v#£0 <

22"
K(u, v)d:z:)
RN

From now on, we consider the function ®;, € D'*(RY) given by

0

(N=2)/2
(W) y x,yERN and (5>0, (11)

Dsy(2) = C<
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where c is a positive constant. In [15] we can see that every positive solution of

—Au = |u> “?u in RY,
(P) u>0 in RV,
u € D2(RYN), N > 3.

is as (1.1). Moreover, it satisfies

[@syl> =S and [Pyl = 1, (1.2)

where S was defined in (a3).

By [9, Lemma 3], there exist s,,t, > 0 such that S i 1is attained by (s,Ps,, t,Ps,,). More-
over, N
MgSkg =S, (1.3)

where My = max K(s,t)? = K(so,t0)%?".
s2+t2=1
The hypotheses on the functions a, b : RY + R are given by:
((a,b)1) The functions a, b are positive in a same set of positive measure.

((a,b)2) a,b € LYRN) forall g € [py,pp] with 1 <p; < & < pp and p, < if N = 3.

N
4—N
((a,b)3) SJOV‘G/|LN/2(RN) + tév|b|LN/2(]RN) < §K(22/N - 1).

We say that (u,v) : RN x RY — R x R is a positive weak solution of (S) if u,v > 0 in
D'V2(RY) and for all , € D'2(RV) we get

VuVedr + VoVipdz + / a(z)updr + b(x)vipdz
RN RN RN RN

1 1
= —/ Ku(u,v)gpdx—i——/ Ky (u,v)pdz.
2* RN 2* RN

In order to state the main result, we consider the C! functional I : D'2(RY)x DI2(RY) s R
associated to system (S) given by

1 1 1 1 1
I(u,v) = 5||u||2 + §||v||2 + 3 /RN a(x)utdr + 3 /RN b(x)v dx — 7 Jox K(u,v)dx,

where ||u|\2:/ Vuldz, ||11||2:/ Vo[2dz. Note that
RN RN

I'(u,v)(p, ) = N VuVedr + R VoVipdx + /RN

a(x)ucpdx—l—/ b(x)vipdz

RN

R R
1 1

- = K, (u,v)pdr — — K, (u,v)¢dz,
2* RN 2* RN

for all (¢,¢) € DV2(RY) x DV2(RY).
Using the above notation we are able to state our main result.

Theorem 1.1. Assume that ((a,b);) — ((a,b)3) and (Ko) — (Ks) hold. Then, (S) has a positive
solution (ug,vy) € DV2(RN) x DV2(RYN) with

1~ 2 ~
ng/z < I(up,v9) < ng/z.

The paper is organized as follows. In Section 2 we study the limit system associated to
(S). In Section 3 we give the complete descriptions for the Palais-Smale (PS) sequences for the
functional I. The proof of the main result is in Section 4.
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2 Limit problem
We notice that we can use the homogeneity condition (Ko) to conclude that
1 1
K(s,t) = 2—*3[(8(5,1?) + ﬁth(s,t). 2.1
In this section we study the limit problem given by

1
—Au = 2—*Ku(u,v) in RY,

_ 1 - N
(Sx) —Av = 2—*Kv(u,v) in RY,

u,v >0 in RV,
u,v € DV2(RN), N >3,

which the functional associated I, : D'?(RY) x DV2(RY) +— R given by

1 1 1
oo(,0) = 3lhal? + 3100 = 5 [ K o).

Lemma 2.1. Let (uy,, vy, ) be sequence (PS). for I.. Then
(i) The sequence (uy,v,) is bounded in D'?(RY) x D'2(RY).
(ii) If u, — win DY2(RN) and v,, — v in DV*(RN), then I’ (u,v) = 0.

SN/2

1
(iii) If c € (—o0, NSK ), then I, satisfies the (PS). condition, i.e, up to a subsequence,

(tn,vn) = (u,v) in DV*(RN) x DV2(RY).

Proof. Since I (up,v,) — cand I’ (un,v,) — 0 and from (2.1), we conclude that there exists
C > 0 such that

1
C + |lun|| + [Jvall = IOO(UnUn) - 5o 1 (un,vn)(umvn) = ||“n||2 + 7””71”2 + On(l)

2%
and the proof of part (i) is over. Now we prove (ii). Since u,, — u in DV?(R™) and v,, — v in

D'2(RY), up to a subsequence, we get

u, —u in LL (RN, v, = v in LI (RN),

loc loc

and
() = u(z) a.e in RN, v,(z) = v(z) a.e in RY.

Using a density argument we obtain

Koy (U, vp)pdx + / Ky (tn, vp)tbde — / Ky (u,v)pds + K, (u,v)pdz.
RN RN RN RN
for all ¢, € DV2(RY), which implies (i1).
In order to prove (iii), consider w, = w, — v and 2z, = v, — v. Note that applying [11,
Lemma 4.6], we get

1 1
on(1) = I' (tn,v0)(tn,vp) = |[tn)* + ||vn]|* = > /RN Ky (thn, vy ) unde — Ky (tn, vy)vpde

2% Jan

1
lwn 1+ flull® + 1zl + l0]1* = 5 /RN Ku(wn +u, zn +0)(wp + u)dz

1
- o Ky(wy + u, 2 +0) (2, + v)d.
2 Jan

(2.2)
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From [9, Lemma 8], we have

1
IIwnII2+IIUH2+||zn||2+||v||277/ Ky(wn, 20 )wpdz
2% Jan

1

1
— Ky (wpzn)zndr — —/ K, (u,v)udr — —/ K, (u,v)vdx = o0,(1).
2% Jpn 2% Jpn

Using the item (7¢) and (2.1) we obtain
JunlP o+ el = [ K s ) = 0, (1)
]RN

Up to a subsequence, we conclude that there exists p > 0 such that
0<p= lim [||wn||2 + ||zn||2} = lim / K(wh, 2,)d.
n— o0 n—oo JpN

Suppose, by contradiction, that p > 0. From the inequality

B 2/2
sK( AXum,a»dx) < Nlwnl + [zl
RN

we get
p>Sp* = p> SN2 (2.3)
Since
Foo(u,w) = (3 = o ) Ol + 101P] = 0l + ol > 0
colU, V) = 3 u v N u v =
and
1
o= llwnl® + 2l + Ioo (u, v) + 0n(1), (2:4)
we conclude
¢ = lwnlP+ o] + Lot 0) + 0n(1) = s [lwnll® + 2] + 0n(1) = wp > =5
N n n oo\ Yy n N n n n NP =N K
which is a contradiction. Hence p = 0 and
HwnH2 ”un u||2 — 0 and HanZ ”vn - UHZ — 0.
O

3 A compactness result
Now, we establish the following lemma which will be useful to prove a compactness result.

Lemma 3.1. Let (u,,v,) be a (PS), sequence for the functional I, with v, — 0, v, — 0
and u, -+ 0, v, - 0. Then, there are sequences (R,) C R, (z,) C RY and (Yo,Y;) €
D'2(RN) x DV2(RN) nontrivial solution of (Ps,) and a sequence (7, C,) which is a (PS)z for
the I, such that, up to a subsequence of (uy,,vy,),

o (2) = up(x) — RN"D2Y0(R,, (z — ) + 0n(1)

and
Cn(@) = un(z) — R(vsziz)/z Y1 (Ru(z —20)) + on(1).



