EXISTENCE OF POSITIVE SOLUTIONS OF A CRITICAL SYSTEM IN \mathbb{R}^{N}

Giovany M. Figueiredo and Leticia S. Silva
Communicated by Martin Bohner

MSC 2010 Classifications: Primary 35J20, 35J50; Secondary 58E05.
Keywords and phrases: Critical system, Global Compactness result, Brouwer degree theory.
Abstract In this paper we show existence of positive solution to the system

$$
\left\{\begin{align*}
-\Delta u+a(x) u & =\frac{1}{2^{*}} K_{u}(u, v) \text { in } \mathbb{R}^{N} \tag{S}\\
-\Delta v+b(x) v & =\frac{1}{2^{*}} K_{v}(u, v) \text { in } \mathbb{R}^{N} \\
u, v>0 & \text { in } \mathbb{R}^{N} \\
u, v & \in D^{1,2}\left(\mathbb{R}^{N}\right), \\
& N \geq 3
\end{align*}\right.
$$

We also prove a global compactness result for the associated energy functional similar to that due to Struwe in [14]. The basic tool employed here is some information on a limit system of (S) with $a=b=0$, the concentration compactness due to P. L. Lions [12] and Brouwer degree theory.

1 Introduction

In the celebrated paper [3], Benci and Cerami studied the following semilinear elliptic problem

$$
\left\{\begin{array}{c}
-\Delta u+a(x) u=u^{\frac{N+2}{N-2}} \text { in } \mathbb{R}^{N} \tag{BC}\\
u \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad u \geq 0, \quad N \geq 3
\end{array}\right.
$$

where
$\left(a_{1}\right) a(x) \geq 0$ and $a(x) \geq a_{0}>0$, for all $x \in \mathbb{R}^{N}$ in a neighborhood of a point \bar{x}.
$\left(a_{2}\right) a \in L^{q}\left(\mathbb{R}^{N}\right)$ for all $q \in\left[p_{1}, p_{2}\right]$ with $1<p_{1}<\frac{N}{2}<p_{2}$ with $p_{2}<\frac{N}{4-N}$ if $N=3$.
$\left(a_{3}\right)|a|_{L^{N / 2}\left(\mathbb{R}^{N}\right)}<S\left(2^{2 / N}-1\right)$, where $S=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right), u \neq 0} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}}$.
They used the properties of the solutions of a limit problem given by $(B C)$ with $a=0$, the version to \mathbb{R}^{N} of Struwe's Global Compactness result [14], Lions's Concentration and Compactness result [12] and arguments of Brouwer degree theory.

We would also like to mention that this kind of problem all these arguments were also used by Cerami and Passasseo in [4] with Neumann boundary conditions in a half-space \mathbb{R}_{+}^{N} and by Alves in [1] with p-laplacian operator. As far as the extension to the p-laplacian operator is concerned, some technical difficulties as the lack of linearity and homogeneity must be faced. The version of bi-Laplacian operator was studied by Alves and do Ó in [2]. A multiplicity result involving category theory was studied in [6] by Chabrowski and Yang. More recently, in [17] Xie, Ma and Xu proved a version for [3] considering the Kirchhoff operator. Nascimento and Figueiredo show the same result of [3] considering the fractional Laplacian. A version for

Choquard equation was proved by Gao, E. da Silva, M. Yang, and J. Zhou in [10] and a version for Schrödinger-Poisson system was studied by Cerami and Molle in [5]. In [7], Chen, Wei and Yan showed existence of infinitely many non-radial solutions, whose energy can be made arbitrarily large with a radial. In [13] Penga, Wang and Yan showed the existence of infinitely many non-radial solutions with a partially radial.

A natural, still open question is to know whether Benci and Cerami's results is true in the system of equations case. In this paper, we give a first positive answer to this question. However, the extension to system involves some technical difficulties which are overcome with some refined estimates, as can be seen in Lemma 3.1, Theorem 3.2 and subsection 4.2. More precisely, in these result we give the complete descriptions for the Palais-Smale (PS) sequences of the corresponding energy functionals and by using these descriptions, the existence results of solutions are obtained. Moreover, the main feature of the system is a "double" lack of compactness due to the unboundedness of the domain and the presence of the critical Sobolev exponent. The solutions are sought by means of variational methods, although the functional related to the problem does not satisfy the Palais-Smale compactness condition.

In this paper we show existence of positive solution to the system

$$
\left\{\begin{array}{r}
-\Delta u+a(x) u=\frac{1}{2^{*}} K_{u}(u, v) \text { in } \mathbb{R}^{N} \tag{S}\\
-\Delta v+b(x) v=\frac{1}{2^{*}} K_{v}(u, v) \text { in } \mathbb{R}^{N} \\
u, v>0
\end{array} \text { in } \mathbb{R}^{N}, ~ 子, ~ N \geq D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 3\right.
$$

Let $\mathbb{R}_{+}^{2}:=[0, \infty) \times[0, \infty)$ and set $2^{*}:=2 N /(N-2)$. We state our main hypotheses on the function $K \in C^{2}\left(\mathbb{R}_{+}^{2}, \mathbb{R}\right)$ as follows.
$\left(\mathcal{K}_{0}\right) K$ is 2^{*}-homogeneous, that is,

$$
K(\lambda s, \lambda t)=\lambda^{2^{*}} K(s, t) \quad \text { for each } \lambda>0,(s, t) \in \mathbb{R}_{+}^{2}
$$

$\left(\mathcal{K}_{1}\right)$ there exists $c_{1}>0$ such that

$$
\left|K_{s}(s, t)\right|+\left|K_{t}(s, t)\right| \leq c_{1}\left(s^{2^{*}-1}+t^{2^{*}-1}\right) \quad \text { for each }(s, t) \in \mathbb{R}_{+}^{2}
$$

$\left(\mathcal{K}_{2}\right) K(s, t)>0$ for each $s, t>0$;
$\left(\mathcal{K}_{3}\right) \nabla K(0,1)=\nabla K(1,0)=(0,0)$;
$\left(\mathcal{K}_{4}\right) K_{s}(s, t), K_{t}(s, t) \geq 0$ for each $(s, t) \in \mathbb{R}_{+}^{2}$.
$\left(\mathcal{K}_{5}\right)$ the 1-homogeneous function $G: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ given by $G\left(s^{2^{*}}, t^{2^{*}}\right):=K(s, t)$ is concave.
To state our main result we need some previous definitions and notations. Let us denote by \widetilde{S}_{K} the best constant of the immersion $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right) \times L^{2^{*}}\left(\mathbb{R}^{N}\right)$, that is,

$$
\widetilde{S}_{K}:=\inf _{u, v \in D^{1,2}\left(\mathbb{R}^{N}\right), u, v \neq 0} \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) d x}{\left(\int_{\mathbb{R}^{N}} K(u, v) d x\right)^{2 / 2^{*}}}
$$

From now on, we consider the function $\Phi_{\delta, y} \in D^{1,2}\left(\mathbb{R}^{N}\right)$ given by

$$
\begin{equation*}
\Phi_{\delta, y}(x)=c\left(\frac{\delta}{\delta^{2}+|x-y|^{2}}\right)^{(N-2) / 2}, \quad x, y \in \mathbb{R}^{N} \text { and } \delta>0 \tag{1.1}
\end{equation*}
$$

where c is a positive constant. In [15] we can see that every positive solution of
$\left(P_{\infty}\right)$

$$
\left\{\begin{array}{r}
-\Delta u=|u|^{2^{*}-2} u \text { in } \mathbb{R}^{N}, \\
u>0 \text { in } \mathbb{R}^{N}, \\
u \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 3
\end{array}\right.
$$

is as (1.1). Moreover, it satisfies

$$
\begin{equation*}
\left\|\Phi_{\delta, y}\right\|^{2}=S \quad \text { and } \quad\left|\Phi_{\delta, y}\right|_{2^{*}}=1 \tag{1.2}
\end{equation*}
$$

where S was defined in $\left(a_{3}\right)$.
By [9, Lemma 3], there exist $s_{o}, t_{o}>0$ such that \widetilde{S}_{K} is attained by $\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)$. Moreover,

$$
\begin{equation*}
M_{K} \widetilde{S}_{K}=S \tag{1.3}
\end{equation*}
$$

where $M_{K}=\max _{s^{2}+t^{2}=1} K(s, t)^{2 / 2^{*}}=K\left(s_{o}, t_{o}\right)^{2 / 2^{*}}$.
The hypotheses on the functions $a, b: \mathbb{R}^{N} \mapsto \mathbb{R}^{+}$are given by:
$\left((a, b)_{1}\right)$ The functions a, b are positive in a same set of positive measure.
$\left((a, b)_{2}\right) a, b \in L^{q}\left(\mathbb{R}^{N}\right)$ for all $q \in\left[p_{1}, p_{2}\right]$ with $1<p_{1}<\frac{N}{2}<p_{2}$ and $p_{2}<\frac{N}{4-N}$ if $N=3$.
$\left((a, b)_{3}\right) s_{o}^{N}|a|_{L^{N / 2}\left(\mathbb{R}^{N}\right)}+t_{o}^{N}|b|_{L^{N / 2}\left(\mathbb{R}^{N}\right)}<\widetilde{S}_{K}\left(2^{2 / N}-1\right)$.
We say that $(u, v): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R} \times \mathbb{R}$ is a positive weak solution of (S) if $u, v>0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and for all $\varphi, \psi \in D^{1,2}\left(\mathbb{R}^{N}\right)$ we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \nabla u \nabla \varphi d x+\int_{\mathbb{R}^{N}} \nabla v \nabla \psi d x+\int_{\mathbb{R}^{N}} a(x) u \varphi d x+\int_{\mathbb{R}^{N}} b(x) v \psi d x \\
= & \frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}(u, v) \varphi d x+\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}(u, v) \psi d x .
\end{aligned}
$$

In order to state the main result, we consider the C^{1} functional $I: D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \mapsto \mathbb{R}$ associated to system (S) given by

$$
I(u, v)=\frac{1}{2}\|u\|^{2}+\frac{1}{2}\|v\|^{2}+\frac{1}{2} \int_{\mathbb{R}^{N}} a(x) u^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} b(x) v^{2} d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K(u, v) d x
$$

where $\|u\|^{2}=\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x,\|v\|^{2}=\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x$. Note that

$$
\begin{aligned}
I^{\prime}(u, v)(\varphi, \psi) & =\int_{\mathbb{R}^{N}} \nabla u \nabla \varphi d x+\int_{\mathbb{R}^{N}} \nabla v \nabla \psi d x+\int_{\mathbb{R}^{N}} a(x) u \varphi d x+\int_{\mathbb{R}^{N}} b(x) v \psi d x \\
& -\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}(u, v) \varphi d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}(u, v) \psi d x
\end{aligned}
$$

for all $(\varphi, \psi) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$.
Using the above notation we are able to state our main result.
Theorem 1.1. Assume that $\left((a, b)_{1}\right)-\left((a, b)_{3}\right)$ and $\left(\mathcal{K}_{0}\right)-\left(\mathcal{K}_{5}\right)$ hold. Then, (S) has a positive solution $\left(u_{0}, v_{0}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ with

$$
\frac{1}{N} \widetilde{S}_{K}^{N / 2}<I\left(u_{0}, v_{0}\right)<\frac{2}{N} \widetilde{S}_{K}^{N / 2}
$$

The paper is organized as follows. In Section 2 we study the limit system associated to (S). In Section 3 we give the complete descriptions for the Palais-Smale (PS) sequences for the functional I. The proof of the main result is in Section 4.

2 Limit problem

We notice that we can use the homogeneity condition $\left(\mathcal{K}_{0}\right)$ to conclude that

$$
\begin{equation*}
K(s, t)=\frac{1}{2^{*}} s K_{s}(s, t)+\frac{1}{2^{*}} t K_{t}(s, t) . \tag{2.1}
\end{equation*}
$$

In this section we study the limit problem given by
$\left(S_{\infty}\right)$

$$
\left\{\begin{array}{r}
-\Delta u=\frac{1}{2^{*}} K_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
-\Delta v=\frac{1}{2^{*}} K_{v}(u, v) \text { in } \mathbb{R}^{N}, \\
u, v>0 \text { in } \mathbb{R}^{N}, \\
u, v \in D^{1,2}\left(\mathbb{R}^{N}\right), \quad N \geq 3
\end{array}\right.
$$

which the functional associated $I_{\infty}: D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \mapsto \mathbb{R}$ given by

$$
I_{\infty}(u, v)=\frac{1}{2}\|u\|^{2}+\frac{1}{2}\|v\|^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K(u, v) d x
$$

Lemma 2.1. Let $\left(u_{n}, v_{n}\right)$ be sequence $(P S)_{c}$ for I_{∞}. Then
(i) The sequence $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$.
(ii) If $u_{n} \rightharpoonup u$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and $v_{n} \rightharpoonup v$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, then $I_{\infty}^{\prime}(u, v)=0$.
(iii) If $c \in\left(-\infty, \frac{1}{N} \widetilde{S}_{K}^{N / 2}\right)$, then I_{∞} satisfies the $(P S)_{c}$ condition, i.e, up to a subsequence,

$$
\left(u_{n}, v_{n}\right) \rightarrow(u, v) \text { in } D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)
$$

Proof. Since $I_{\infty}\left(u_{n}, v_{n}\right) \rightarrow c$ and $I_{\infty}^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0$ and from (2.1), we conclude that there exists $C>0$ such that

$$
C+\left\|u_{n}\right\|+\left\|v_{n}\right\| \geq I_{\infty}\left(u_{n} v_{n}\right)-\frac{1}{2^{*}} I_{\infty}^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}, v_{n}\right)=\frac{1}{N}\left\|u_{n}\right\|^{2}+\frac{1}{N}\left\|v_{n}\right\|^{2}+o_{n}(1)
$$

and the proof of part (i) is over. Now we prove $(i i)$. Since $u_{n} \rightharpoonup u$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and $v_{n} \rightharpoonup v$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, up to a subsequence, we get

$$
u_{n} \rightarrow u \text { in } L_{l o c}^{q}\left(\mathbb{R}^{N}\right), v_{n} \rightarrow v \text { in } L_{l o c}^{q}\left(\mathbb{R}^{N}\right),
$$

and

$$
u_{n}(x) \rightarrow u(x) \text { a.e in } \mathbb{R}^{N}, v_{n}(x) \rightarrow v(x) \text { a.e in } \mathbb{R}^{N} \text {. }
$$