POSITIVE SOLUTIONS OF A CRITICAL SYSTEM IN RY 507

Proof. Let (uy,v,) C DY?(RY) x DV2(RY) be a (PS). sequence for the functional I, i.e,
Ino (U, vn) — ¢ and I’ (up,v,) — 0. 3.1

From Lemma 2.1, (i), we get that (u,,, v, ) is bounded in D'2(RY) x D'2(RY). Since u,, — 0,
v, — 0 and u,, - 0, v, - 0 it follows from Lemma 2.1 (i74) that

1 ~
C 2 ng/z
Note that from (2.1) we obtain
¢+ 0n(1) = Lo (ttms 00) — T (1 00) (11 ) = i/ (Vun? + [Von[2lde,
2% N RN
which implies
/N[\Vun|2 + | Vo, P)de = SN2, (3.2)
R

Let L be a number such that B,(0) is covered by L balls of radius 1, (R,,) C R, (z,,) C RY
such that

gN/2
sup / [[Vun|? + | Vo, |} de = / [[Vun|? + | Vo, |*de = 5{7
vern B ) B (en)

‘n n

and the function

(wn (), 2n(x)) = (RS_N)/Zun (];7 + xn> , R%Z_N)/Zvn (]if + xn) )

Using a change of variable, we can prove that
oN/2

/ [Vl + Vzallde = S = sup / [V + V2 Pl
B1(0) 2L yerv JBi(y)

Now, for each (&, ®,) € D?(RY) x D2(RY), we define

(@), ®2.0)(z) = (RN=2/2 ®i(Rp(w — 2,)), RYY ™I @Ry (x — 2)))
which satisfies
/ [Vu,V®; ,, + Vu,V®, ,|de = / [Vw, V®; + V2, Vd,|dx (3.3)
RN RN

and

/N[Ku<unyvn)ci)l,n +Kv(unavn)&)2,n]dx = /N[Kw(wnazn)q)l +Kz(wn72")q)2]d£€, (34)
R R

where we conclude that

Ioo(wp,y 2) — ¢ and I (wy, 2,) — O. 3.5)

From Lemma 2.1, there exists (Yo, Y;) € DV2(RY) x DV2(RY) such that, up to a subse-
quence, (wy, z,) — (Yo, Y1) in DL2(RY) x DL2(RY) and 1., (Yo, Y;) = 0.
As a consequence of [9, Lemma 6], we get

K (wp, z2n)pdz — /RN K(Yo,Y1)pdz + Z o(x;)v, Vo€ Coo(RY) (3.6)

N
R jeJ
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and

IVwn? + [Van|> = p4 0 > [VYo]* + [V 2+ Y é(z)pws + Y é(x5)05, Vo € C°(RY),
JjeJ JjeJ

for some {z;};e; C R and for some {v;};cs, {11j}jers. {o;}jes C RT.

Since §Kz/j2-/ % < pj + oj, we can conclude that J is finite. From now on, we denote by

J=1{1,2,...m}and " C R¥ the set given by
I'={z; € {z;}jes;|zj| > 1}, (z; given by (3.6)).

We are going to show that (Yo, Y;) # (0,0). Suppose, by contradiction, that (Yo, Y;) =
(0,0). Then, by (3.6) we have

K(wn, zn)¢dx — 0, Yo € C°(RN \ {z1, 22, .., T })- (3.7
RN

Since (¢1,n, P2.n) = (Pwy, d2z,) With ¢ € C§°(RN \ {1, 22, ..., 2., }) is bounded, we obtain
Iéo (wm Zn)(¢l,n7 ¢2,n) = On(1)7

that is,
/ [anv¢ln+vznv¢2n 7/ wnazn ¢ln+K (wnyzn)¢2n] 51720”(1)
RN

Using the definition of (¢ ,,, ¢2.,) and (2.1) , we have
/ ([Vw,|* + V2, [} ¢dz + / [w, Vw, Vo + 2, V2, Voldx — / K(wy, zn)pdz = o, (1).
RN RN RN
Then,
| w1V lods < [ onllFunl Vol +zal 920/ [Folldot | K (wn,z0)ods = on(D).
RN RN RN

Using Holder inequality we get
1/2
/ [[Vw,|* + | V2 |Hddz < [Vw,|a (/ |wn|2|V¢2dx)
RN RN

1/2
+ |vZn|2(/ |zn|2|V¢>|2dx> +/ K (wp, 2n)¢dx = 0,(1).
RN RN

Since there exists R > 0 such that suppp C Bgr(0), we have

1/2
wn|2dx)

1/2
+ C|Vzn|2(/ |zn|2dgc> —|—/ K (wp, zn)pdx = o,(1).
BR(O) RN

/ [[Vw,|? + |V, |?|pdz < C|Vw,l, (/
RN

Br(0)

Since (wp, 2,,) is bounded in D12(RY) x D12(RY), from compact embedding and (3.7), we
obtain

/ [[Vwn|? + |Vz,|2]¢dz — 0, Vo € COMRN\ {1, 2, ..., T }). (3.8)
RN
Let p € R be a number that satisfies 0 < p < min{dist(", B;(0)), 1)}. We will show that

/ [[Vwn|* + |V2,|?|pdz — 0. (3.9)
B14,(0)\B (0)

2 (0
l+3
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We consider ¢ € Cg°(RY) such that 0 < ¢(x) < 1 and ¢(x) = 1if v € By1,(0). If =
BlrN\{ay,...,z.}» fOllows by (3.8) that

/ [[Vwn|* + |V2, || ddz — 0.
RN
Since

[|an|2+|Vzn|2]da:§/ [V + [V Pl

o

0 < /
Bl+p(0)\Bl+§

/ [|an|2 + \Vzn\z}g?)dx < / [|an|2 + |Vzn|2]gi~)d:177
B]er(o RN

we have that (3.9) is true.
Let ¥ € C5°(RY) be such that 0 < W(z) < 1 forall z € RY and

B(e) = {1, z € B g(0)

0, z € Bli%p(O)

and consider the sequence (¥ ,,, ¥2,,,) given by (¥ ,,, ¥2,n)(2) = (¥(2)wn (), ¥(x)z,(x)).
Note that

/ [V % + | VW2 |*]de
Bl+p(0)\Bl+% (0>

< 4 2| Vw,|*dx + 4
)

|‘P|2|Vzn|2dx
(Bip(0\B,, 2 (0 2

(B p O\ By, (O
+ 4/ \w”|2|V‘I‘\2dx+4/
[B1 0 (O\B,. ¢ (O) [B1(O\B

From (3.9) we obtain

|20 |2 V) de.
>

1+4

/ [V, [* + | VW2, [*]dz — 0. (3.10)
Biop(0\B, g

Since (W1, ¥2,,) is bounded in D'2(RY) x D!2(RY), we derive that

Vw, V¥ pdx + / Vw, V¥ ,dx

/Bl+p<o>\BHf;(0) Prig©)

+ / V2, V¥ ndz + / V2, V¥, ndx
Bl+p<0)\B]+§(O) B|+§<0)

1 1
Y Ky (wn, 2n)dx

% - \Pl,an(wn’Z”)dx
2 BHp(O)\BHg(O) 2 Bl+§(0)

1 1
_ R lP27nKZ(U)n7Zn)dl'

” lPZ,n[(z(wna Zﬂ)dz = On(l)
2" b1, 00\B,. 4 (0

2 Bl+§(0)

From definition of ¥ we have
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/ Vw, V¥ ,dz —|—/ VW, n| dx
Bip (O\B,, £ (0) By, (0)

+ / Vz, V¥, dx +/ VY, n|2da
Bl+p(0)\Bl+§(0) Bl+£(0)

1
- ? \Pl,an(wn>Zn 7/ lIlln ‘PI nalPZ n)
Bl+p(0)\Bl+§(0) 1+"
1 1
- ? lPZ,nKz (wn7 Zn)dx - ? ‘PZ,nKz (‘Pl,?ulPZ,n)dx = 077(611-1)
Bl+p( )\BHP(O) B]+§(O)

Note that from Holder inequality and (3.10) we get

/ Vuw, V¥ ndx —i—/ V2, V¥ ndx — 0 when n — oco. (3.12)
B”P( )\Bl+"(0) BHP(O)\Bl+§(0>

Moreover, from a direct calculations we have

1 1
T Wi Ky (wy, 2n)de + = o / Yy, K, (wn, 2n)dx = 0,(1)(3.13)
B1,,(0 )\BHP(O) By, )\B]+P(O)

From (3.11), (3.12) and (3.13) we obtain

J

- V) K (W0, Wo ) de = o (1). (3.14)
2" JB,.40)

1
/ |vqu7n|2d$ — ?/ ( )\Pl,an(‘Pl,nleZ,n)dx
P 0

|+§(0 1+5

(0)

£
l+3

Note that

/L.

2]dl’ = / Hvlpl,n|2 + |V‘P277l|2]dz
e (0)

+£

[V >+ VW2, [Y)de + / ( )[|vw1}n|2
0

P
l+§

— o) [ TP [V e
B, p(0)
and using (2.1), we get

K(‘Pl,m "P27n)dl‘ =
RN

K(lPLn, szn)d.ﬁ
(0)

5
T

(Tl,nalPZ,n)d K lPl,'rulPZ,n)dx

I
S

Bl+p(0)\B|+P (0)

Il
S

T —I—/ (
By, ¢ (0)
3
K(Win, ¥on)da +/ K(¥1n, ¥2,n)dx
Bl+ﬂ(0>\Bl+§(0) Bl+§(0)

we conclude that

/ HV‘P],MZ + |VT2,n|2]d$ — K(‘{J],n,‘sz)dl‘ = On(l)
RN RN
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From definition of S Kk, we have

1 .
012 1l 1= (7 ) 9 1 P
SK
1 N
= [I¥inl?+ I¥2al%] - T/Z[HTI,nHZ + [[¥2n )17
SK
< / [V 2 + [V, 0 [2)de —/ K(®, 0, W )de = on(1).  (3.15)
RN RN
Note that
1902+ [P = /' vau#+wkufwx+/" IV P+ [V, Plda
Bi4,(0\B, 2 (0) (0)

P
l+§

= on(l)—i-/ [V ,* + VW2, |*)d.
B, 2 (0)

L
l+3

Since @1, = wp, P2 = 2, in By g (g) and that By, ) C B»(0), we obtain

||lP17TL||2 + ”‘PZJLHZ < On(l) +/ [‘lel,n‘z + |VIP27n|2]dl‘,

B(0)

which implies

A

||1P1,n||2 + ||lP2,n

2 < on(l)—l-/ (Vwnl? + [Vzn]da
Ué:l B (yk)

L
< o+ [ [Vl +[Vaflde
=1 Bi(yk)
N2
< on(l)—l—Lsup/ [V + [VanPldz < on(1) + 2K
yeRN J By (y) 2
Then,
5 ) 1/2 gN/4
(I 12 1) < 000+ 3
implies
(27=2)/2 GN/AN 272
(Ilpl,n||2+||‘l'z,n |2> gon(1)+<2§</2> . (3.16)

Using (3.15) and (3.16), we have that

2 2 1 gg” v
(%1017 + 2,17 {1 4 0n(1)

55;/2 71/2
| GN/4\ 272
=[%WHmmﬂwﬁy%mQﬁ>]}
1 “_
< [H\Pl,nnz + ”\PZ,HHZ] {1 - §2*/2 [”\PI,HHZ + ”\'PZ,HHZ]Z 2} = On(l)'
K

But the equality

&=

X 2 N/ 4 N
(2 _2)_2_4<N2>_N2_0’
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implies

R 1 (2*=2)/2
”Cpn” [1 - <2> :l < On(l)a

where we conclude that (@, ,,,®1,,) — (0,0) in D2(RN) x DI2(RY).
Since wy, = @y ,,, 2z, = P2, in B;(0), we obtain

0< [ [Fwal + Va0 lde < Bl + [P0
B(0)

which implies

/ [[Vwn|* + |V2,|*]dz — 0 when n — oc.
By 0)

But this last convergence it is a contradiction with

N2

/ [[Vwn|> + |V, |}de = £~ vneN.
B,(0) 2L

Then, (Yo, Y1) # (0,0). Now we are going to show that there is (7,,, ¢;,,) in D'2(RY)x DV2(RY)

such that (7, ¢,,) is a (PS); sequence for I, satisfying
o (%) = un(2) — RE«LN72>/2YO(RH($ —a5)) + on(1),

Cn(x) = vn(2) — RELNiz)/le(Rn(x — ) + on(1),

for some subsequence of (uy,v,) that still denote by (uy,v,). For this, we consider i) €

C§°(RY) such that 0 < ¢(z) < 1 forall z € RN and

(1, if 2 e B(0),
vie) = {0, if z e B5(0)

and consider (7,,, ;) a sequence defined by

Tn(l‘) = un(ﬂj) - RELNiz)/ZTO(Rn(I - xn))d}(Rn(m - -Tn))7

<n(z) = vy (x) — RgLNiz)ﬂYl (Rn<$ - xn))"/’(Rn(m - xn))a

where (R,,) satisfies R,, = % — o0o. From (3.17) and (3.18), we obtain

ROV, (2) = BE 2 () — Yo(Bale — 7))o (Bl — 22)

and

Rg_N)/ZCn(w) = R;Z—N)/zvn(x) - YI(Rn(x - xn))w(én(‘r - xn))

Making change of variable, we conclude

Rgzz*N)/zTn <£ + xn) = RngiN)/zun (RZ + xn) - T0¢<

n

)

:Ul‘
T w

and

RN, (g’ + x) = RNy, (RZ + x> - w(

I3
e
N———

Now we define
Fn = REN)/27 (1; + xn>

and

gn = R%Z—N)/ch (};:n + xn) .

(3.17)

(3.18)
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Since
wp(z) = RS—NW n(; +xn>
and
(@) = RgiN)/zvn (]:{E + In)7
we get,
Tn(2) = wn(z) — Yo(2)¥ (;) (3.19)
and
§Ad—WQ@)—de¢<éf>. (3.20)
If
Yn(2) = w(é) (3.21)

we have that

1, if z € By (0),
Yal2) = {0 if ze Bff(((g)
’ 2R, :

From (3.19), (3.20) and (3.21), we derive that
Tn(2) = wn(z) = Yo(2)¥n(2)

and B
Cn(2) = 20(2) = Y1(2)¢n(2).
Since R,, — oo, it is not difficult to show that Y3, — Y; in D"?(RY), i = 0, 1. Then

Tn(2) = wn(2) — Yo(z) + 0n(1) (3.22)
and
Cn(2) = 2 (2) — X1(2) + 0n(1). (3.23)

To finish the proof, it is enough to show that (7, () is a (PS): sequence for . Note that
making a change of variable we get

Ioo(Tn7 Cn) - Ioo(%ru Zn)

Using (3.22) and (3.23) and applying [11, Lemma 4.6], [9, Lemma 8] and (3.5), we have

Ioo(Tnagn) = Ioo(wnvzn) - Ioo(Yonl) + On(l) =c+ On(l)’

where ¢ = ¢ — I (Yo, Y1).
Now, since B
0 < 115 (Tns G)llpr < 15 (T Gl v

it is sufficient to prove that || I/_(7,, En) |l — 0 which is equivalent to show that

112 (Fn, Co) = I (W, 20) + I' (Yo, Y1) || o — O. (3.24)

But the last convergence is a direct consequence of [9, Lemma 8]. O
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The next result is a version for a gradient system in R" of the result due to Struwe that can
be found in [14].