Using a density argument we obtain

$$
\int_{\mathbb{R}^{N}} K_{u}\left(u_{n}, v_{n}\right) \varphi d x+\int_{\mathbb{R}^{N}} K_{v}\left(u_{n}, v_{n}\right) \psi d x \rightarrow \int_{\mathbb{R}^{N}} K_{u}(u, v) \varphi d x+\int_{\mathbb{R}^{N}} K_{v}(u, v) \psi d x .
$$

for all $\varphi, \psi \in D^{1,2}\left(\mathbb{R}^{N}\right)$, which implies (ii).
In order to prove $(i i i)$, consider $w_{n}=u_{n}-u$ and $z_{n}=v_{n}-v$. Note that applying [11, Lemma 4.6], we get

$$
\begin{align*}
o_{n}(1) & =I_{\infty}^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}, v_{n}\right)=\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}\left(u_{n}, v_{n}\right) u_{n} d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}\left(u_{n}, v_{n}\right) v_{n} d x \\
& =\left\|w_{n}\right\|^{2}+\|u\|^{2}+\left\|z_{n}\right\|^{2}+\|v\|^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}\left(w_{n}+u, z_{n}+v\right)\left(w_{n}+u\right) d x \\
& -\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}\left(w_{n}+u, z_{n}+v\right)\left(z_{n}+v\right) d x \tag{2.2}
\end{align*}
$$

From [9, Lemma 8], we have

$$
\begin{aligned}
& \left\|w_{n}\right\|^{2}+\|u\|^{2}+\left\|z_{n}\right\|^{2}+\|v\|^{2}-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}\left(w_{n}, z_{n}\right) w_{n} d x \\
- & \frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}\left(w_{n} z_{n}\right) z_{n} d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{u}(u, v) u d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K_{v}(u, v) v d x=o_{n}(1) .
\end{aligned}
$$

Using the item (ii) and (2.1) we obtain

$$
\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}-\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) d x=o_{n}(1)
$$

Up to a subsequence, we conclude that there exists $\rho \geq 0$ such that

$$
0 \leq \rho=\lim _{n \rightarrow \infty}\left[\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}\right]=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) d x
$$

Suppose, by contradiction, that $\rho>0$. From the inequality

$$
\widetilde{S}_{K}\left(\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) d x\right)^{2 / 2^{*}} \leq\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}
$$

we get

$$
\begin{equation*}
\rho \geq \widetilde{S}_{K} \rho^{2 / 2^{*}} \Rightarrow \rho \geq \widetilde{S}_{K}^{N / 2} \tag{2.3}
\end{equation*}
$$

Since

$$
I_{\infty}(u, v)=\left(\frac{1}{2}-\frac{1}{2^{*}}\right)\left[\|u\|^{2}+\|v\|^{2}\right]=\frac{1}{N}\left[\|u\|^{2}+\|v\|^{2}\right] \geq 0
$$

and

$$
\begin{equation*}
c=\frac{1}{N}\left[\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}\right]+I_{\infty}(u, v)+o_{n}(1) \tag{2.4}
\end{equation*}
$$

we conclude
$c=\frac{1}{N}\left[\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}\right]+I_{\infty}(u, v)+o_{n}(1) \geq \frac{1}{N}\left[\left\|w_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}\right]+o_{n}(1)=\frac{1}{N} \rho \geq \frac{1}{N} \widetilde{S}_{K}^{N / 2}$,
which is a contradiction. Hence $\rho=0$ and

$$
\left\|w_{n}\right\|^{2}=\left\|u_{n}-u\right\|^{2} \rightarrow 0 \text { and }\left\|z_{n}\right\|^{2}=\left\|v_{n}-v\right\|^{2} \rightarrow 0 .
$$

3 A compactness result

Now, we establish the following lemma which will be useful to prove a compactness result.
Lemma 3.1. Let $\left(u_{n}, v_{n}\right)$ be a $(P S)_{c}$ sequence for the functional I_{∞} with $u_{n} \rightharpoonup 0, v_{n} \rightharpoonup 0$ and $u_{n} \nrightarrow 0, v_{n} \nrightarrow 0$. Then, there are sequences $\left(R_{n}\right) \subset \mathbb{R},\left(x_{n}\right) \subset \mathbb{R}^{N}$ and $\left(\Upsilon_{0}, \Upsilon_{1}\right) \in$ $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ nontrivial solution of $\left(P_{\infty}\right)$ and a sequence $\left(\tau_{n}, \zeta_{n}\right)$ which is a $(P S)_{\tilde{c}}$ for the I_{∞} such that, up to a subsequence of $\left(u_{n}, v_{n}\right)$,

$$
\tau_{n}(x)=u_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{0}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}(1)
$$

and

$$
\zeta_{n}(x)=u_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{1}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}(1) .
$$

Proof. Let $\left(u_{n}, v_{n}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ be a $(P S)_{c}$ sequence for the functional I_{∞}, i.e,

$$
\begin{equation*}
I_{\infty}\left(u_{n}, v_{n}\right) \rightarrow c \text { and } I_{\infty}^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

From Lemma 2.1, (i), we get that $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$. Since $u_{n} \rightharpoonup 0$, $v_{n} \rightharpoonup 0$ and $u_{n} \nrightarrow 0, v_{n} \nrightarrow 0$ it follows from Lemma 2.1 (iii) that

$$
c \geq \frac{1}{N} \widetilde{S}_{K}^{N / 2}
$$

Note that from (2.1) we obtain

$$
c+o_{n}(1)=I_{\infty}\left(u_{n}, v_{n}\right)-\frac{1}{2^{*}} I_{\infty}^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}, v_{n}\right)=\frac{1}{N} \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right] d x
$$

which implies

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right] d x=\widetilde{S}_{K}^{N / 2} \tag{3.2}
\end{equation*}
$$

Let L be a number such that $B_{2}(0)$ is covered by L balls of radius $1,\left(R_{n}\right) \subset \mathbb{R},\left(x_{n}\right) \subset \mathbb{R}^{N}$ such that

$$
\sup _{y \in \mathbb{R}^{N}} \int_{B_{R_{n}^{-1}}(y)}\left[\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right] d x=\int_{B_{R_{n}^{-1}}\left(x_{n}\right)}\left[\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right] d x=\frac{\widetilde{S}_{K}^{N / 2}}{2 L}
$$

and the function

$$
\left(w_{n}(x), z_{n}(x)\right)=\left(R_{n}^{(2-N) / 2} u_{n}\left(\frac{x}{R_{n}}+x_{n}\right), R_{n}^{(2-N) / 2} v_{n}\left(\frac{x}{R_{n}}+x_{n}\right)\right)
$$

Using a change of variable, we can prove that

$$
\int_{B_{1}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left.\nabla z_{n}\right|^{2}\right] d x=\frac{\widetilde{S}_{K}^{N / 2}}{2 L}=\sup _{y \in \mathbb{R}^{N}} \int_{B_{1}(y)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x
$$

Now, for each $\left(\Phi_{1}, \Phi_{2}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$, we define

$$
\left(\tilde{\Phi}_{1, n}, \tilde{\Phi}_{2, n}\right)(x)=\left(R_{n}^{(N-2) / 2} \Phi_{1}\left(R_{n}\left(x-x_{n}\right)\right), R_{n}^{(N-2) / 2} \Phi_{2}\left(R_{n}\left(x-x_{n}\right)\right)\right)
$$

which satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\nabla u_{n} \nabla \tilde{\Phi}_{1, n}+\nabla v_{n} \nabla \tilde{\Phi}_{2, n}\right] d x=\int_{\mathbb{R}^{N}}\left[\nabla w_{n} \nabla \Phi_{1}+\nabla z_{n} \nabla \Phi_{2}\right] d x \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[K_{u}\left(u_{n}, v_{n}\right) \tilde{\Phi}_{1, n}+K_{v}\left(u_{n}, v_{n}\right) \tilde{\Phi}_{2, n}\right] d x=\int_{\mathbb{R}^{N}}\left[K_{w}\left(w_{n}, z_{n}\right) \Phi_{1}+K_{z}\left(w_{n}, z_{n}\right) \Phi_{2}\right] d x \tag{3.4}
\end{equation*}
$$

where we conclude that

$$
\begin{equation*}
I_{\infty}\left(w_{n}, z_{n}\right) \rightarrow c \text { and } I_{\infty}^{\prime}\left(w_{n}, z_{n}\right) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

From Lemma 2.1, there exists $\left(\Upsilon_{0}, \Upsilon_{1}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ such that, up to a subsequence, $\left(w_{n}, z_{n}\right) \rightharpoonup\left(\Upsilon_{0}, \Upsilon_{1}\right)$ in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ and $I_{\infty}^{\prime}\left(\Upsilon_{0}, \Upsilon_{1}\right)=0$.

As a consequence of [9, Lemma 6], we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x \rightarrow \int_{\mathbb{R}^{N}} K\left(\Upsilon_{0}, \Upsilon_{1}\right) \phi d x+\sum_{j \in J} \phi\left(x_{j}\right) \nu_{j}, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2} \rightharpoonup \mu+\sigma \geq\left|\nabla \Upsilon_{0}\right|^{2}+\left|\nabla \Upsilon_{1}\right|^{2}+\sum_{j \in J} \phi\left(x_{j}\right) \mu_{j}+\sum_{j \in J} \phi\left(x_{j}\right) \sigma_{j}, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

for some $\left\{x_{j}\right\}_{j \in J} \subset \mathbb{R}^{N}$ and for some $\left\{\nu_{j}\right\}_{j \in J},\left\{\mu_{j}\right\}_{j \in J},\left\{\sigma_{j}\right\}_{j \in J} \subset \mathbb{R}^{+}$.
Since $\widetilde{S}_{K} \nu_{j}^{2 / 2_{s}^{*}} \leq \mu_{j}+\sigma_{j}$, we can conclude that J is finite. From now on, we denote by $J=\{1,2, \ldots, m\}$ and $\Gamma \subset \mathbb{R}^{N}$ the set given by

$$
\Gamma=\left\{x_{j} \in\left\{x_{j}\right\}_{j \in J} ;\left|x_{j}\right|>1\right\}, \quad\left(x_{j} \text { given by (3.6) }\right)
$$

We are going to show that $\left(\Upsilon_{0}, \Upsilon_{1}\right) \neq(0,0)$. Suppose, by contradiction, that $\left(\Upsilon_{0}, \Upsilon_{1}\right)=$ $(0,0)$. Then, by (3.6) we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x \rightarrow 0, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right) \tag{3.7}
\end{equation*}
$$

Since $\left(\phi_{1, n}, \phi_{2, n}\right)=\left(\phi w_{n}, \phi z_{n}\right)$ with $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right)$ is bounded, we obtain

$$
I_{\infty}^{\prime}\left(w_{n}, z_{n}\right)\left(\phi_{1, n}, \phi_{2, n}\right)=o_{n}(1),
$$

that is,

$$
\int_{\mathbb{R}^{N}}\left[\nabla w_{n} \nabla \phi_{1, n}+\nabla z_{n} \nabla \phi_{2, n}\right] d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}}\left[K_{w}\left(w_{n}, z_{n}\right) \phi_{1, n}+K_{z}\left(w_{n}, z_{n}\right) \phi_{2, n}\right] d x=o_{n}(1)
$$

Using the definition of $\left(\phi_{1, n}, \phi_{2, n}\right)$ and (2.1), we have
$\int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x+\int_{\mathbb{R}^{N}}\left[w_{n} \nabla w_{n} \nabla \phi+z_{n} \nabla z_{n} \nabla \phi\right] d x-\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x=o_{n}(1)$.
Then,
$\int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x \leq \int_{\mathbb{R}^{N}}\left[\left|w_{n}\right|\left|\nabla w_{n}\right||\nabla \phi|+\left|z_{n}\right|\left|\nabla z_{n}\right||\nabla \phi|\right] d x+\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x=o_{n}(1)$.
Using Hölder inequality we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x \leq\left|\nabla w_{n}\right|_{2}\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{2}|\nabla \phi|^{2} d x\right)^{1 / 2} \\
+ & \left|\nabla z_{n}\right|_{2}\left(\int_{\mathbb{R}^{N}}\left|z_{n}\right|^{2}|\nabla \phi|^{2} d x\right)^{1 / 2}+\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x=o_{n}(1) .
\end{aligned}
$$

Since there exists $R>0$ such that $\operatorname{supp} \phi \subset B_{R}(0)$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x \leq C\left|\nabla w_{n}\right|_{2}\left(\int_{B_{R}(0)}\left|w_{n}\right|^{2} d x\right)^{1 / 2} \\
+ & C\left|\nabla z_{n}\right|_{2}\left(\int_{B_{R}(0)}\left|z_{n}\right|^{2} d x\right)^{1 / 2}+\int_{\mathbb{R}^{N}} K\left(w_{n}, z_{n}\right) \phi d x=o_{n}(1)
\end{aligned}
$$

Since $\left(w_{n}, z_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$, from compact embedding and (3.7), we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x \rightarrow 0, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right) \tag{3.8}
\end{equation*}
$$

Let $\rho \in \mathbb{R}$ be a number that satisfies $\left.0<\rho<\min \left\{\operatorname{dist}\left(\Gamma, \bar{B}_{1}(0)\right), 1\right)\right\}$. We will show that

$$
\begin{equation*}
\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \phi d x \rightarrow 0 . \tag{3.9}
\end{equation*}
$$

We consider $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \phi(x) \leq 1$ and $\phi(x)=1$ if $x \in B_{1+\rho}(0)$. If $\tilde{\phi}=$ $\left.\phi\right|_{\mathbb{R}^{N} \backslash\left\{x_{1}, \ldots, x_{m}\right\}}$, follows by (3.8) that

$$
\int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \tilde{\phi} d x \rightarrow 0
$$