Theorem 3.2. (A global compactness result) Let (u,,,v,,) be a (PS). sequence for I with u,, —
ug in D'2(RN) and v,, — v in DV>(RY). Then, up to a subsequence, (u,,,v,) satisfies either,

(@) (tn,vn) = (uo, v0) in D'2(RY) x DV2(RY) o7

(b) there exists k € N and nontrivial solutions (z},(}), (25,C3), .. (2§,C%) for the system
(Sxo), such that

k

2 2 2 2 j (12 112

lnl + loal® = lluol® + llvoll® + >[5 1 + 16311
j=1

and
k

I(Unavn) - I(“OavO) + ZIOO(Z(j)aC(j))
j=1

Proof. From the weak convergence and a density argument, we have that (ug,vo) is a critical
point of I. Suppose that u,, - wug, v,, = vp in D' 2(RN) and let (w!,z}) c DI2(RY) x
D'2(R™) be the sequence given by w! = u,, — ug and 2z} = v,, — vy. Then, w} — 0, z! — 0in
DV(R¥) and w! -+ 0, 2z -+ 0in D'72(]RN).
Applying [11, Lemma 4.6] and [9, Lemma 8], we obtain
Io(w), 2}y = I(un,v,) — I(ug,vo) + 0, (1) (3.25)

n»~n

and

I' (wh, 20) = I'(un, vn) — I' (ug, v0) + 0n(1). (3.26)

Then, we conclude from (3.25) and (3.26) that (w,., 2. ) isa (PS)Cl sequence for /.. Hence,
by Lemma 3.1, there are sequences (R, 1) C R, (z,,1) C RY, (2}, ¢}) € DV2H(RY) x D 2(RN)
nontrivial solution for the system (Ps,) and a (PS)., sequence( 2 22) C DY2(RN)x DI2(RY)
for I such that

wl () = wh(@) = RN (Rt (@ — 2a1)) + 0a(1)
and N "
2 (x) =z (2) = RO (Rt (@ — 200)) + 0a(1).
If we define
@l () = RV 0], ( z 4 xn,1> : (3.27)
’ Rn,l
Yl (z) = Rf;N>/2z;< r o4 xml) (3.28)
’ Rn,l
and
P2 () = RiilN)“wi( + )
n,l
2(a) = RO,V ( i )
’ Rn 1
we get

w;(x) = @, (x) — z0(x) + on(1), (3.29)

Zo(x) =¥, (x) — (o (x) + on(1) (3.30)
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and
151l = llwnll, 150 = Izl and/ K(®,,¥,)dz = RNK(wn,Zn)df& (3.31)
Hence,
Lo (@, ¥}) = Loo(wy,, 2,,) (3.32)
and
(3.33)

b (@ ¥y) = 0 in (DM(RY))"

From (3.32), (3.33) and from item (a) by lemma 2.1, we have that (P}, ¥}) is a bounded

sequence in D"2(RY) x D"2(R") and, up to a subsequence,
@ —~ 2, ¢l —~¢ in DY2(RY). (3.34)

Applying [11, Lemma 4.6] and [9, Lemma 8] again, we obtain
oo (28, ¢8) + 0,(1)3.35)

Lo (W, 2) = Too(®y,, Wy,) = Ioo(20,60) + 0n(1) = I(un, v5) — I (u, vo) —
and
I (7, 20) = T (@, W) = I (20, o) + 0n(1). (3.36)
If w2,z2 — 0in D'2(RY), the proof is over for k& = 1, because in this case, we have

2 2 2 2 112 o 12
[[unl| + lloall” = lluoll™ + [lvoll + ll20[1” + o[l

Moreover, from continuity of 7., we get

I(u’ru Un) — I(“O) UO) + Iw(zé7 Cé)
- 0in DV2(RY), using (3.30) and (3.34) that w?,z2 — 0 DV2(RY), by
w?,z2) is a (PS),, sequence for I,

TL"I’L

If w2 —» 0,22
3) € DVA(RYN) x
2

(3.35) and (3.36), we conclude that (w
By Lemma 3.1, there are sequences (R,2) C R, (z,2) € RY, ( 5,
>,7z) € DMA(RN)x DL2(RY

D'2(R¥) nontrivial solutions of (S.,) and a (PS)., sequence (w?, 23>

for I such that
w)(x) = @2 () — RS P2 (Ran(e — 202)) + 0a(1),

2 (2) = 2 (2) — RUY 2@ (Run(e — 242)) + 0n(1).

If
@, (z) = RSEN)/Z@% <R ) + In,2>a
W2 (x) = R,V (2 4w, 2)
n, Rn,2 »
and
i) = R (s a),
’ Rn,2
B () = RV z( - )
’ Rn,Z

we have that
(3.37)
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(@) = ¥h(2) = G (2) + on(1). (3.38)
Arguing as before, we conclude
1317 + 12312 = Nunl® + lonll? = lluol® = ool — 201> = I lI* = llz5 1% — 1G> + 0 (1)X3.39)
Loo (W, 23) = (1, vn) — 1 (19, 0) — Lo (20, o) — Lo (25, 65) + 0 (1). (3.40)
and
I (W, 2) = I (@0, 7)) = 1 (26, G5) + on(1). (3.41)

If @3, 22 — 0in DV2(RY), the proof is over with k = 2, because ||@}||> — 0, [|Z}]> — 0

L77l

and from (3.39), we have

2
lanl® + ol = Juoll* + llvoll* + > [l + 163 117]-
j=1
Moreover, from continuity of I, we have that I, (%)) — 0, now using (3.40) we get

2
I(unavn) — I(U(),’U()) + ZIOO(Z(J)’C(J))

J=1

If w),z3 - 0in D"?(RY), we can repeat the same arguments before and we can find

n? n

(28,05 (23, 2), ooy (271,¢ ") nontrivial solutions for the system (S..) satisfying

k—1
ISR+ 1517 = =+ a1 = ol = ol = D212 = G+ 0a(), (3:42)
=1
and
k—1 o
Io(Z%,Z%) = I, vn) — I(ug, vo) — Ino (2], G) + on(1). (3.43)
j=1
From definition of S ', we conclude that
o 2/2" _ ‘ ,
(/ K(z{)@g)dx) Sic < |2+ ICIR G = 1,2, k= 1. (3.44)
RN

Since (zg7 Cg) is nontrivial solution of (S, ), forall j = 1,2,....k — 1, we get

4P+ IGIE = [ K,
RN

Hence,
—1RIP - IGI? < -S¢% j=12,.. k1. (3.45)
From (3.42) and (3.45), we have
@p 1> + 125117 = llunll + llonll* = lluoll* — llvoll?
k—1

D IR+ IGIR + 0 (1)
j=1

aN/2
< lun? + [[onl® = lluol® = fleoll” = (k = DSK'* + on(1). (3.46)

Since (uy,,vy,) is bounded in D'2(RY) x D'2(R™), for k sufficient large, we conclude that

wk, Z% — 0in D2(RY) and the proof is over. O

wy, ,
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Corollary 3.3. Let (uy,,v,) be a (PS). sequence for I with ¢ € (0, %ggﬂ) Then, up to a
subsequence, (u,,,v,) strong converges in D'2(RN) x DV2(RY).

Proof. We have that (u,,,v,) is bounded in D'"2(RY) x DI2(RN),

Uy — Uy, vy — v in DV2(RY)
and by a density argument I’ (ug, vo) = 0. Suppose, by contradiction, that

Uy = Uy, Up — Vo iN Dl’z(]RN).
From Theorem 3.2, there are k € N and nontrivial solutions (2}, ¢}), (23, (), ..., (2, ¢§) of the
system (S ) such that,

k . .
2+ lonl1* = llwo > + looll® + D 112311 + 16311%]
j=1

and
k

I(up, vn) = I(uo,v0) + > Too(25, Q)

j=1
Note that by (2.1) we have
Loy 1, o 1 L1
I(ug,v0) = =luoll”+ zllvoll” + 5 a(x)ugdzr + = b(x )vodx—— Kuo,vo)d
2 2 2 Jun 2 Jan
1 1
= slolP + gt + 5 ([ Kuow)ds — JulP = ol ) = 32 [ Kl w)d
= L[ K(ug,vo)de > 0
== N . Uup, vo)axr = Y.
Then,
k k i |
SN2 SN2
C:I(anUO)—'—; ZO?CO Z ZoaC() >NS / ZNSK/v
= =
. . .. . 1 oN/2
which is a contradiction with ¢ € (0, S’ "). o

Corollary 3.4. The functional I : D'2(RN) x DV2(RY) — R satisfies the Palais-Smale condi-

tion in (]\,S}]\(]/2 2 SN/z)

Proof. Let (u,,v,) be a sequence in D'»2(RY) x D'?(R™) that satisfies
I(up,vn) — ¢ and I'(up,v,) — 0.
Since (uy, vy ) is bounded in DV2(RY) x DU2(RY), up to a subsequence, we have
Up — Uy, vp — v in DVA(RY).
Moreover, I (ug,vg) > 0. Suppose, by contradiction, that
Uy = Uy, Up —~ Vg 1N DI’Z(RN).
From Theorem 3.2, there are k € N and nontrivial solutions (2}, ¢}), (23, ), ..., (2, ¢&) of the

system (S, ) such that

k

2 2 2 2 j (12 j (12

lnl + loal* = lluol* + [lvol* + D _[II=511* + 163117
j=1
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and
k

I, vn) — I(ug,vo) + ZIOO(ZS, Cg) =c.
j=1
Since I (ug,vp) > 0, then k = 1 and zé, Cé cannot change of the sign. Hence,

1 ~
¢ = I(ug,vo) + Ino (28, ¢8) = I(ug, o) + NSQ/Z.

From definition of Sy, I’ (ug, vo) (uo, vo) = 0 and

1
I(ugp,v9) = — K (ug,vo)dz,
N Jon
we have,
2 anp2 1 any2
NSK/ < I(ug, vo) + NSK/ =c,
which a contradiction with ¢ € (&Sr/®, 25%/%). O

Corollary 3.5. Let (un,v,) C DY2(RYN) x DV2(RN) be a (PS). sequence for I with ¢ €
(%Sg/z, %Sﬁ/z), where k € N. Then, the weak limit (ug, vo) of (un,vy,) is not trivial.
Proof. Suppose, by contradiction, that ug,vg = 0. Since ¢ > 0, then u,,, v, - 0in D"2(RY).
From Theorem 3.2, up to subsequence, we get
k k
a1+ [lon > = fluoll* + lleoll® + D125 17 + 16 1P = D[z 17 + 16 1)
j=1 j=1

and
(T ) =N (k+1) gny2
I(Un,’l]n) — I(UO,UO) + Z;IOO(ZO’CO) = ZIIOO(ZO’CO) =cz TSK )
= =
which a contradiction with ¢ € (%gg/ 2 %gg/ %), m

From now on we consider the functional f : DV2(RY) x DV2(RY) — R given by
f(u,v) = / \Vul|>da +/ |Vo|*dx +/ a(z)u’dx +/ b(x)vida
RN RN RN RN
and the manifold M C D'?(RY) x D'2(RY) given by

M= {(u,v) e DM2(RN) x DM2(RN) : K(u,v)dz = 1}.

RN
The next results are direct consequence of the corollaries above.
Lemma 3.6. Let (u,,v,) C M be a sequence that satisfies
f(un,vn) = ¢ and  f'|p(un,v,) — 0.

Then, the sequence (wy, z,) C DV2(RN), where (wy,, z,) = (c<N’2)/4un, C(N’2)/4vn), satisfies
the following limits.

N/2

1
I(wn, 2n) = NC and I'(wn,zn) — 0.

Lemma 3.7. Suppose that there are a sequence (u,,v,) C M and ¢ € (Sg,2%/N Sy) such that
Fun,vn) = ¢ and  f'|p(un,v,) — 0.
Then, up to a subsequence, u, — u, v, — v in DV"*(RYN), for some u,v € D'2(RY).

Corollary 3.8. Suppose that there are a sequence (u,,v,) C M and ¢ € (.§K, 22/N§K) such
that
f(un,v,) = ¢ and  f'(up,v,) — 0.

1
Then I has a critical point (ug,vy) € DV2(RN) x DV2(RYN) with I(ug, vy) = NCN/Z.
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4 Existence of positive solution to (P)

Now we recall some properties on the function @5, given by in (1.1). Note that
(@54, Ps,y) €L = {(u,v) € D"*(RY) x D"*(RY);u,v > 0}. (4.1)

Moreover, making a change of variable we can prove that

&5, € LIY(RY) for g€ <NA_722} V6 >0 and Vy e RN, 4.2)

The proof of next result can be seen in [1, Lemma 4].

Lemma 4.1. For each y € RY, we have

(i) ||¢57y||H1.oo(RN) — 0 when § — o0,

. N .
(ii) |Ps,y|lq = Owhen § — 0, Vg€ <N—2’2 )

N
(iii) |Ps,y|q — +00 when 6 — +oo, Vq € <N2’2*>'

The proof of next result can be seen in [1, Lemma 5].

Lemma 4.2. For each € > 0, we have

/ |V®;0[*dr — 0 when § — 0.
RN\B.(0)

4.1 Technical Lemmas

Lemma 4.3. Suppose that a,b € L1 (RY), Vq € [p1,pa], where 1 < p; < % < pywithpy <3
if N = 3. Then, for each & > 0, there are § = §(¢) > 0 and § = 6(¢) > 0 such that

sup f(8oPsy,toPsy) < Sk +e, b€ (0,8] U [0, 0).

yeERN

N 1 1
Proof. Consider y € RV, ¢ € (2’14 and ¢ € (1,4+00) with = + ;= 1. Making a direct
q

calculations we have

N
2t < 2%, 4.
N72< t < 4.3)

N
Since @5, € L4Y(RY),Vd € (1\7—2’2*)’ we get [®5,|> € LY(RY). Then, using Holder

inequality and change of variable, we have
[ al@)@soPds < [al,@so. ¥y <R
R
and

[ H@)@ssfde < bl @sof vy € RY.
R

From item (¢4¢) of Lemma 4.1, given ¢ > 0, there exists § = d(¢) > 0 such that

sup f(s0®s.y, to®Ps.y) < Sk + % < Sk +¢e, V6e(0,4].
yeRN
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Suppose that g € [pl, g) with ¢ € (1,+00) and 1 + % = 1. Note that 2¢ — 2* > 0 and for
q
0>1,

|5, | € L= (RY) (4.4)

and |®;,|>" € L'(RY). Then, |®;,|> € L*(RY). Using Holder inequality with ¢ and ¢, we get

1/¢
2 [ o, Pae < Slaly(( [ 1@00Paz)
RN RN
1/t
= iy ([ a0l 050 s
RN
1/t
< sllafsal @0 [ @naas) < sl sl
RN
< 2lal, @SN/ gy ¢ RN,

Then, given £ > 0, there is 6 = 6(g) > 1 such that

(2=N)/2)/2)(@t=2)/t) & 5
) < 252l T Vé € [0, 00).

Arguing as the same way, we have

£ [ s,
RN

2e < L[bl 22 SN2y e RN

Then

F6u®syta®sy) = S+t [ ale) s, Pdo sl [ b0, P
RN RN
< sl [ a@)@s, et s [ o), e
yeRN JRN yeRN JRN

§K+§<§K+a, vy e RY and V6 € [3,00).