Since

$$
\begin{aligned}
0 & \leq \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \leq \int_{B_{1+\rho}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \\
& =\int_{B_{1+\rho}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \tilde{\phi} d x \leq \int_{\mathbb{R}^{N}}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] \tilde{\phi} d x
\end{aligned}
$$

we have that (3.9) is true.
Let $\Psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be such that $0 \leq \Psi(x) \leq 1$ for all $x \in \mathbb{R}^{N}$ and

$$
\Psi(x)= \begin{cases}1, & x \in B_{1+\frac{\rho}{3}}(0) \\ 0, & x \in B_{1+\frac{2 \rho}{3}}^{c}(0)\end{cases}
$$

and consider the sequence $\left(\Psi_{1, n}, \Psi_{2, n}\right)$ given by $\left(\Psi_{1, n}, \Psi_{2, n}\right)(x)=\left(\Psi(x) w_{n}(x), \Psi(x) z_{n}(x)\right)$.
Note that

$$
\begin{aligned}
& \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x \\
\leq & 4 \int_{\left[B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)\right]^{2}}|\Psi|^{2}\left|\nabla w_{n}\right|^{2} d x+4 \int_{\left[B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)\right]^{2}}|\Psi|^{2}\left|\nabla z_{n}\right|^{2} d x \\
+ & 4 \int_{\left[B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)\right]^{2}}\left|w_{n}\right|^{2}|\nabla \Psi|^{2} d x+4 \int_{\left[B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)\right]^{2}}\left|z_{n}\right|^{2}|\nabla \Psi|^{2} d x .
\end{aligned}
$$

From (3.9) we obtain

$$
\begin{equation*}
\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x \rightarrow 0 . \tag{3.10}
\end{equation*}
$$

Since $\left(\Psi_{1, n}, \Psi_{2, n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$, we derive that

$$
\begin{aligned}
& \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla w_{n} \nabla \Psi_{1, n} d x+\int_{B_{1+\frac{\rho}{3}}(0)} \nabla w_{n} \nabla \Psi_{1, n} d x \\
+ & \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla z_{n} \nabla \Psi_{2, n} d x+\int_{B_{1+\frac{\rho}{3}}(0)} \nabla z_{n} \nabla \Psi_{2, n} d x \\
- & \frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(w_{n}, z_{n}\right) d x-\frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(w_{n}, z_{n}\right) d x \\
- & \frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(w_{n}, z_{n}\right) d x-\frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(w_{n}, z_{n}\right) d x=o_{n}(1)
\end{aligned}
$$

From definition of Ψ we have

$$
\begin{aligned}
& \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla w_{n} \nabla \Psi_{1, n} d x+\int_{B_{1+\frac{\rho}{3}}(0)}\left|\nabla \Psi_{1, n}\right|^{2} d x \\
+ & \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla z_{n} \nabla \Psi_{2, n} d x+\int_{B_{1+\frac{\rho}{3}}(0)}\left|\nabla \Psi_{2, n}\right|^{2} d x \\
- & \frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(w_{n}, z_{n}\right) d x-\frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(\Psi_{1, n}, \Psi_{2, n}\right) d x \\
- & \frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(w_{n}, z_{n}\right) d x-\frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(\Psi_{1, n}, \Psi_{2, n}\right) d x=o_{r}(\text { (11).1) }
\end{aligned}
$$

Note that from Hölder inequality and (3.10) we get

$$
\begin{equation*}
\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla w_{n} \nabla \Psi_{1, n} d x+\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \nabla z_{n} \nabla \Psi_{2, n} d x \rightarrow 0 \text { when } n \rightarrow \infty . \tag{3.12}
\end{equation*}
$$

Moreover, from a direct calculations we have

$$
\frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(w_{n}, z_{n}\right) d x+\frac{1}{2^{*}} \int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(w_{n}, z_{n}\right) d x=o_{n}(1)(3.13)
$$

From (3.11), (3.12) and (3.13) we obtain

$$
\begin{align*}
& \int_{B_{1+\frac{\rho}{3}}(0)}\left|\nabla \Psi_{1, n}\right|^{2} d x+\int_{B_{1+\frac{\rho}{3}}(0)}\left|\nabla \Psi_{2, n}\right|^{2} d x-\frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{1, n} K_{w}\left(\Psi_{1, n}, \Psi_{2, n}\right) d x \\
- & \frac{1}{2^{*}} \int_{B_{1+\frac{\rho}{3}}(0)} \Psi_{2, n} K_{z}\left(\Psi_{1, n}, \Psi_{2, n}\right) d x=o_{n}(1) \tag{3.14}
\end{align*}
$$

Note that

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x & =\int_{B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x \\
& =\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}(0)}}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x+\int_{B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right. \\
& =o_{n}(1)+\int_{B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x
\end{aligned}
$$

and using (2.1), we get

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x & =\int_{B_{1+\rho}(0)} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x \\
& =\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x+\int_{B_{1+\frac{\rho}{3}}(0)} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x \\
& =\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x+\int_{B_{1+\frac{\rho}{3}}(0)} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x
\end{aligned}
$$

we conclude that

$$
\int_{\mathbb{R}^{N}}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x-\int_{\mathbb{R}^{N}} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x=o_{n}(1) .
$$

From definition of \widetilde{S}_{K}, we have

$$
\begin{align*}
& \left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\left[1-\left(\frac{1}{\widetilde{S}_{K}^{2^{*} / 2}}\right)\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]^{2^{*}-2}\right] \\
= & {\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]-\frac{1}{\widetilde{S}_{K}^{2 * / 2}}\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]^{2^{*}} } \\
\leq & \int_{\mathbb{R}^{N}}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x-\int_{\mathbb{R}^{N}} K\left(\Psi_{1, n}, \Psi_{2, n}\right) d x=o_{n}(1) . \tag{3.15}
\end{align*}
$$

Note that

$$
\begin{aligned}
\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2} & =\int_{B_{1+\rho}(0) \backslash B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x+\int_{B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x \\
& =o_{n}(1)+\int_{B_{1+\frac{\rho}{3}}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x
\end{aligned}
$$

Since $\Phi_{1, n}=w_{n}, \Phi_{2, n}=z_{n}$ in $B_{1+\frac{\rho}{3}(0)}$ and that $B_{1+\frac{\rho}{3}(0)} \subset B_{2}(0)$, we obtain

$$
\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2} \leq o_{n}(1)+\int_{B_{2}(0)}\left[\left|\nabla \Psi_{1, n}\right|^{2}+\left|\nabla \Psi_{2, n}\right|^{2}\right] d x
$$

which implies

$$
\begin{aligned}
\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2} & \leq o_{n}(1)+\int_{\bigcup_{k=1}^{L} B_{1}\left(y_{k}\right)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \\
& \leq o_{n}(1)+\sum_{k=1}^{L} \int_{B_{1}\left(y_{k}\right)}\left[\left|\nabla w_{n}^{2}+\left|\nabla z_{n}\right|^{2}\right] d x\right. \\
& \leq o_{n}(1)+L \sup _{y \in \mathbb{R}^{N}} \int_{B_{1}(y)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \leq o_{n}(1)+\frac{\widetilde{S}_{K}^{N / 2}}{2}
\end{aligned}
$$

Then,

$$
\left(\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right)^{1 / 2} \leq o_{n}(1)+\frac{\widetilde{S}_{K}^{N / 4}}{2^{1 / 2}}
$$

implies

$$
\begin{equation*}
\left(\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right)^{\left(2^{*}-2\right) / 2} \leq o_{n}(1)+\left(\frac{\widetilde{S}_{K}^{N / 4}}{2^{1 / 2}}\right)^{2^{*}-2} \tag{3.16}
\end{equation*}
$$

Using (3.15) and (3.16), we have that

$$
\begin{aligned}
& {\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]\left[1+o_{n}(1)-\frac{1}{\widetilde{S}_{K}^{2 * / 2}}\left(\frac{\widetilde{S}_{K}^{N / 4}}{2^{1 / 2}}\right)^{2^{*}-2}\right] } \\
= & {\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]\left\{1+\frac{1}{\widetilde{S}_{K}^{2 * / 2}}\left[o_{n}(1)-\left(\frac{\widetilde{S}_{K}^{N / 4}}{2^{1 / 2}}\right)^{2^{*}-2}\right]\right\} } \\
\leq & {\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]\left[1-\frac{1}{\widetilde{S}_{K}^{2 * / 2}}\left[\left\|\Psi_{1, n}\right\|^{2}+\left\|\Psi_{2, n}\right\|^{2}\right]^{2^{*}-2}\right]=o_{n}(1) . }
\end{aligned}
$$

But the equality

$$
\frac{N}{4}\left(2^{*}-2\right)-\frac{2^{*}}{2}=\frac{N}{4}\left(\frac{4}{N-2}\right)-\frac{N}{N-2}=0
$$

implies

$$
\left\|\Phi_{n}\right\|^{2}\left[1-\left(\frac{1}{2}\right)^{\left(2^{*}-2\right) / 2}\right] \leq o_{n}(1)
$$

where we conclude that $\left(\Phi_{1, n}, \Phi_{1, n}\right) \rightarrow(0,0)$ in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$.
Since $w_{n}=\Phi_{1, n}, z_{n}=\Phi_{2, n}$ in $B_{1}(0)$, we obtain

$$
0 \leq \int_{B_{1}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \leq \mid \Psi_{1, n}\left\|^{2}+\right\| \Psi_{2, n} \|^{2}
$$

which implies

$$
\int_{B_{1}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x \rightarrow 0 \text { when } n \rightarrow \infty
$$

But this last convergence it is a contradiction with

$$
\int_{B_{1}(0)}\left[\left|\nabla w_{n}\right|^{2}+\left|\nabla z_{n}\right|^{2}\right] d x=\frac{\widetilde{S}_{K}^{N / 2}}{2 L}, \quad \forall n \in \mathbb{N} .
$$

Then, $\left(\Upsilon_{0}, \Upsilon_{1}\right) \neq(0,0)$. Now we are going to show that there is $\left(\tau_{n}, \zeta_{n}\right)$ in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ such that $\left(\tau_{n}, \zeta_{n}\right)$ is a $(P S)_{\tilde{c}}$ sequence for I_{∞} satisfying

$$
\begin{aligned}
& \tau_{n}(x)=u_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{0}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}(1), \\
& \zeta_{n}(x)=v_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{1}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}(1),
\end{aligned}
$$

for some subsequence of $\left(u_{n}, v_{n}\right)$ that still denote by $\left(u_{n}, v_{n}\right)$. For this, we consider $\psi \in$ $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \psi(x) \leq 1$ for all $x \in \mathbb{R}^{N}$ and

$$
\psi(x)= \begin{cases}1, & \text { if } x \in B_{1}(0) \\ 0, & \text { if } x \in B_{2}^{c}(0)\end{cases}
$$

and consider $\left(\tau_{n}, \zeta_{n}\right)$ a sequence defined by

$$
\begin{align*}
& \tau_{n}(x)=u_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{0}\left(R_{n}\left(x-x_{n}\right)\right) \psi\left(\bar{R}_{n}\left(x-x_{n}\right)\right), \tag{3.17}\\
& \zeta_{n}(x)=v_{n}(x)-R_{n}^{(N-2) / 2} \Upsilon_{1}\left(R_{n}\left(x-x_{n}\right)\right) \psi\left(\bar{R}_{n}\left(x-x_{n}\right)\right), \tag{3.18}
\end{align*}
$$

where $\left(\bar{R}_{n}\right)$ satisfies $\tilde{R}_{n}=\frac{R_{n}}{\bar{R}_{n}} \rightarrow \infty$. From (3.17) and (3.18), we obtain

$$
R_{n}^{(2-N) / 2} \tau_{n}(x)=R_{n}^{(2-N) / 2} u_{n}(x)-\Upsilon_{0}\left(R_{n}\left(x-x_{n}\right)\right) \psi\left(\bar{R}_{n}\left(x-x_{n}\right)\right)
$$

and

$$
R_{n}^{(2-N) / 2} \zeta_{n}(x)=R_{n}^{(2-N) / 2} v_{n}(x)-\Upsilon_{1}\left(R_{n}\left(x-x_{n}\right)\right) \psi\left(\bar{R}_{n}\left(x-x_{n}\right)\right)
$$

Making change of variable, we conclude

$$
R_{n}^{(2-N) / 2} \tau_{n}\left(\frac{z}{R_{n}}+x_{n}\right)=R_{n}^{(2-N) / 2} u_{n}\left(\frac{z}{R_{n}}+x_{n}\right)-\Upsilon_{0} \psi\left(\frac{z}{\tilde{R}_{n}}\right)
$$

and

$$
R_{n}^{(2-N) / 2} \zeta_{n}\left(\frac{z}{R_{n}}+x_{n}\right)=R_{n}^{(2-N) / 2} v_{n}\left(\frac{z}{R_{n}}+x_{n}\right)-\Upsilon_{1} \psi\left(\frac{z}{\tilde{R}_{n}}\right)
$$

Now we define

$$
\widetilde{\tau}_{n}=R_{n}^{(2-N) / 2} \tau_{n}\left(\frac{z}{R_{n}}+x_{n}\right)
$$

and

$$
\widetilde{\zeta}_{n}=R_{n}^{(2-N) / 2} \zeta_{n}\left(\frac{z}{R_{n}}+x_{n}\right)
$$

Since

$$
w_{n}(x)=R_{n}^{(2-N) / 2} u_{n}\left(\frac{x}{R_{n}}+x_{n}\right)
$$

and

$$
z_{n}(x)=R_{n}^{(2-N) / 2} v_{n}\left(\frac{x}{R_{n}}+x_{n}\right)
$$

we get,

$$
\begin{equation*}
\widetilde{\tau}_{n}(z)=w_{n}(z)-\Upsilon_{0}(z) \psi\left(\frac{z}{\tilde{R}_{n}}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\zeta}_{n}(z)=\zeta_{n}(z)-\Upsilon_{1}(z) \psi\left(\frac{z}{\tilde{R}_{n}}\right) \tag{3.20}
\end{equation*}
$$

If

$$
\begin{equation*}
\psi_{n}(z)=\psi\left(\frac{z}{\tilde{R}_{n}}\right) \tag{3.21}
\end{equation*}
$$

we have that

$$
\psi_{n}(z)= \begin{cases}1, & \text { if } z \in B_{\tilde{R}_{n}}(0) \\ 0, & \text { if } z \in B_{2 \tilde{R}_{n}}^{c}(0)\end{cases}
$$