IN

Lemma 4.4. Suppose that (a, b)s is true. Then,

sup  f(50®s, te®s,) < 22N Sk.
yeRN
§€(0,+00)

Proof. Using Holder inequality with N/2 and N/(N — 2), we get
F(50Ps,y,t0Psy) < §K + Sév‘a|LN/2(RN) + toN|b|LN/2(RN).
From (a, b); we conclude

sup  f($0®@s.y, to®s.y) < Sk + Sk (22N — 1) = 22/N 5.
5£000)

Consider the function

g(x):{ 0, if |z/<1

1, if |z >1
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and define a : D'"2(RN) x DI2(RN) — RN+ by
1 T
alu,v) = T/ (,E(a:)) [53|Vu|2 + ti|Vv|2]da: = (B(u,v),v(u,v)),
Sk JRN |CC‘
where

Blu,v) = ;/ ﬁ[si\wﬁﬂi\wﬂd:ﬂ
SK RN |$|

and

) = = [ €@IRIVaP + 2VoPid
SK RN

1
Lemma 4.5. If |y| > 5 then

B(Ps,y, Ps,y) = |—y| +o05(1) when §— 0.
Yy

Proof. Given € > 0, from Lemma 4.2, there is § > 0 such that

/ V®;, [2dx = / IV®s0%dz < e, Vo€ (0,9).
RN\ B, (y) RN\ B, (0)

Then,
2, 42 24 42
‘5(‘135,y,¢5,y)50~+ 0/ A SO~7+O/ Vs, [*da
Sk B:(y) |z| Sk JRN\B.(y)
< g V6€(0,9). (4.5)
Note that
y s34t x > A
L o0 | V®s, [Pdx| < 4e + = Ce, V5 € (0,0). (4.6)
'Y
vl Sk JB.w Izl
From (4.5) and (4.6), we have
y s34+ 1§ T 2
B(@sy, Psy) — | = |B(Poy, Poy) — = 1| VPsy["dx
[yl Sk JB.w)
s+ t3 T 2 Y
+ = 0/ Vs, | dx‘
Sk JB.) |7l |yl
s%—i—tz T
< ‘5(%,@/»‘1’&@/)— = 0/ Vs da
Sk JB.w) |7l
2, 42
4 |t 0/ x|v<1>5,y|2dx—y’
Sk JB.w Izl [yl
< e4Ce

= Ke, V5€(0,0).

O

N
Lemma 4.6. Suppose that a,b € L1(RY), Vq € [p1,pa], where 1 < p; < 5 <P with py < 3
if N = 3. Then, for every § > 0, we have

lim  f(so®s.y,te®s.y) = Sk.

ly|—o0
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Proof. Since

2dz,

F(56Ds.4, to®Ps.y)) = Sk + s%/ a(z)|Ps,, [*dx + tids/ b(z)|Ds,y
RN RN
we need to prove that
lim a(z)| @5, [*dr =0, V6 >0
lyl—o0 JRN '

and

lim b(x)|Dsy|*dz =0, V5§ > 0.

ly| =00 JRN

Note that given € > 0, there is kg > 0 such that

2N
(/ a(sc)N/zdsc) <e, Vp>ko.
RN\B,(0)

1/2* 1/2*
2 dm) = (/ @5,0|2 dz) <e, Vp> k.
RN\B,(0)

ko <2p < |y| (p fixed)

and

(/ |q)5’y
RN\ B, (y)

Consider

and note that
B,(0) N B,(y) = 0.

Using Holder inequality with N/2 and N/(N — 2), we get

/ a(m)|<1>57y|2dm
RN

A\
VRS
—
2
=
W
A
=
C
W
A
5
2
4
~
[ e}
)
g
N———

+

2/N (N=2)/N
/ aN/zdx) (/ |<I>57y|2*dx>
B,(0) B, (0)

2/N (N-2)/N
/ aN/zdx) (/ |<1>57y|2*dx>
By(y) By(y)

+

2 dx

2/N (N=2)/N
/ aN/zdx> ( / |5, > dw)
RN RN\ B, (y)

><N—2>/N

+

+

(N=2)/N
(/ |q)5,y|2*d35)
RN

IN
7N VRS VR VRS VR VRS
—
e
—
o)
A}
=
S
=z
~
(38
Q.
3
N
~~
=4
VN
5~
=
—
W
he)
5
o
o
<

< e’ +lalnpe’ +e.

Arguing of the same way for the term (4.8), the proof is over.

( / |5, da
RN\ (B, (0)UB,(y))

%))

(4.8)

4.9)

(4.10)
.11

>(N2)/N



POSITIVE SOLUTIONS OF A CRITICAL SYSTEM IN RY 523

Now we define the set

5= {(u,v) € M;a(u,v) = (oé)}

and note that from Lemma 4.2 and Lemma 4.1, item (), there is 6, > 0 such that (®s, o, Ps,0) €

R

Lemma 4.7. The number ¢y = inf f(u,v) satisfies the inequality co > Sk.
UE
Proof. Since & C M, we have B
Sk < cp.
Suppose, by contradiction, that Sk = c. By Ekeland variational principle [16], there exists

(Un,vy) C DY2(RYN) x DL2(RY) such that

K(up,vp)de =1, alug,v,) — (0, 1) 4.12)

RN 2

and

F(un,vn) = Sc, f'|a(n, vn) = 0. (4.13)
Then, (uy, v, ) is bounded in D'?(R™V) x DV2(R™) and, up to a subsequence, u,, — g, vy, —
in DI2(RN).

If w, = SN-2/4,, 2, = SN=2/4 and wy = SN =2/4ug, 2o = SV =2/4y,, we have that
Wy, — W0, 2 — 2o in DI2(RY). Moreover, from (4.13) and Lemma 3.6, we get

1 ~
I(wy, 2n) — NSg/z and I'(wp, zn) — 0.

We are going to show that (wy, 29) = (0,0). Note that
Up = Ug, Uy - up in DVHRN), (4.14)

since otherwise, (ug,vp) € M implies ug # 0, vg # 0. Then,

N / |Vu0|2dx+/ |V >
Sk < *BY RY T :/ |Vu0|2dac—|—/ Vo[>
RN RN
( K(uo,vo)daz)
RN

< / |Vu0|2d:v+/ |Vv0|2dx+/ a(m)\u0|2d:17+/ b(z)|vo|*dz = Sk,
RN RN RN RN

which it is an absurd. Hence, w,, - wo, 2z, - 2z in D"?(R") and, since (w,, z,) is a (PS).
sequence for I, by Theorem 3.2 we obtain that

k
o 1 ~
I(wn.zn) = Iwo,20) + Y Io(3, ) = 5%
j=1

Since I', (2}, ¢]) = 0, we have that

I(’LU()7 Zo) = 0, (4.15)
k=1, (4.16)

20:Go >0, (4.17)
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1

N Jan
and from (4.15), we conclude that wy = 0 and 2y = 0. Then, (w,, 2,,) is a (PS). sequence for I
such that w,, — 0, z,, — 0 and w,, - 0, z, - 0.