From (3.19), (3.20) and (3.21), we derive that

$$
\widetilde{\tau}_{n}(z)=w_{n}(z)-\Upsilon_{0}(z) \psi_{n}(z)
$$

and

$$
\widetilde{\zeta}_{n}(z)=z_{n}(z)-\Upsilon_{1}(z) \psi_{n}(z)
$$

Since $\tilde{R}_{n} \rightarrow \infty$, it is not difficult to show that $\Upsilon_{i} \psi_{n} \rightarrow \Upsilon_{i}$ in $D^{1,2}\left(\mathbb{R}^{N}\right), i=0,1$. Then

$$
\begin{equation*}
\widetilde{\tau}_{n}(z)=w_{n}(z)-\Upsilon_{0}(z)+o_{n}(1) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\zeta}_{n}(z)=z_{n}(z)-\Upsilon_{1}(z)+o_{n}(1) \tag{3.23}
\end{equation*}
$$

To finish the proof, it is enough to show that $\left(\tau_{n}, \zeta_{n}\right)$ is a $(P S)_{\tilde{c}}$ sequence for I_{∞}. Note that making a change of variable we get

$$
I_{\infty}\left(\tau_{n}, \zeta_{n}\right)=I_{\infty}\left(\widetilde{\tau}_{n}, \widetilde{\zeta}_{n}\right)
$$

Using (3.22) and (3.23) and applying [11, Lemma 4.6], [9, Lemma 8] and (3.5), we have

$$
I_{\infty}\left(\tau_{n}, \zeta_{n}\right)=I_{\infty}\left(w_{n}, z_{n}\right)-I_{\infty}\left(\Upsilon_{0}, \Upsilon_{1}\right)+o_{n}(1)=\widetilde{c}+o_{n}(1)
$$

where $\widetilde{c}=c-I_{\infty}\left(\Upsilon_{0}, \Upsilon_{1}\right)$.
Now, since

$$
0 \leq\left\|I_{\infty}^{\prime}\left(\tau_{n}, \zeta_{n}\right)\right\|_{D^{\prime}} \leq\left\|I_{\infty}^{\prime}\left(\widetilde{\tau}_{n}, \widetilde{\zeta}_{n}\right)\right\|_{D^{\prime}}
$$

it is sufficient to prove that $\left\|I_{\infty}^{\prime}\left(\widetilde{\tau}_{n}, \widetilde{\zeta}_{n}\right)\right\|_{D^{\prime}} \rightarrow 0$ which is equivalent to show that

$$
\begin{equation*}
\left\|I_{\infty}^{\prime}\left(\widetilde{\tau}_{n}, \widetilde{\zeta}_{n}\right)-I_{\infty}^{\prime}\left(w_{n}, z_{n}\right)+I_{\infty}^{\prime}\left(\Upsilon_{0}, \Upsilon_{1}\right)\right\|_{D^{\prime}} \rightarrow 0 \tag{3.24}
\end{equation*}
$$

But the last convergence is a direct consequence of [9, Lemma 8].

The next result is a version for a gradient system in \mathbb{R}^{N} of the result due to Struwe that can be found in [14].

Theorem 3.2. (A global compactness result) Let $\left(u_{n}, v_{n}\right)$ be a $(P S)_{c}$ sequence for I with $u_{n} \rightarrow$ u_{0} in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and $v_{n} \rightharpoonup v_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$. Then, up to a subsequence, $\left(u_{n}, v_{n}\right)$ satisfies either,
(a) $\left(u_{n}, v_{n}\right) \rightarrow\left(u_{0}, v_{0}\right)$ in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ or,
(b) there exists $k \in \mathbb{N}$ and nontrivial solutions $\left(z_{0}^{1}, \zeta_{0}^{1}\right),\left(z_{0}^{2}, \zeta_{0}^{2}\right), \ldots,\left(z_{0}^{k}, \zeta_{0}^{k}\right)$ for the system $\left(S_{\infty}\right)$, such that

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\sum_{j=1}^{k}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]
$$

and

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)
$$

Proof. From the weak convergence and a density argument, we have that (u_{0}, v_{0}) is a critical point of I. Suppose that $u_{n} \nrightarrow u_{0}, v_{n} \nrightarrow v_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and let $\left(w_{n}^{1}, z_{n}^{1}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times$ $D^{1,2}\left(\mathbb{R}^{N}\right)$ be the sequence given by $w_{n}^{1}=u_{n}-u_{0}$ and $z_{n}^{1}=v_{n}-v_{0}$. Then, $w_{n}^{1} \rightharpoonup 0, z_{n}^{1} \rightharpoonup 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and $w_{n}^{1} \nrightarrow 0, z_{n}^{1} \nrightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$.

Applying [11, Lemma 4.6] and [9, Lemma 8], we obtain

$$
\begin{equation*}
I_{\infty}\left(w_{n}^{1}, z_{n}^{1}\right)=I\left(u_{n}, v_{n}\right)-I\left(u_{0}, v_{0}\right)+o_{n}(1) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\infty}^{\prime}\left(w_{n}^{1}, z_{n}^{1}\right)=I^{\prime}\left(u_{n}, v_{n}\right)-I^{\prime}\left(u_{0}, v_{0}\right)+o_{n}(1) . \tag{3.26}
\end{equation*}
$$

Then, we conclude from (3.25) and (3.26) that $\left(w_{n}^{1}, z_{n}^{1}\right)$ is a $(P S)_{c_{1}}$ sequence for I_{∞}. Hence, by Lemma 3.1, there are sequences $\left(R_{n, 1}\right) \subset \mathbb{R},\left(x_{n, 1}\right) \subset \mathbb{R}^{N},\left(z_{0}^{1}, \zeta_{0}^{1}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ nontrivial solution for the system $\left(P_{\infty}\right)$ and $\mathrm{a}(P S)_{c_{2}}$ sequence $\left(w_{n}^{2}, z_{n}^{2}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ for I_{∞} such that

$$
w_{n}^{2}(x)=w_{n}^{1}(x)-R_{n, 1}^{(N-2) / 2} z_{0}^{1}\left(R_{n, 1}\left(x-x_{n, 1}\right)\right)+o_{n}(1)
$$

and

$$
z_{n}^{2}(x)=z_{n}^{1}(x)-R_{n, 1}^{(N-2) / 2} \zeta_{0}^{1}\left(R_{n, 1}\left(x-x_{n, 1}\right)\right)+o_{n}(1) .
$$

If we define

$$
\begin{align*}
& \Phi_{n}^{1}(x)=R_{n, 1}^{(2-N) / 2} w_{n}^{1}\left(\frac{x}{R_{n, 1}}+x_{n, 1}\right), \tag{3.27}\\
& \Psi_{n}^{1}(x)=R_{n, 1}^{(2-N) / 2} z_{n}^{1}\left(\frac{x}{R_{n, 1}}+x_{n, 1}\right) \tag{3.28}
\end{align*}
$$

and

$$
\begin{aligned}
& \widetilde{w}_{n}^{2}(x)=R_{n, 1}^{(2-N) / 2} w_{n}^{2}\left(\frac{x}{R_{n, 1}}+x_{n, 1}\right), \\
& \widetilde{z}_{n}^{2}(x)=R_{n, 1}^{(2-N) / 2} z_{n}^{2}\left(\frac{x}{R_{n, 1}}+x_{n, 1}\right),
\end{aligned}
$$

we get

$$
\begin{align*}
& \widetilde{w}_{n}^{2}(x)=\Phi_{n}^{1}(x)-z_{0}^{1}(x)+o_{n}(1), \tag{3.29}\\
& \widetilde{z}_{n}^{2}(x)=\Psi_{n}^{1}(x)-\zeta_{0}^{1}(x)+o_{n}(1) \tag{3.30}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\Phi_{n}^{1}\right\|=\left\|w_{n}^{1}\right\|, \quad\left\|\Psi_{n}^{1}\right\|=\left\|z_{n}^{1}\right\| \text { and } \int_{\mathbb{R}^{N}} K\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right) d x=\int_{\mathbb{R}^{N}} K\left(w_{n}^{1}, z_{n}^{1}\right) d x \tag{3.31}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
I_{\infty}\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right)=I_{\infty}\left(w_{n}^{1}, z_{n}^{1}\right) \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\infty}^{\prime}\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right) \rightarrow 0 \text { in }\left(D^{1,2}\left(\mathbb{R}^{N}\right)\right)^{\prime} \tag{3.33}
\end{equation*}
$$

From (3.32), (3.33) and from item (a) by lemma 2.1, we have that $\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right)$ is a bounded sequence in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ and, up to a subsequence,

$$
\begin{equation*}
\Phi_{n}^{1} \rightharpoonup z_{0}^{1}, \quad \Psi_{n}^{1} \rightharpoonup \zeta_{0}^{1} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right) \tag{3.34}
\end{equation*}
$$

Applying [11, Lemma 4.6] and [9, Lemma 8] again, we obtain
$I_{\infty}\left(\widetilde{w}_{n}^{2}, \widetilde{z}_{n}^{2}\right)=I_{\infty}\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right)-I_{\infty}\left(z_{0}^{1}, \zeta_{0}^{1}\right)+o_{n}(1)=I\left(u_{n}, v_{n}\right)-I\left(u_{0}, v_{0}\right)-I_{\infty}\left(z_{0}^{1}, \zeta_{0}^{1}\right)+o_{n}(1)(3.35)$
and

$$
\begin{equation*}
I_{\infty}^{\prime}\left(\widetilde{w}_{n}^{2}, \widetilde{z}_{n}^{2}\right)=I_{\infty}^{\prime}\left(\Phi_{n}^{1}, \Psi_{n}^{1}\right)-I_{\infty}^{\prime}\left(z_{0}^{1}, \zeta_{0}^{1}\right)+o_{n}(1) \tag{3.36}
\end{equation*}
$$

If $\widetilde{w}_{n}^{2}, \widetilde{z}_{n}^{2} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, the proof is over for $k=1$, because in this case, we have

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|z_{0}^{1}\right\|^{2}+\zeta_{0}^{1} \|^{2}
$$

Moreover, from continuity of I_{∞}, we get

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+I_{\infty}\left(z_{0}^{1}, \zeta_{0}^{1}\right)
$$

If $\widetilde{w}_{n}^{2} \nrightarrow 0, \widetilde{z}_{n}^{2} \nrightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, using (3.30) and (3.34) that $\widetilde{w}_{n}^{2}, \widetilde{z}_{n}^{2} \rightharpoonup 0 D^{1,2}\left(\mathbb{R}^{N}\right)$, by (3.35) and (3.36), we conclude that $\left(\widetilde{w}_{n}^{2}, \widetilde{z}_{n}^{2}\right)$ is a $(P S)_{c_{2}}$ sequence for I_{∞}.

By Lemma 3.1, there are sequences $\left(R_{n, 2}\right) \subset \mathbb{R},\left(x_{n, 2}\right) \subset \mathbb{R}^{N},\left(z_{0}^{2}, \zeta_{0}^{2}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times$ $D^{1,2}\left(\mathbb{R}^{N}\right)$ nontrivial solutions of $\left(S_{\infty}\right)$ and a $(P S)_{c_{3}}$ sequence $\left(w_{n}^{3}, z_{n}^{3}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ for I_{∞} such that

$$
\begin{aligned}
w_{n}^{3}(x) & =\widetilde{w}_{n}^{2}(x)-R_{n, 2}^{(N-2) / 2} z_{0}^{2}\left(R_{n, 2}\left(x-x_{n, 2}\right)\right)+o_{n}(1) \\
z_{n}^{3}(x) & =\widetilde{z}_{n}^{2}(x)-R_{n, 2}^{(N-2) / 2} \zeta_{0}^{2}\left(R_{n, 2}\left(x-x_{n, 2}\right)\right)+o_{n}(1)
\end{aligned}
$$

If

$$
\begin{aligned}
\Phi_{n}^{2}(x) & =R_{n, 2}^{(2-N) / 2} \widetilde{w}_{n}^{2}\left(\frac{x}{R_{n, 2}}+x_{n, 2}\right) \\
\Psi_{n}^{2}(x) & =R_{n, 2}^{(2-N) / 2} \widetilde{z}_{n}^{2}\left(\frac{x}{R_{n, 2}}+x_{n, 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{w}_{n}^{3}(x)=R_{n, 2}^{(2-N) / 2} w_{n}^{3}\left(\frac{x}{R_{n, 2}}+x_{n, 2}\right), \\
& \tilde{z}_{n}^{3}(x)=R_{n, 2}^{(2-N) / 2} z_{n}^{3}\left(\frac{x}{R_{n, 2}}+x_{n, 2}\right),
\end{aligned}
$$

we have that

$$
\begin{equation*}
\widetilde{w}_{n}^{3}(x)=\Phi_{n}^{2}(x)-z_{0}^{2}(x)+o_{n}(1) \tag{3.37}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{z}_{n}^{3}(x)=\Psi_{n}^{2}(x)-\zeta_{0}^{2}(x)+o_{n}(1) \tag{3.38}
\end{equation*}
$$

Arguing as before, we conclude

$$
\left\|\widetilde{w}_{n}^{3}\right\|^{2}+\left\|\widetilde{z}_{n}^{3}\right\|^{2}=\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2}-\left\|z_{0}^{1}\right\|^{2}-\left\|\zeta_{0}^{1}\right\|^{2}-\left\|z_{0}^{2}\right\|^{2}-\left\|\zeta_{0}^{2}\right\|^{2}+o_{n}(1)(3.39)
$$

$$
\begin{equation*}
I_{\infty}\left(\widetilde{w}_{n}^{3}, \widetilde{z}_{n}^{3}\right)=I\left(u_{n}, v_{n}\right)-I\left(u_{0}, v_{0}\right)-I_{\infty}\left(z_{0}^{1}, \zeta_{0}^{1}\right)-I_{\infty}\left(z_{0}^{2}, \zeta_{0}^{2}\right)+o_{n}(1) \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\infty}^{\prime}\left(\widetilde{w}_{n}^{3}, \widetilde{z}_{n}^{3}\right)=I_{\infty}^{\prime}\left(\Phi_{n}^{2}, \Psi_{n}^{2}\right)-I_{\infty}^{\prime}\left(z_{0}^{2}, \zeta_{0}^{2}\right)+o_{n}(1) \tag{3.41}
\end{equation*}
$$