Note that/ a(x)|wy, > dz = 0,(1) and/ b(x)|zn|*dz = 0,(1). Then,
RN RN

I(wo, 20) = K (wo, 20)dx

iA'N/Z +On(1) = I(wnazn> = Ioo<w"l’zn) +/

vk a(z)\wn\zdas +/ b(x)|zn\2dx = Io(vn) + 0, (1(4.18)
RN

RN

and
||I</>o(wmzn)HD’ < ||I/(wnazn)||D’ +0n(1)~ (4.19)

From (4.18) and (4.19) we conclude that (w,, 2,,) is a (PS). sequence for I, and by Lemma
3.1, there are sequences (R,) C R, (z,) C RY, (2},¢}) nontrivial solution of (S ) and
(P, ¥,) a (PS). sequence for I, such that

wy(z) = Py (w) + RﬁLN_z)/zzé (Rn(z —24)) +0p(1) and z,(z) = ¥, (w) + R%N_ZVZCA (Ru(x —xp)) + 0,

Note that if we define

Oy (w) = RV 220 (R — ), Wn(w) = REY22G (R — ),
making change of variable, we have
Iéo(&)n7an)(g07w) = Iéo(z(%7<(%>(<)0n7w7l) = 07 V(Qﬁ,w) 6 D1’2<RN) X Dlyz(RN)’ VTL E N’

ie, (®,,W¥,) is a solution of (S , forall n € N.
Moreover, from definition of (®,,, ¥,,) and by (4.17), we get

~ ~ 5 (N-2)/2
&, (2) =P, (2) =c - .
@) =80 = o i)

By (4.20), we obtain

un () = &)n(aj) + D5, y, (¥) +0n(1), va(z) = an(l‘) + @5, 4, (7) + 0, (1)

where . |
D, (x) = chn(m), Wn(z) = Wl}'n(@
Sk Sk
Using (4.16), we derive that ®,, — 0, ¥,, — 0 in D"2(RY), which implies that ®, - 0,
¥, — 0in DM2(RY). From (4.12) we have

(0.3 ) #00(1) = @t 0) = (@ )+, 1, (0,485, () F0u (1) = (D, P, )

which implies
(7/) 6(‘1)5”71171 ? ¢5n7yn) — 0
and

.. 1
(ii) Y Ps,,yn> Ps,yn) = 5-

2
Passing to a subsequence, one of these cases can occur.
(a) 6,, - +oo whenn — +oc;

(b) 8, — & # 0 when n — +o0;

1
(¢) 6, = 0andy,, — § when n — 400 with |§| < 3
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1
(d) 6, = 0 whenn — +oo0 and |y,| > 5 for n sufficient large.
Suppose that (a) is true. Then,

s34+ 13

Y(Ps, 4,.) = 1 —7/ |V®;, 4. |2dz,
Sk B (0)

which implies by Lemma 4.1,

s2 +
W @s)— 1 = ZLR [ vas
Sk B,(0)

2 2
so+ 1

zdxf = 0/ |vq)5myn
SK RN

2dx = o0,(1),

which contradicts (i7).
Suppose that (b) is true. In this case we can suppose that |y,,| — -+o0c, because if y,, — §, we
can prove that
@5, ,, — P55 in DVI(RY).

Since ®,,, ¥, — 0in D'2(RY) and u,, = B, 4+ Py, . + 0n(1), vy = P, + D5, 5, + 0n(1),
we have that (u,,v, ) converges in D'2(R) x DV2(R¥) but this is a contradiction with (4.14).
Then,

S0 1 13 55+ 15
7(¢6n;yn7¢§n;yn) = "’70 f(x)|v¢5n7yn|2dl‘ = ""70/ |V¢6n;yn|2dx
Sk JrN Sk JRN\B,(0)
2 t2
= 1- SNQ/ Vs, o dz. 4.21)
SK Bl(*fUﬂ)

From Lebesgue Theorem we can prove that

/ |V<I>5mo|2dx -0
B] (_bn)

and from (4.21), we obtain
YDPs,, ys Ps, iy ) — 1 When n — 400,

which is a contradiction with (44).
Suppose that (c) is true. We have that

5(2) + 2 512) + 2
7(¢6n;yn Y ¢6n;yn) = ""70 (x) |V®5n7yn |2dm = "-’70 / |V¢6n;yn |2dx
Sk JRN Sk JRN\B(0)
2 t2 2 t2
— Sth / Vs, . [2de — 5ol / Vs, o)>dz
Sk RN Sk Bi(—yn)
2 t2
— p-%th / Vs, ofdz. (4.22)
SK B](_yn>

Note that using Lebesgue Theorem again, we can prove that

2 2
lim 2% / Vs
n—+oo SK Bl(_yn)

2dz = 1.

Then, by (4.22) we have that
Y(DPs,, .y Lo,y ) — 0,
which is a contradiction with (4i).
Suppose that (d) is true. Since |y, | > % for n large, then y,, - 0 in R". From Lemma 4.5,
we get
Y

6((1)5”-,%,7@5”,3/”) = |y7n| + On(l)-

ﬁ(éénvyn ’ ¢6nvyn) - 07
which is a contradiction with (i). The, we conclude that Sk < co and the proof is over. O

Hence,
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Lemma 4.8. There is 6, € (0,1/2) such that

§ +c
(a) f(s0Ps,.y,toPs, ) < K2 0wy eRY;
1 1
(b) v(Ps, 4, Ps,,) < X Yy € RY such that ly| < E;

1 1
(c) |B(Ps, 4, Ps, y) — |ya < T Yy € RY such that |y| > 5
Proof. From Lemma 4.3, we can choose ¢ = il ; 5 > 0, 9, < min{d, 1/2} and conclude that

~ - S S
f(50®s, t0Ps,y) < sup f(s0Ps,y, toPs,y) < Sk + Q5K _ SK T

, Yy e RN, (4.23)
JERN 2 2

Now by definition of £, we have

s%—i—tﬁ

'y(q)g,y,cb&y) =1- / |VCI>570\2dz.
Sk Bi(~y)

From Lebesgue Theorem

2 t2
% 1% / Vs o[2dz = 1
Sk Bi(-y)

and the proof of this item is over.
Note that from Lemma 4.5, we conclude that

1
B(®s.y, Psy) = — +o05(1) when 60, ¥yeRY; [yl > 5

|yl

and the proof is finished. O

Lemma 4.9. There is 6, > 1 such that

(Cl) f(80q362,y7t0(b52,y) < ) Vy € RN’

§K+Co
2

1
(b) (s, .y, Ps,.y) > 3 vy € RV,

0
2

Proof. From Lemma 4.3, we can choose ¢ = ¢ >0, §5 > max{S , 1} we have

~ ~ Sk S
F(50Psy,toPs) < sup fls0Psy, to®sy) < S+~ = 2K Al

. Yy e RN, 4.24
e 8 > 3 y (4.24)

Moreover, from definition of £ and Lemma 4.1, we can conclude that
¥(DPs,y, Psy) — 1 when 6 — +oo
and the proof is over. O

Lemma 4.10. There is R > 0 such that

§ +c¢
(a) f(s50Ps,y, toPs,y) < Kz 0

(b) (B(Ps,y, Ps,y)|y))ry >0 Vy; |yl > Rand s € [6),0,].

, Yy |y| > Rand 6 € [51,52],

Proof. The first item follows by Lemma 4.3 and the choose of ¢ = “ > 0. The second item

follows of the definition of 3 and ®; ,, and adaptations the same arguments explored in [3] O
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Consider the set
V={(y,8) € RN x (0,00);|y| < R and & € (61,6,)},

where 41, 9, and R are given by Lemmas 4.8, 4.9 and 4.10, respectively.
Let Q : RY x (0, +00) — DV2(RY) be the continuous function given by

Q(yv 5) = q)5»y'

Consider now the sets

0 ={(Q(y,9),Q(y,9)): (y,6) € V},

H= {h e C(ENM);h(u,v) = (u,v),Y(u,v) € ENM; f(sou, tov) < K +CO}

2

and
r={AcCcXnM;A=h(O),heH}

Note that ® € EN M, ©® = Q(V) x Q(V) is compact and H # 0, because the identity
function is in H.