If $\tilde{w}_{n}^{3}, \tilde{z}_{n}^{3} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, the proof is over with $k=2$, because $\left\|\tilde{w}_{n}^{3}\right\|^{2} \rightarrow 0,\left\|\tilde{z}_{n}^{3}\right\|^{2} \rightarrow 0$ and from (3.39), we have

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\sum_{j=1}^{2}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]
$$

Moreover, from continuity of I_{∞}, we have that $I_{\infty}\left(\tilde{z}_{n}^{3}\right) \rightarrow 0$, now using (3.40) we get

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{2} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)
$$

If $\widetilde{w}_{n}^{3}, \widetilde{z}_{n}^{3} \nrightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, we can repeat the same arguments before and we can find $\left(z_{0}^{1}, \zeta_{0}^{1}\right),\left(z_{0}^{2}, \zeta_{0}^{2}\right), \ldots,\left(z_{0}^{k-1}, \zeta_{0}^{k-1}\right)$ nontrivial solutions for the system $\left(S_{\infty}\right)$ satisfying

$$
\begin{equation*}
\left\|\widetilde{w}_{n}^{k}\right\|^{2}+\left\|\widetilde{z}_{n}^{k}\right\|^{2}=\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2}-\sum_{j=1}^{k-1}\left[\left\|z_{0}^{j}\right\|^{2}-\left\|\zeta_{0}^{j}\right\|^{2}\right]+o_{n}(1) \tag{3.42}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\infty}\left(\widetilde{z}_{n}^{k}, \widetilde{z}_{n}^{k}\right)=I\left(u_{n}, v_{n}\right)-I\left(u_{0}, v_{0}\right)-\sum_{j=1}^{k-1} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)+o_{n}(1) \tag{3.43}
\end{equation*}
$$

From definition of \widetilde{S}_{K}, we conclude that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}} K\left(z_{0}^{j}, \zeta_{0}^{j}\right) d x\right)^{2 / 2^{*}} \widetilde{S}_{K} \leq\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}, \quad j=1,2, \ldots, k-1 \tag{3.44}
\end{equation*}
$$

Since $\left(z_{0}^{j}, \zeta_{0}^{j}\right)$ is nontrivial solution of $\left(S_{\infty}\right)$, for all $j=1,2, \ldots, k-1$, we get

$$
\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}=\int_{\mathbb{R}^{N}} K\left(z_{0}^{j}, \zeta_{0}^{j}\right) d x
$$

Hence,

$$
\begin{equation*}
-\left\|z_{0}^{j}\right\|^{2}-\left\|\zeta_{0}^{j}\right\|^{2} \leq-\widetilde{S}_{K}^{N / 2}, \quad j=1,2, \ldots, k-1 \tag{3.45}
\end{equation*}
$$

From (3.42) and (3.45), we have

$$
\begin{align*}
& \left\|\widetilde{w}_{n}^{k}\right\|^{2}+\left\|\widetilde{z}_{n}^{k}\right\|^{2}=\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2} \\
- & \sum_{j=1}^{k-1}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]+o_{n}(1) \\
\leq & \left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2}-(k-1) \widetilde{S}_{K}^{N / 2}+o_{n}(1) . \tag{3.46}
\end{align*}
$$

Since $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$, for k sufficient large, we conclude that $\widetilde{w}_{n}^{k}, \quad \widetilde{z}_{n}^{k} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and the proof is over.

Corollary 3.3. Let $\left(u_{n}, v_{n}\right)$ be a $(P S)_{c}$ sequence for I with $c \in\left(0, \frac{1}{N} \widetilde{S}_{K}^{N / 2}\right)$. Then, up to a subsequence, $\left(u_{n}, v_{n}\right)$ strong converges in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$.

Proof. We have that $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$,

$$
u_{n} \rightharpoonup u_{0}, v_{n} \rightharpoonup v_{0} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right)
$$

and by a density argument $I^{\prime}\left(u_{0}, v_{0}\right)=0$. Suppose, by contradiction, that

$$
u_{n} \nrightarrow u_{0}, \quad v_{n} \nrightarrow v_{0} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right) .
$$

From Theorem 3.2, there are $k \in \mathbb{N}$ and nontrivial solutions $\left(z_{0}^{1}, \zeta_{0}^{1}\right),\left(z_{0}^{2}, \zeta_{0}^{2}\right), \ldots,\left(z_{0}^{k}, \zeta_{0}^{k}\right)$ of the system $\left(S_{\infty}\right)$ such that,

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\sum_{j=1}^{k}\left[\left|z_{0}^{j}\left\|^{2}+\mid \zeta_{0}^{j}\right\|^{2}\right]\right.
$$

and

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)
$$

Note that by (2.1) we have

$$
\begin{aligned}
I\left(u_{0}, v_{0}\right) & =\frac{1}{2}\left\|u_{0}\right\|^{2}+\frac{1}{2}\left\|v_{0}\right\|^{2}+\frac{1}{2} \int_{\mathbb{R}^{N}} a(x) u_{0}^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} b(x) v_{0}^{2} d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x \\
& =\frac{1}{2}\left\|u_{0}\right\|^{2}+\frac{1}{2}\left\|v_{0}\right\|^{2}+\frac{1}{2}\left(\int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2}\right)-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x \\
& =\frac{1}{N} \int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x \geq 0
\end{aligned}
$$

Then,

$$
c=I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right) \geq \sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right) \geq \frac{k}{N} \widetilde{S}_{K}^{N / 2} \geq \frac{1}{N} \widetilde{S}_{K}^{N / 2}
$$

which is a contradiction with $c \in\left(0, \frac{1}{N} \widetilde{S}_{K}^{N / 2}\right)$.
Corollary 3.4. The functional $I: D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition in $\left(\frac{1}{N} \widetilde{S}_{K}^{N / 2}, \frac{2}{N} \widetilde{S}_{K}^{N / 2}\right)$.

Proof. Let $\left(u_{n}, v_{n}\right)$ be a sequence in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ that satisfies

$$
I\left(u_{n}, v_{n}\right) \rightarrow c \text { and } I^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0
$$

Since $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$, up to a subsequence, we have

$$
u_{n} \rightharpoonup u_{0}, v_{n} \rightharpoonup v_{0} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right)
$$

Moreover, $I\left(u_{0}, v_{0}\right) \geq 0$. Suppose, by contradiction, that

$$
u_{n} \nrightarrow u_{0}, \quad v_{n} \nrightarrow v_{0} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right)
$$

From Theorem 3.2, there are $k \in \mathbb{N}$ and nontrivial solutions $\left(z_{0}^{1}, \zeta_{0}^{1}\right),\left(z_{0}^{2}, \zeta_{0}^{2}\right), \ldots,\left(z_{0}^{k}, \zeta_{0}^{k}\right)$ of the system $\left(S_{\infty}\right)$ such that

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\sum_{j=1}^{k}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]
$$

and

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)=c .
$$

Since $I\left(u_{0}, v_{0}\right) \geq 0$, then $k=1$ and z_{0}^{1}, ζ_{0}^{1} cannot change of the sign. Hence,

$$
c=I\left(u_{0}, v_{0}\right)+I_{\infty}\left(z_{0}^{1}, \zeta_{0}^{1}\right)=I\left(u_{0}, v_{0}\right)+\frac{1}{N} \widetilde{S}_{K}^{N / 2}
$$

From definition of $\widetilde{S}_{K}, I^{\prime}\left(u_{0}, v_{0}\right)\left(u_{0}, v_{0}\right)=0$ and

$$
I\left(u_{0}, v_{0}\right)=\frac{1}{N} \int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x
$$

we have,

$$
\frac{2}{N} \widetilde{S}_{K}^{N / 2} \leq I\left(u_{0}, v_{0}\right)+\frac{1}{N} \widetilde{S}_{K}^{N / 2}=c
$$

which a contradiction with $c \in\left(\frac{1}{N} \widetilde{S}_{K}^{N / s}, \frac{2}{N} \widetilde{S}_{K}^{N / 2}\right)$.
Corollary 3.5. Let $\left(u_{n}, v_{n}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ be a $(P S)_{c}$ sequence for I with $c \in$ $\left(\frac{k}{N} \widetilde{S}_{K}^{N / 2}, \frac{(k+1)}{N} \widetilde{S}_{K}^{N / 2}\right)$, where $k \in \mathbb{N}$. Then, the weak limit $\left(u_{0}, v_{0}\right)$ of $\left(u_{n}, v_{n}\right)$ is not trivial.
Proof. Suppose, by contradiction, that $u_{0}, v_{0} \equiv 0$. Since $c>0$, then $u_{n}, v_{n} \nrightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$. From Theorem 3.2, up to subsequence, we get

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \rightarrow\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\sum_{j=1}^{k}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]=\sum_{j=1}^{k}\left[\left\|z_{0}^{j}\right\|^{2}+\left\|\zeta_{0}^{j}\right\|^{2}\right]
$$

and

$$
I\left(u_{n}, v_{n}\right) \rightarrow I\left(u_{0}, v_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)=\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)=c \geq \frac{(k+1)}{N} \widetilde{S}_{K}^{N / 2}
$$

which a contradiction with $c \in\left(\frac{k}{N} \widetilde{S}_{K}^{N / 2}, \frac{(k+1)}{N} \widetilde{S}_{K}^{N / 2}\right)$.
From now on we consider the functional $f: D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
f(u, v)=\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\int_{\mathbb{R}^{N}} a(x) u^{2} d x+\int_{\mathbb{R}^{N}} b(x) v^{2} d x
$$

and the manifold $\mathcal{M} \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ given by

$$
\mathcal{M}=\left\{(u, v) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} K(u, v) d x=1\right\}
$$

The next results are direct consequence of the corollaries above.
Lemma 3.6. Let $\left(u_{n}, v_{n}\right) \subset \mathcal{M}$ be a sequence that satisfies

$$
f\left(u_{n}, v_{n}\right) \rightarrow c \text { and }\left.f^{\prime}\right|_{\mathcal{M}}\left(u_{n}, v_{n}\right) \rightarrow 0
$$

Then, the sequence $\left(w_{n}, z_{n}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right)$, where $\left(w_{n}, z_{n}\right)=\left(c^{(N-2) / 4} u_{n}, c^{(N-2) / 4} v_{n}\right)$, satisfies the following limits.

$$
I\left(w_{n}, z_{n}\right) \rightarrow \frac{1}{N} c^{N / 2} \text { and } I^{\prime}\left(w_{n}, z_{n}\right) \rightarrow 0
$$

Lemma 3.7. Suppose that there are a sequence $\left(u_{n}, v_{n}\right) \subset \mathcal{M}$ and $c \in\left(\widetilde{S}_{K}, 2^{2 / N} \widetilde{S}_{K}\right)$ such that

$$
f\left(u_{n}, v_{n}\right) \rightarrow c \text { and }\left.\quad f^{\prime}\right|_{\mathcal{M}}\left(u_{n}, v_{n}\right) \rightarrow 0 .
$$

Then, up to a subsequence, $u_{n} \rightarrow u, v_{n} \rightarrow v$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, for some $u, v \in D^{1,2}\left(\mathbb{R}^{N}\right)$.
Corollary 3.8. Suppose that there are a sequence $\left(u_{n}, v_{n}\right) \subset \mathcal{M}$ and $c \in\left(\widetilde{S}_{K}, 2^{2 / N} \widetilde{S}_{K}\right)$ such that

$$
f\left(u_{n}, v_{n}\right) \rightarrow c \text { and } f^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0 .
$$

Then I has a critical point $\left(u_{0}, v_{0}\right) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ with $I\left(u_{0}, v_{0}\right)=\frac{1}{N} c^{N / 2}$.

4 Existence of positive solution to (\boldsymbol{P})

Now we recall some properties on the function $\Phi_{\delta, y}$ given by in (1.1). Note that

$$
\begin{equation*}
\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right) \in \Sigma=\left\{(u, v) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) ; u, v \geq 0\right\} \tag{4.1}
\end{equation*}
$$

Moreover, making a change of variable we can prove that

$$
\begin{equation*}
\Phi_{\delta, y} \in L^{q}\left(\mathbb{R}^{N}\right) \text { for } q \in\left(\frac{N}{N-2}, 2^{*}\right], \quad \forall \delta>0 \text { and } \forall y \in \mathbb{R}^{N} \tag{4.2}
\end{equation*}
$$

The proof of next result can be seen in [1, Lemma 4].
Lemma 4.1. For each $y \in \mathbb{R}^{N}$, we have
(i) $\left\|\Phi_{\delta, y}\right\|_{H^{1, \infty\left(\mathbb{R}^{N}\right)}} \rightarrow 0$ when $\delta \rightarrow+\infty$,
(ii) $\left|\Phi_{\delta, y}\right|_{q} \rightarrow 0$ when $\delta \rightarrow 0, \quad \forall q \in\left(\frac{N}{N-2}, 2^{*}\right)$,
(iii) $\left|\Phi_{\delta, y}\right|_{q} \rightarrow+\infty$ when $\delta \rightarrow+\infty, \quad \forall q \in\left(\frac{N}{N-2}, 2^{*}\right)$.

The proof of next result can be seen in [1, Lemma 5].
Lemma 4.2. For each $\varepsilon>0$, we have

$$
\int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(0)}\left|\nabla \Phi_{\delta, 0}\right|^{2} d x \rightarrow 0 \quad \text { when } \quad \delta \rightarrow 0
$$

4.1 Technical Lemmas

Lemma 4.3. Suppose that $a, b \in L^{q}\left(\mathbb{R}^{N}\right), \forall q \in\left[p_{1}, p_{2}\right]$, where $1<p_{1}<\frac{N}{2}<p_{2}$ with $p_{2}<3$ if $N=3$. Then, for each $\varepsilon>0$, there are $\underline{\delta}=\underline{\delta}(\varepsilon)>0$ and $\bar{\delta}=\bar{\delta}(\varepsilon)>0$ such that

$$
\sup _{y \in \mathbb{R}^{N}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)<\widetilde{S}_{K}+\varepsilon, \quad \delta \in(0, \underline{\delta}] \cup[\bar{\delta}, \infty)
$$

Proof. Consider $y \in \mathbb{R}^{N}, q \in\left(\frac{N}{2}, p_{2}\right]$ and $t \in(1,+\infty)$ with $\frac{1}{q}+\frac{1}{t}=1$. Making a direct calculations we have

$$
\begin{equation*}
\frac{N}{N-2}<2 t<2^{*} \tag{4.3}
\end{equation*}
$$

Since $\Phi_{\delta, b} \in L^{d}\left(\mathbb{R}^{N}\right), \forall d \in\left(\frac{N}{N-2}, 2^{*}\right)$, we get $\left|\Phi_{\delta, b}\right|^{2} \in L^{t}\left(\mathbb{R}^{N}\right)$. Then, using Hölder inequality and change of variable, we have

$$
\int_{\mathbb{R}^{N}} a(x)\left|\Phi_{\delta, b}\right|^{2} d x \leq|a|_{q}\left|\Phi_{\delta, 0}\right|_{2 t}^{2}, \quad \forall y \in \mathbb{R}^{N}
$$

and

$$
\int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, b}\right|^{2} d x \leq|b|_{q}\left|\Phi_{\delta, 0}\right|_{2 t}^{2}, \quad \forall y \in \mathbb{R}^{N}
$$

From item (iii) of Lemma 4.1, given $\varepsilon>0$, there exists $\underline{\delta}=\underline{\delta}(\varepsilon)>0$ such that

$$
\sup _{y \in \mathbb{R}^{N}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right) \leq \widetilde{S}_{K}+\frac{\varepsilon}{2}<\widetilde{S}_{K}+\varepsilon, \quad \forall \delta \in(0, \underline{\delta}]
$$

Suppose that $q \in\left[p_{1}, \frac{N}{2}\right)$ with $t \in(1,+\infty)$ and $\frac{1}{q}+\frac{1}{t}=1$. Note that $2 t-2^{*}>0$ and for $\delta>1$,

$$
\begin{equation*}
\left|\Phi_{\delta, y}\right| \in L^{\infty}\left(\mathbb{R}^{N}\right) \tag{4.4}
\end{equation*}
$$

and $\left|\Phi_{\delta, y}\right|^{2^{*}} \in L^{1}\left(\mathbb{R}^{N}\right)$. Then, $\left|\Phi_{\delta, y}\right|^{2} \in L^{t}\left(\mathbb{R}^{N}\right)$. Using Hölder inequality with q and t, we get

$$
\begin{aligned}
s_{o}^{2} \int_{\mathbb{R}^{N}} a(x)\left|\Phi_{\delta, y}\right|^{2} d x & \leq s_{o}^{2}|a|_{q}\left(\int_{\mathbb{R}^{N}}\left|\Phi_{\delta, 0}\right|^{2 t} d z\right)^{1 / t} \\
& =s_{o}^{2}|a|_{q}\left(\int_{\mathbb{R}^{N}}\left|\Phi_{\delta, 0}\right|^{2_{s}^{*}}\left|\Phi_{\delta, 0}\right|^{2 t-2_{s}^{*}} d z\right)^{1 / t} \\
& \leq s_{o}^{2}|a|_{q}\left|\Phi_{\delta, 0}\right|_{\infty}^{\left(2 t-2^{*}\right) / t}\left(\int_{\mathbb{R}^{N}}\left|\Phi_{\delta, 0}\right|^{2^{*}} d z\right)^{1 / t} \leq s_{o}^{2}|a|_{q}\left|\Phi_{\delta, 0}\right|_{\infty}^{\left(2 t-2^{*}\right) / t} \\
& \leq s_{o}^{2}|a|_{q} c^{\left(2 t-2^{*}\right) / t} \delta((2-N) / 2)\left(\left(2 t-2^{*}\right) / t\right)
\end{aligned} \quad \forall y \in \mathbb{R}^{N} .
$$

Then, given $\varepsilon>0$, there is $\bar{\delta}=\bar{\delta}(\varepsilon)>1$ such that

$$
\delta^{((2-N) / 2) / 2)\left(\left(2 t-2^{*}\right) / t\right)}<\frac{\varepsilon}{2 s_{o}^{2}|a|_{q} c^{\left(2 t-2^{*}\right) / t}}, \quad \forall \delta \in[\bar{\delta}, \infty) .
$$

Arguing as the same way, we have

$$
t_{o}^{2} \int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, y}\right|^{2} d x \leq t_{o}^{2}|b|_{q} c^{\left(2 t-2^{*}\right) / t} \delta^{((2-N) / 2)\left(\left(2 t-2^{*}\right) / t\right)}, \quad \forall y \in \mathbb{R}^{N} .
$$

Then

$$
\begin{aligned}
f\left(s_{o} \boldsymbol{\Phi}_{\delta, y}, t_{o} \boldsymbol{\Phi}_{\delta, y}\right) & =\widetilde{S}_{K}+s_{o}^{2} \int_{\mathbb{R}^{N}} a(x)\left|\boldsymbol{\Phi}_{\delta, y}\right|^{2} d x+t_{o}^{2} \int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, y}\right|^{2} d x \\
& \leq S+s_{o}^{2} \sup _{y \in \mathbb{R}^{N}} \int_{\mathbb{R}^{N}} a(x)\left|\boldsymbol{\Phi}_{\delta, y}\right|^{2} d x+t_{o}^{2} \sup _{y \in \mathbb{R}^{N}} \int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, y}\right|^{2} d x \\
& \leq \widetilde{S}_{K}+\frac{\varepsilon}{2}<\widetilde{S}_{K}+\varepsilon, \quad \forall y \in \mathbb{R}^{N} \text { and } \forall \delta \in[\bar{\delta}, \infty) .
\end{aligned}
$$

Lemma 4.4. Suppose that $(a, b)_{3}$ is true. Then,

$$
\sup _{\substack{y \in \mathbb{R}^{N} \\ \delta \in(0,+\infty)}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)<2^{2 / N} \widetilde{S}_{K} .
$$

Proof. Using Hölder inequality with $N / 2$ and $N /(N-2)$, we get

$$
f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right) \leq \widetilde{S}_{K}+s_{o}^{N}|a|_{L^{N / 2}\left(\mathbb{R}^{N}\right)}+t_{o}^{N}|b|_{L^{N / 2}\left(\mathbb{R}^{N}\right)} .
$$

From $(a, b)_{3}$ we conclude

$$
\sup _{\substack{y \in \mathbb{R}^{N} \\ \delta \in(0, \infty)}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right) \leq \widetilde{S}_{K}+\widetilde{S}_{K}\left(2^{2 / N}-1\right)=2^{2 / N} \widetilde{S}_{K} .
$$

Consider the function

$$
\xi(x)=\left\{\begin{array}{lll}
0, & \text { if } & |x|<1 \\
1, & \text { if } & |x| \geq 1
\end{array}\right.
$$

and define $\alpha: D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}^{N+1}$ by

$$
\alpha(u, v)=\frac{1}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}}\left(\frac{x}{|x|}, \xi(x)\right)\left[s_{o}^{2}|\nabla u|^{2}+t_{o}^{2}|\nabla v|^{2}\right] d x=(\beta(u, v), \gamma(u, v))
$$

where

$$
\beta(u, v)=\frac{1}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}} \frac{x}{|x|}\left[s_{o}^{2}|\nabla u|^{2}+t_{o}^{2}|\nabla v|^{2}\right] d x
$$

and

$$
\gamma(u, v)=\frac{1}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}} \xi(x)\left[s_{o}^{2}|\nabla u|^{2}+t_{o}^{2}|\nabla v|^{2}\right] d x
$$

Lemma 4.5. If $|y| \geq \frac{1}{2}$, then

$$
\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)=\frac{y}{|y|}+o_{\delta}(1) \quad \text { when } \quad \delta \rightarrow 0
$$

Proof. Given $\varepsilon>0$, from Lemma 4.2, there is $\hat{\delta}>0$ such that

$$
\int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(y)}\left|\nabla \Phi_{\delta, y}\right|^{2} d x=\int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(0)}\left|\nabla \Phi_{\delta, 0}\right|^{2} d z<\varepsilon, \quad \forall \delta \in(0, \hat{\delta})
$$

Then,

$$
\begin{align*}
\left.\left.\left|\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\right| \nabla \Phi_{\delta, y}\right|^{2} d x \right\rvert\, & \leq \frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(y)}\left|\nabla \Phi_{\delta, y}\right|^{2} d x \\
& <\varepsilon, \quad \forall \delta \in(0, \hat{\delta}) \tag{4.5}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left.\left.\left|\frac{y}{|y|}-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\right| \nabla \Phi_{\delta, y}\right|^{2} d x \right\rvert\,<4 \varepsilon+\varepsilon=C \varepsilon, \quad \forall \delta \in(0, \hat{\delta}) \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6), we have

$$
\begin{aligned}
\left|\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)-\frac{y}{|y|}\right| & =\left.\left|\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\right| \nabla \Phi_{\delta, y}\right|^{2} d x \\
& \left.+\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\left|\nabla \Phi_{\delta, y}\right|^{2} d x-\frac{y}{|y|} \right\rvert\, \\
& \left.\leq\left.\left|\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\right| \nabla \Phi_{\delta, y}\right|^{2} d x \right\rvert\, \\
& \left.+\left.\left|\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{\varepsilon}(y)} \frac{x}{|x|}\right| \nabla \Phi_{\delta, y}\right|^{2} d x-\frac{y}{|y|} \right\rvert\, \\
& <\varepsilon+C \varepsilon \\
& =K \varepsilon, \quad \forall \delta \in(0, \hat{\delta}) .
\end{aligned}
$$

Lemma 4.6. Suppose that $a, b \in L^{q}\left(\mathbb{R}^{N}\right), \forall q \in\left[p_{1}, p_{2}\right]$, where $1<p_{1}<\frac{N}{2}<p_{2}$ with $p_{2}<3$ if $N=3$. Then, for every $\delta>0$, we have

$$
\lim _{|y| \rightarrow \infty} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)=\widetilde{S}_{K}
$$

Proof. Since

$$
\left.f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)\right)=\widetilde{S}_{K}+s_{o}^{2} \int_{\mathbb{R}^{N}} a(x)\left|\Phi_{\delta, y}\right|^{2} d x+t_{o}^{2} d s \int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, y}\right|^{2} d x
$$

we need to prove that

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty} \int_{\mathbb{R}^{N}} a(x)\left|\Phi_{\delta, y}\right|^{2} d x=0, \quad \forall \delta>0 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty} \int_{\mathbb{R}^{N}} b(x)\left|\Phi_{\delta, y}\right|^{2} d x=0, \quad \forall \delta>0 \tag{4.8}
\end{equation*}
$$

Note that given $\varepsilon>0$, there is $k_{0}>0$ such that

$$
\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(0)} a(x)^{N / 2} d x\right)^{2 / N}<\varepsilon, \quad \forall \rho>k_{0}
$$

and

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(y)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{1 / 2^{*}}=\left(\left.\int_{\mathbb{R}^{N} \backslash B_{\rho}(0)}\left|\Phi_{\delta, 0}\right|\right|^{2^{*}} d z\right)^{1 / 2^{*}}<\varepsilon, \quad \forall \rho>k_{0} \tag{4.9}
\end{equation*}
$$

Consider

$$
\begin{equation*}
k_{0}<2 \rho<|y| \quad(\rho \text { fixed }) \tag{4.10}
\end{equation*}
$$

and note that

$$
\begin{equation*}
B_{\rho}(0) \cap B_{\rho}(y)=\emptyset . \tag{4.11}
\end{equation*}
$$

Using Hölder inequality with $N / 2$ and $N /(N-2)$, we get

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} a(x)\left|\Phi_{\delta, y}\right|^{2} d x & \leq\left(\int_{\mathbb{R}^{N} \backslash\left(B_{\rho}(0) \cup B_{\rho}(y)\right)} a^{N / 2} d x\right)^{2 / N}\left(\int_{\mathbb{R}^{N} \backslash\left(B_{\rho}(0) \cup B_{\rho}(y)\right)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& +\left(\int_{B_{\rho}(0)} a^{N / 2} d x\right)^{2 / N}\left(\int_{B_{\rho}(0)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& +\left(\int_{B_{\rho}(y)} a^{N / 2} d x\right)^{2 / N}\left(\int_{B_{\rho}(y)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& \leq\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(0)} a^{N / 2} d x\right)^{2 / N}\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(y)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& +\left(\int_{\mathbb{R}^{N}} a^{N / 2} d x\right)^{2 / N}\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(y)}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& +\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(0)} a^{N / 2} d x\right)^{2 / N}\left(\int_{\mathbb{R}^{N}}\left|\Phi_{\delta, y}\right|^{2^{*}} d x\right)^{(N-2) / N} \\
& =\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}(0)} a^{N / 2} d x\right)^{2 / N} \\
& <\varepsilon \varepsilon^{2}+|a|_{N / 2} \varepsilon^{2}+\varepsilon .
\end{aligned}
$$

Arguing of the same way for the term (4.8), the proof is over.

Now we define the set

$$
\Im=\left\{(u, v) \in \mathcal{M} ; \alpha(u, v)=\left(0, \frac{1}{2}\right)\right\} .
$$

and note that from Lemma 4.2 and Lemma 4.1, item (i), there is $\delta_{1}>0$ such that $\left(\Phi_{\delta_{1}, 0}, \Phi_{\delta_{1}, 0}\right) \in$ \Im.

Lemma 4.7. The number $c_{0}=\inf _{u \in \Im} f(u, v)$ satisfies the inequality $c_{0}>\widetilde{S}_{K}$.
Proof. Since $\Im \subset \mathcal{M}$, we have

$$
\widetilde{S}_{K} \leq c_{0}
$$

Suppose, by contradiction, that $\widetilde{S}_{K}=c_{0}$. By Ekeland variational principle [16], there exists $\left(u_{n}, v_{n}\right) \subset D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} K\left(u_{n}, v_{n}\right) d x=1, \quad \alpha\left(u_{n}, v_{n}\right) \rightarrow\left(0, \frac{1}{2}\right) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(u_{n}, v_{n}\right) \rightarrow \widetilde{S}_{K},\left.\quad f^{\prime}\right|_{\mathcal{M}}\left(u_{n}, v_{n}\right) \rightarrow 0 \tag{4.13}
\end{equation*}
$$

Then, $\left(u_{n}, v_{n}\right)$ is bounded in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ and, up to a subsequence, $u_{n} \rightharpoonup u_{0}, v_{n} \rightharpoonup v_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$.