Lemma 4.11. Let F : V — RY*! be a function given by

F0.0) = (@0 @Q@)(wd) = 250 [ (L e(0)) v, P

ma

Sk
Then,
d(F,V,(0,1/2)) = 1. (Topological degree)
Proof. Let B
Z:[0,1] xV — RNH!
be the homotopy given by

2(t,(y,9)) = tF(y,0) + (1 = t) ;5(y, 9),

where I; is the identity operator. Using lemma 4.8 and Lemma 4.9, we can show that (0, 1/2) ¢
Z([0,1] x (9V)), i.e,

18(®s,, ®5.,) + (1 —t)y £0, ¥t e[0,1] and V(y,0) € IV (4.25)
or
(@, B5,) + (1 - 1) # 5, Vi€ [0,1] and ¥(y,) € V. 4.26)

Hence (0, 1/2) ¢ Z([0, 1] x 9V) where we conclude that d(F, V, (0,1/2)), d(i, V, (0,1/2))
and d(Z(t,-),V,(0,1/2)) are well defined and

d(F,V,(0,1/2)) = d(i;, V, (0,1/2)) = 1.

Lemma 4.12. [f A €T, then ANS # 0.
Proof. 1t is sufficient to prove that for all h € H, there exists (yo, ) € V such that
1
(aoH o (Q,Q)) (Yo, do) = (07 2)-

Given h € H, let -
.Fh V= RN+1
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be the continuous function given by

Fh(y76) = (a oho (Q,Q))(y,5)

We are going to show that 7}, = F in 9). Note that

oV =11, Ull, UTIl;, “4.27)
where

0, = {(y,61): |y| < R},

L = {(y,02):|y| < R}
and

IT; = {(y,9); |yl = R and § € [6;,5,]}.

If (y, ) € Iy, then (y, ) = (y, 1) and by item (a) from Lemma 4.8, we have

§K+Co

F(50Q(Y,0),t.Q(y,6)) = f(50Q (Y, 01),teQ(y, 1)) = f(50Ps,,y, t0Ps,,y) < . V(y,6) € TI(4.28)

If (y,d) € Iy, then (y,d) = (y, d2) and by item(a) from Lemma 4.9, we get

§K+CO

f(SOQ(y7 5)7 tOQ(yv 6)) = f(SOQ(y7 52)v tOQ(yv 52)) = f(50q352,y7 t0¢527y) < 7

. Y(y,6) e T144.29)
If (y, ) € I3, then |y| = R and § € [0, d,] and by item (a) from Lemma 4.10, we obtain

§K+CO
2

F(50Q(y,0),toQ(y,6)) = f(50Ps.y, toPs.y) < , V(y,0) € Is. (4.30)
From (4.27), (4.28), (4.29) and (4.30) we conclude that

§K+CO
2

f(50Q(y,0),tQ(y,0)) < . VY(y,0) € OV.

Hence,

]:h(y7 6) = (a oho (Q7 Q))(yv 5) = (a o h)(Q(yv 5)7 Q(yv 5))
a(h((Q(y,0),Q(y,9)))) = a((Q(y,9), Q(y,9)))
(o (Q,Q))(y,0) = F(y,8), Y(y,0) € aV.

Since (0,1/2) ¢ F(9V), we have

From Lemma 4.11, we get
d(Fr,V,(0,1/2)) = d(F,V,(0,1/2)) =1,

and there exists (yo,d) € V such that

Filoms30) = (@ o e Q. Q) 60) = (0.5 )

and the proof is over. O
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4.2 Proof of Theorem 1.1

Consider the number

= inf max ,
¢ AEF(u,v)EAf(u v)

and for each ¢ € R,
f4={(u,v) € ZNM; f(u,v) < q}.

We are going to show that
Sk << 2NSg. 4.31)
Note that

c= inf max f(u,v) < max f(u,v)< su So®s oy, to® < 22/NG,.
.AEF(u,U)EAf( ) < (u,v)E@f( ) < yER]?V f(50@s.y,toPs,y) X
6€(0,4+00)

On the other hand, from Lemma 4.12, we have that

¢o = inf f(u,v) < e = inf max f(sou. tov) < yseljgl F(50®s, to®s.y) < 22N Sk, (4.32)

5€(0,+00)

From Lemma 4.7, we have that S K < ¢p and the proof is over.
Using the definition of c, there exists (u,,, v,) C £ N M such that

flun,vn) = c. (4.33)
Suppose, by contradiction, that
f'lm(un, vn) - 0.
Then, there exists (u;, vyj) C (un,vy,) such that
|t (wng, vng)|l« > C >0, VjeN.

Using a Deformation Lemma [16], there exists a continuous application r : [0,1] x (EN M) —
(2N M), g9 > 0 such that

(1) 7(0,u,v) = (u,v);
(2) n(t,u,v) = (u,v), ¥(u,v) € fOU{(ENM)\ fereo}, vt € [0,1];
3) n(1, f+3) c oo

From definition of ¢, there exists A € I such that

c¢< max _f(u,v) <c—|—€—0,
(u,v)eA 2

where
Ac e, (4.34)
Since A € T, we have A C (£ N M) and there exists h € H such that
h(®) = A. (4.35)

From definition of 7, we have

n(1,4) C (ENM). (4.36)
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 Let h:(ZN M) — (ZN M) be the function given by A(u,v) = n(1, h(u,v)) and note that
h € C(X2N M). We are going to show that

feteo \ feme0 ¢ fzzf‘/Ns \ f(s+c0)/2. (4.37)
Considering (u,v) € f¢<0\ f¢~%0 we have
c—eo < f(u,v) <c+eg
and by (4.31), for ¢ sufficiently small, we get
c—eo < flu,v) < c4ep <2¥NSk. (4.38)

Now from Lemma 4.7 and (4.32), we obtain

S ~
K;—CO <cp—ep<c—eg<2NSg
and
S
K;—co <ecy—eo<c—egp < flu,v), (4.39)

which implies ~ -
(w,0) € [0 s

Consider (u,v) € (£ N M) such that

Flu,v) < SK;CO. (4.40)
Then,
h(u,v) = (u,v)

and from (4.40), we have that (u,v) ¢ f2" S \ f(Sx+<0)/2 and by (4.37), we get

(U,’U) ¢ chrso \ fc—s().

Then,
(u,v) € fFU{(ZN M)\ fereo}

and from Deformation Lemma, we obtain
n(l,u,v) = (u,v).

Hence, . B
h(u,v) = n(1, h(u,v)) = n(l,u,v) = (u,v)
where we conclude that h € #, which implies
h(®) =1(1,1(8))
and from (4.35), we conclude that
h(©) =n(1,h(©)) = n(1, A). (441
From (4.36), we have n(1, A) € T, which implies

= inf max ,v) < max ,U). 4.42
¢ A€l ue A fluv) < uen(LA)f(u v) ( )

From Deformation Lemma again and by (4.34), we get

n(1,A) cp(1, f3) c o7
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Then,
flu,v) <c— 82—0, V(u,v) € n(1,.A),
which implies
€0
max u,v) <c— —
uen(1,4) fuv) 2
and using (4.42), we conclude that
c< max_ f(u,v) <c— 6—0,
uen(l,A) 2

which is an absurd.

Then,

f(un,vn) — ¢ and  f'|pm(un,vn) — 0

and from Lemma 3.7, up to a subsequence, u,, — g, v, — Vg in DI’Z(RN ), which implies that
g, v > 0,

f(to,%0) = ¢ and f'|x (o, (Vo) = 0

and from(4.31)

§K < f(ﬂo,ao) < 22/N§K.

The positivity of ug and vy is a consequence of the classical maximum principle.
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