If $w_{n}=S^{(N-2) / 4} u_{n}, z_{n}=S^{(N-2) / 4} v_{n}$ and $w_{0}=S^{(N-2) / 4} u_{0}, z_{0}=S^{(N-2) / 4} v_{0}$, we have that $w_{n} \rightharpoonup w_{0}, z_{n} \rightharpoonup z_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$. Moreover, from (4.13) and Lemma 3.6, we get

$$
I\left(w_{n}, z_{n}\right) \rightarrow \frac{1}{N} \widetilde{S}_{K}^{N / 2} \text { and } I^{\prime}\left(w_{n}, z_{n}\right) \rightarrow 0
$$

We are going to show that $\left(w_{0}, z_{0}\right) \equiv(0,0)$. Note that

$$
\begin{equation*}
u_{n} \nrightarrow u_{0}, u_{n} \nrightarrow u_{0} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right) \tag{4.14}
\end{equation*}
$$

since otherwise, $\left(u_{0}, v_{0}\right) \in \mathcal{M}$ implies $u_{0} \neq 0, v_{0} \neq 0$. Then,

$$
\begin{aligned}
\widetilde{S}_{K} & \leq \frac{\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x+\int_{\mathbb{R}^{N}}\left|\nabla v_{0}\right|^{2} d x}{\left(\int_{\mathbb{R}^{N}} K\left(u_{0}, v_{0}\right) d x\right)^{2 / 2^{*}}}=\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x+\int_{\mathbb{R}^{N}}\left|\nabla v_{0}\right|^{2} d x \\
& <\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x+\int_{\mathbb{R}^{N}}\left|\nabla v_{0}\right|^{2} d x+\int_{\mathbb{R}^{N}} a(x)\left|u_{0}\right|^{2} d x+\int_{\mathbb{R}^{N}} b(x)\left|v_{0}\right|^{2} d x=\widetilde{S}_{K}
\end{aligned}
$$

which it is an absurd. Hence, $w_{n} \nrightarrow w_{0}, z_{n} \nrightarrow z_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and, since $\left(w_{n}, z_{n}\right)$ is a $(P S)_{c}$ sequence for I, by Theorem 3.2 we obtain that

$$
I\left(w_{n} . z_{n}\right) \rightarrow I\left(w_{0}, z_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(z_{0}^{j}, \zeta_{0}^{j}\right)=\frac{1}{N} \widetilde{S}_{K}^{N / 2}
$$

Since $I_{\infty}^{\prime}\left(z_{0}^{j}, \zeta_{0}^{j}\right)=0$, we have that

$$
\begin{gather*}
I\left(w_{0}, z_{0}\right)=0 \tag{4.15}\\
k=1 \tag{4.16}\\
z_{0}^{1}, \zeta_{0}^{1}>0 \tag{4.17}
\end{gather*}
$$

$$
I\left(w_{0}, z_{0}\right)=\frac{1}{N} \int_{\mathbb{R}^{N}} K\left(w_{0}, z_{0}\right) d x
$$

and from (4.15), we conclude that $w_{0} \equiv 0$ and $z_{0} \equiv 0$. Then, $\left(w_{n}, z_{n}\right)$ is a $(P S)_{c}$ sequence for I such that $w_{n} \rightharpoonup 0, z_{n} \rightharpoonup 0$ and $w_{n} \nrightarrow 0, z_{n} \nrightarrow 0$.

Note that $\int_{\mathbb{R}^{N}} a(x)\left|w_{n}\right|^{2} d x=o_{n}(1)$ and $\int_{\mathbb{R}^{N}} b(x)\left|z_{n}\right|^{2} d x=o_{n}(1)$. Then,
$\frac{1}{N} \widetilde{S}_{K}^{N / 2}+o_{n}(1)=I\left(w_{n}, z_{n}\right)=I_{\infty}\left(w_{n}, z_{n}\right)+\int_{\mathbb{R}^{N}} a(x)\left|w_{n}\right|^{2} d x+\int_{\mathbb{R}^{N}} b(x)\left|z_{n}\right|^{2} d x=I_{\infty}\left(v_{n}\right)+o_{n}(1(4.18)$
and

$$
\begin{equation*}
\left\|I_{\infty}^{\prime}\left(w_{n}, z_{n}\right)\right\|_{D^{\prime}} \leq\left\|I^{\prime}\left(w_{n}, z_{n}\right)\right\|_{D^{\prime}}+o_{n}(1) \tag{4.19}
\end{equation*}
$$

From (4.18) and (4.19) we conclude that $\left(w_{n}, z_{n}\right)$ is a $(P S)_{c}$ sequence for I_{∞} and by Lemma 3.1, there are sequences $\left(R_{n}\right) \subset \mathbb{R},\left(x_{n}\right) \subset \mathbb{R}^{N},\left(z_{0}^{1}, \zeta_{0}^{1}\right)$ nontrivial solution of $\left(S_{\infty}\right)$ and $\left(\Phi_{n}, \Psi_{n}\right)$ a $(P S)_{c}$ sequence for I_{∞} such that
$w_{n}(x)=\Phi_{n}(w)+R_{n}^{(N-2) / 2} z_{0}^{1}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}(1)$ and $z_{n}(x)=\Psi_{n}(w)+R_{n}^{(N-2) / 2} \zeta_{0}^{1}\left(R_{n}\left(x-x_{n}\right)\right)+o_{n}$
Note that if we define

$$
\widetilde{\Phi}_{n}(x)=R_{n}^{(N-2) / 2} z_{0}^{1}\left(R_{n}\left(x-x_{n}\right)\right), \quad \widetilde{\Psi}_{n}(x)=R_{n}^{(N-2) / 2} \zeta_{0}^{1}\left(R_{n}\left(x-x_{n}\right)\right),
$$

making change of variable, we have

$$
I_{\infty}^{\prime}\left(\widetilde{\Phi}_{n}, \widetilde{\Psi}_{n}\right)(\varphi, \psi)=I_{\infty}^{\prime}\left(z_{0}^{1}, \zeta_{0}^{1}\right)\left(\varphi_{n}, \psi_{n}\right)=0, \quad \forall(\varphi, \psi) \in D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right), \quad \forall n \in \mathbb{N}
$$

i.e, $\left(\widetilde{\Phi}_{n}, \widetilde{\Psi}_{n}\right)$ is a solution of $\left(S_{\infty}\right)$, for all $n \in \mathbb{N}$.

Moreover, from definition of $\left(\widetilde{\Phi}_{n}, \widetilde{\Psi}_{n}\right)$ and by (4.17), we get

$$
\widetilde{\Phi}_{n}(x)=\widetilde{\Psi}_{n}(x)=c\left(\frac{\delta_{n}}{\delta_{n}^{2}+\left|x-y_{n}\right|^{2}}\right)^{(N-2) / 2}
$$

By (4.20), we obtain

$$
u_{n}(x)=\widehat{\Phi}_{n}(x)+\Phi_{\delta_{n}, y_{n}}(x)+o_{n}(1), v_{n}(x)=\widehat{\Psi}_{n}(x)+\Phi_{\delta_{n}, y_{n}}(x)+o_{n}(1)
$$

where

$$
\widehat{\Phi}_{n}(x)=\frac{1}{\widetilde{S}_{K}^{(N-2) / 4}} \Phi_{n}(x), \quad \widehat{\Psi}_{n}(x)=\frac{1}{\widetilde{S}_{K}^{(N-2) / 4}} \Psi_{n}(x)
$$

Using (4.16), we derive that $\Phi_{n} \rightarrow 0, \Psi_{n} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, which implies that $\widehat{\Phi}_{n} \rightarrow 0$, $\widehat{\Psi}_{n} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$. From (4.12) we have
$\left.\left(0, \frac{1}{2}\right)+o_{n}(1)=\alpha\left(u_{n}, v_{n}\right)=\alpha\left(\widehat{\Phi}_{n}(x)+\Phi_{\delta_{n}, y_{n}}(x), \widehat{\Psi}_{n}(x)+\Phi_{\delta_{n}, y_{n}}(x)\right)+o_{n}(1)\right)=\alpha\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right)$
which implies
(i) $\beta\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) \rightarrow 0$
and

$$
\text { (ii) } \gamma\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) \rightarrow \frac{1}{2} .
$$

Passing to a subsequence, one of these cases can occur.
(a) $\delta_{n} \rightarrow+\infty$ when $n \rightarrow+\infty$;
(b) $\delta_{n} \rightarrow \tilde{\delta} \neq 0$ when $n \rightarrow+\infty$;
(c) $\delta_{n} \rightarrow 0$ and $y_{n} \rightarrow \tilde{y}$ when $n \rightarrow+\infty$ with $|\tilde{y}|<\frac{1}{2}$;
(d) $\delta_{n} \rightarrow 0$ when $n \rightarrow+\infty$ and $\left|y_{n}\right| \geq \frac{1}{2}$ for n sufficient large.

Suppose that (a) is true. Then,

$$
\gamma\left(\Phi_{\delta_{n}, y_{n}}\right)=1-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}(0)}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x
$$

which implies by Lemma 4.1,

$$
\left|\gamma\left(\Phi_{\delta_{n}, b_{n}}\right)-1\right|=\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}(0)}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x \leq \frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x=o_{n}(1)
$$

which contradicts (ii).
Suppose that (b) is true. In this case we can suppose that $\left|y_{n}\right| \rightarrow+\infty$, because if $y_{n} \rightarrow \tilde{y}$, we can prove that

$$
\Phi_{\delta_{n}, y_{n}} \rightarrow \Phi_{\tilde{\delta}, \tilde{y}} \text { in } D^{1,2}\left(\mathbb{R}^{N}\right)
$$

Since $\widehat{\Phi}_{n}, \widehat{\Psi}_{n} \rightarrow 0$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$ and $u_{n}=\widehat{\Phi}_{n}+\Phi_{\delta_{n}, y_{n}}+o_{n}(1), v_{n}=\widehat{\Psi}_{n}+\Phi_{\delta_{n}, y_{n}}+o_{n}(1)$, we have that $\left(u_{n}, v_{n}\right)$ converges in $D^{1,2}\left(\mathbb{R}^{N}\right) \times D^{1,2}\left(\mathbb{R}^{N}\right)$ but this is a contradiction with (4.14).

Then,

$$
\begin{align*}
\gamma\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) & =\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}} \xi(x)\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x=\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N} \backslash B_{1}(0)}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x \\
& =1-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}\left(-y_{n}\right)}\left|\nabla \Phi_{\delta_{n}, 0}\right|^{2} d x \tag{4.21}
\end{align*}
$$

From Lebesgue Theorem we can prove that

$$
\int_{B_{1}\left(-b_{n}\right)}\left|\nabla \Phi_{\delta_{n}, 0}\right|^{2} d x \rightarrow 0
$$

and from (4.21), we obtain

$$
\gamma\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) \rightarrow 1 \quad \text { when } \quad n \rightarrow+\infty
$$

which is a contradiction with (ii).
Suppose that (c) is true. We have that

$$
\begin{align*}
\gamma\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) & =\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}} \xi(x)\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x=\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N} \backslash B_{1}(0)}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x \\
& =\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}}\left|\nabla \Phi_{\delta_{n}, y_{n}}\right|^{2} d x-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}\left(-y_{n}\right)}\left|\nabla \Phi_{\delta_{n}, 0}\right|^{2} d z \\
& =1-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}\left(-y_{n}\right)}\left|\nabla \Phi_{\delta_{n}, 0}\right|^{2} d z \tag{4.22}
\end{align*}
$$

Note that using Lebesgue Theorem again, we can prove that

$$
\lim _{n \rightarrow+\infty} \frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}\left(-y_{n}\right)}\left|\nabla \Phi_{\delta_{n}, 0}\right|^{2} d z=1
$$

Then, by (4.22) we have that

$$
\gamma\left(\boldsymbol{\Phi}_{\delta_{n}, y_{n}}, \boldsymbol{\Phi}_{\delta_{n}, y_{n}}\right) \rightarrow 0
$$

which is a contradiction with $(i i)$.
Suppose that (d) is true. Since $\left|y_{n}\right| \geq \frac{1}{2}$ for n large, then $y_{n} \nrightarrow 0$ in \mathbb{R}^{N}. From Lemma 4.5, we get

$$
\beta\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right)=\frac{y_{n}}{\left|y_{n}\right|}+o_{n}(1)
$$

Hence,

$$
\beta\left(\Phi_{\delta_{n}, y_{n}}, \Phi_{\delta_{n}, y_{n}}\right) \nrightarrow 0
$$

which is a contradiction with (i). The, we conclude that $\widetilde{S}_{K}<c_{0}$ and the proof is over.

Lemma 4.8. There is $\delta_{1} \in(0,1 / 2)$ such that
(a) $f\left(s_{0} \Phi_{\delta_{1}, y}, t_{0} \Phi_{\delta_{1}, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \quad \forall y \in \mathbb{R}^{N}$;
(b) $\gamma\left(\Phi_{\delta_{1}, y}, \Phi_{\delta_{1}, y}\right)<\frac{1}{2}, \quad \forall y \in \mathbb{R}^{N}$ such that $|y|<\frac{1}{2}$;
(c) $\left|\beta\left(\Phi_{\delta_{1}, y}, \Phi_{\delta_{1}, y}\right)-\frac{y}{|y|}\right|<\frac{1}{4}, \quad \forall y \in \mathbb{R}^{N}$ such that $|y| \geq \frac{1}{2}$.

Proof. From Lemma 4.3, we can choose $\varepsilon=\frac{c_{0}-S}{2}>0, \delta_{2}<\min \{\underline{\delta}, 1 / 2\}$ and conclude that

$$
\begin{equation*}
f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right) \leq \sup _{y \in \mathbb{R}^{N}} f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right)<\widetilde{S}_{K}+\frac{c_{0}-\widetilde{S}_{K}}{2}=\frac{\widetilde{S}_{K}+c_{0}}{2}, \forall y \in \mathbb{R}^{N} \tag{4.23}
\end{equation*}
$$

Now by definition of ξ, we have

$$
\gamma\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)=1-\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}(-y)}\left|\nabla \Phi_{\delta, 0}\right|^{2} d z
$$

From Lebesgue Theorem

$$
\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{B_{1}(-y)}\left|\nabla \Phi_{\delta, 0}\right|^{2} d z=1
$$

and the proof of this item is over.
Note that from Lemma 4.5, we conclude that

$$
\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)=\frac{y}{|y|}+o_{\delta}(1) \quad \text { when } \quad \delta \rightarrow 0, \quad \forall y \in \mathbb{R}^{N} ; \quad|y| \geq \frac{1}{2}
$$

and the proof is finished.
Lemma 4.9. There is $\delta_{2}>1$ such that
(a) $f\left(s_{0} \Phi_{\delta_{2}, y}, t_{0} \Phi_{\delta_{2}, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \quad \forall y \in \mathbb{R}^{N}$,
(b) $\gamma\left(\Phi_{\delta_{2}, y}, \Phi_{\delta_{2}, y}\right)>\frac{1}{2}, \quad \forall y \in \mathbb{R}^{N}$.

Proof. From Lemma 4.3, we can choose $\varepsilon=\frac{c_{0}-S}{2}>0, \delta_{3}>\max \{\bar{\delta}, 1\}$ we have

$$
\begin{equation*}
f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right) \leq \sup _{y \in \mathbb{R}^{N}} f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right)<\widetilde{S}_{K}+\frac{c_{0}-\widetilde{S}_{K}}{2}=\frac{\widetilde{S}_{K}+c_{0}}{2}, \forall y \in \mathbb{R}^{N} \tag{4.24}
\end{equation*}
$$

Moreover, from definition of ξ and Lemma 4.1, we can conclude that

$$
\gamma\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right) \rightarrow 1 \quad \text { when } \quad \delta \rightarrow+\infty
$$

and the proof is over.
Lemma 4.10. There is $R>0$ such that
(a) $f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \forall y ;|y| \geq R$ and $\delta \in\left[\delta_{1}, \delta_{2}\right]$,
(b) $\left.\left(\beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right) \mid y\right)\right)_{\mathbb{R}^{N}}>0 \quad \forall y ;|y| \geq R$ and $\delta \in\left[\delta_{1}, \delta_{2}\right]$.

Proof. The first item follows by Lemma 4.3 and the choose of $\varepsilon=\frac{c_{0}-S}{2}>0$. The second item follows of the definition of β and $\Phi_{\delta, y}$ and adaptations the same arguments explored in [3]

Consider the set

$$
\mathcal{V}=\left\{(y, \delta) \in \mathbb{R}^{\mathbb{N}} \times(0, \infty) ;|y|<R \text { and } \delta \in\left(\delta_{1}, \delta_{2}\right)\right\}
$$

where δ_{1}, δ_{2} and R are given by Lemmas 4.8, 4.9 and 4.10, respectively.
Let $Q: \mathbb{R}^{N} \times(0,+\infty) \rightarrow D^{1,2}\left(\mathbb{R}^{N}\right)$ be the continuous function given by

$$
Q(y, \delta)=\Phi_{\delta, y}
$$

Consider now the sets

$$
\begin{gathered}
\Theta=\{(Q(y, \delta), Q(y, \delta)) ;(y, \delta) \in \overline{\mathcal{V}}\} \\
\mathcal{H}=\left\{h \in C(\Sigma \cap \mathcal{M}) ; h(u, v)=(u, v), \forall(u, v) \in \Sigma \cap \mathcal{M} ; f\left(s_{o} u, t_{o} v\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}\right\}
\end{gathered}
$$

and

$$
\Gamma=\{\mathcal{A} \subset \Sigma \cap \mathcal{M} ; \mathcal{A}=h(\Theta), h \in \mathcal{H}\}
$$

Note that $\Theta \subset \Sigma \cap \mathcal{M}, \Theta=Q(\overline{\mathcal{V}}) \times Q(\overline{\mathcal{V}})$ is compact and $\mathcal{H} \neq \emptyset$, because the identity function is in \mathcal{H}.

Lemma 4.11. Let $\mathcal{F}: \overline{\mathcal{V}} \rightarrow \mathbb{R}^{N+1}$ be a function given by

$$
\mathcal{F}(y, \delta)=(\alpha \circ(Q, Q))(y, \delta)=\frac{s_{o}^{2}+t_{0}^{2}}{\widetilde{S}_{K}} \int_{\mathbb{R}^{N}}\left(\frac{x}{|x|}, \xi(x)\right)\left|\nabla \Phi_{\delta, y}\right|^{2} d x
$$

Then,

$$
d(\mathcal{F}, \mathcal{V},(0,1 / 2))=1 .(\text { Topological degree })
$$

Proof. Let

$$
\mathcal{Z}:[0,1] \times \overline{\mathcal{V}} \rightarrow \mathbb{R}^{N+1}
$$

be the homotopy given by

$$
\mathcal{Z}(t,(y, \delta))=t \mathcal{F}(y, \delta)+(1-t) I_{\overline{\mathcal{V}}}(y, \delta)
$$

where $I_{\overline{\mathcal{V}}}$ is the identity operator. Using lemma 4.8 and Lemma 4.9, we can show that $(0,1 / 2) \notin$ $\mathcal{Z}([0,1] \times(\partial \mathcal{V}))$, i.e,

$$
\begin{equation*}
t \beta\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)+(1-t) y \neq 0, \quad \forall t \in[0,1] \text { and } \forall(y, \delta) \in \partial \mathcal{V} \tag{4.25}
\end{equation*}
$$

or

$$
\begin{equation*}
t \gamma\left(\Phi_{\delta, y}, \Phi_{\delta, y}\right)+(1-t) \delta \neq \frac{1}{2}, \quad \forall t \in[0,1] \text { and } \forall(y, \delta) \in \partial \mathcal{V} \tag{4.26}
\end{equation*}
$$

Hence $(0,1 / 2) \notin \mathcal{Z}([0,1] \times \partial \mathcal{V})$ where we conclude that $d(\mathcal{F}, \mathcal{V},(0,1 / 2)), d(i \overline{\mathcal{V}}, \mathcal{V},(0,1 / 2))$ and $d(\mathcal{Z}(t, \cdot), \mathcal{V},(0,1 / 2))$ are well defined and

$$
d(\mathcal{F}, \mathcal{V},(0,1 / 2))=d\left(i_{\overline{\mathcal{V}}}, \mathcal{V},(0,1 / 2)\right)=1
$$

Lemma 4.12. If $\mathcal{A} \in \Gamma$, then $\mathcal{A} \cap \Im \neq \emptyset$.
Proof. It is sufficient to prove that for all $h \in \mathcal{H}$, there exists $\left(y_{0}, \delta_{0}\right) \in \overline{\mathcal{V}}$ such that

$$
(\alpha \circ \mathcal{H} \circ(Q, Q))\left(y_{0}, \delta_{0}\right)=\left(0, \frac{1}{2}\right)
$$

Given $h \in \mathcal{H}$, let

$$
\mathcal{F}_{h}: \overline{\mathcal{V}} \rightarrow \mathbb{R}^{N+1}
$$

be the continuous function given by

$$
\mathcal{F}_{h}(y, \delta)=(\alpha \circ h \circ(Q, Q))(y, \delta)
$$

We are going to show that $\mathcal{F}_{h}=\mathcal{F}$ in $\partial \mathcal{V}$. Note that

$$
\begin{equation*}
\partial \mathcal{V}=\Pi_{1} \cup \Pi_{2} \cup \Pi_{3}, \tag{4.27}
\end{equation*}
$$

where

$$
\begin{aligned}
\Pi_{1} & =\left\{\left(y, \delta_{1}\right) ;|y| \leq R\right\} \\
\Pi_{2} & =\left\{\left(y, \delta_{2}\right) ;|y| \leq R\right\}
\end{aligned}
$$

and

$$
\Pi_{3}=\left\{(y, \delta) ;|y|=R \text { and } \delta \in\left[\delta_{1}, \delta_{2}\right]\right\}
$$

If $(y, \delta) \in \Pi_{1}$, then $(y, \delta)=\left(y, \delta_{1}\right)$ and by item (a) from Lemma 4.8 , we have
$f\left(s_{o} Q(y, \delta), t_{o} Q(y, \delta)\right)=f\left(s_{o} Q\left(y, \delta_{1}\right), t_{o} Q\left(y, \delta_{1}\right)\right)=f\left(s_{0} \Phi_{\delta_{1}, y}, t_{0} \Phi_{\delta_{1}, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \quad \forall(y, \delta) \in \Pi_{1}(4.28)$
If $(y, \delta) \in \Pi_{2}$, then $(y, \delta)=\left(y, \delta_{2}\right)$ and by item (a) from Lemma 4.9 , we get
$f\left(s_{o} Q(y, \delta), t_{o} Q(y, \delta)\right)=f\left(s_{o} Q\left(y, \delta_{2}\right), t_{o} Q\left(y, \delta_{2}\right)\right)=f\left(s_{0} \Phi_{\delta_{2}, y}, t_{0} \Phi_{\delta_{2}, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \forall(y, \delta) \in \Pi_{2}(4.29)$
If $(y, \delta) \in \Pi_{3}$, then $|y|=R$ and $\delta \in\left[\delta_{1}, \delta_{2}\right]$ and by item (a) from Lemma 4.10, we obtain

$$
\begin{equation*}
f\left(s_{o} Q(y, \delta), t_{o} Q(y, \delta)\right)=f\left(s_{0} \Phi_{\delta, y}, t_{0} \Phi_{\delta, y}\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \quad \forall(y, \delta) \in \Pi_{3} \tag{4.30}
\end{equation*}
$$

From (4.27), (4.28), (4.29) and (4.30) we conclude that

$$
f\left(s_{o} Q(y, \delta), t_{o} Q(y, \delta)\right)<\frac{\widetilde{S}_{K}+c_{0}}{2}, \forall(y, \delta) \in \partial \mathcal{V}
$$

Hence,

$$
\begin{aligned}
\mathcal{F}_{h}(y, \delta) & =(\alpha \circ h \circ(Q, Q))(y, \delta)=(\alpha \circ h)(Q(y, \delta), Q(y, \delta)) \\
& =\alpha(h((Q(y, \delta), Q(y, \delta))))=\alpha((Q(y, \delta), Q(y, \delta))) \\
& =(\alpha \circ(Q, Q))(y, \delta)=\mathcal{F}(y, \delta), \quad \forall(y, \delta) \in \partial \mathcal{V} .
\end{aligned}
$$

Since $(0,1 / 2) \notin \mathcal{F}(\partial \mathcal{V})$, we have

$$
d(\mathcal{F}, \mathcal{V},(0,1 / 2))=d\left(\mathcal{F}_{h}, \mathcal{V},(0,1 / 2)\right)
$$

From Lemma 4.11, we get

$$
d\left(\mathcal{F}_{h}, \mathcal{V},(0,1 / 2)\right)=d(\mathcal{F}, \mathcal{V},(0,1 / 2))=1
$$

and there exists $\left(y_{0}, \delta_{0}\right) \in \mathcal{V}$ such that

$$
\mathcal{F}_{h}\left(y_{0}, \delta_{0}\right)=(\alpha \circ h \circ(Q, Q))\left(y_{0}, \delta_{0}\right)=\left(0, \frac{1}{2}\right)
$$

and the proof is over.

4.2 Proof of Theorem 1.1

Consider the number

$$
c=\inf _{\mathcal{A} \in \Gamma} \max _{(u, v) \in \mathcal{A}} f(u, v)
$$

and for each $q \in \mathbb{R}$,

$$
f^{q}=\{(u, v) \in \Sigma \cap \mathcal{M} ; f(u, v) \leq q\}
$$

We are going to show that

$$
\begin{equation*}
\widetilde{S}_{K}<c<2^{2 / N} \widetilde{S}_{K} \tag{4.31}
\end{equation*}
$$

Note that

$$
c=\inf _{\mathcal{A} \in \Gamma} \max _{(u, v) \in \mathcal{A}} f(u, v) \leq \max _{(u, v) \in \Theta} f(u, v) \leq \sup _{\substack{y \in \mathbb{R}^{N} \\ \delta \in(0,+\infty)}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)<2^{2 / N} \widetilde{S}_{K}
$$

On the other hand, from Lemma 4.12, we have that

$$
\begin{equation*}
c_{0}=\inf _{u \in \Im} f(u, v) \leq c=\inf _{\mathcal{A} \in \Gamma} \max _{u \in \mathcal{A}} f\left(s_{o} u, t_{o} v\right) \leq \sup _{\substack{y \in \mathbb{R}^{N} \\ \delta \in(0,+\infty)}} f\left(s_{o} \Phi_{\delta, y}, t_{o} \Phi_{\delta, y}\right)<2^{2 / N} \widetilde{S}_{K} \tag{4.32}
\end{equation*}
$$

From Lemma 4.7, we have that $\widetilde{S}_{K}<c_{0}$ and the proof is over.
Using the definition of c, there exists $\left(u_{n}, v_{n}\right) \subset \Sigma \cap \mathcal{M}$ such that

$$
\begin{equation*}
f\left(u_{n}, v_{n}\right) \rightarrow c \tag{4.33}
\end{equation*}
$$

Suppose, by contradiction, that

$$
\left.f^{\prime}\right|_{\mathcal{M}}\left(u_{n}, v_{n}\right) \nrightarrow 0
$$

Then, there exists $\left(u_{n j}, v_{n j}\right) \subset\left(u_{n}, v_{n}\right)$ such that

$$
\left\|\left.f^{\prime}\right|_{\mathcal{M}}\left(u_{n j}, v_{n j}\right)\right\|_{*} \geq C>0, \quad \forall j \in \mathbb{N}
$$

Using a Deformation Lemma [16], there exists a continuous application $\eta:[0,1] \times(\Sigma \cap \mathcal{M}) \rightarrow$ $(\Sigma \cap \mathcal{M}), \varepsilon_{0}>0$ such that
(1) $\eta(0, u, v)=(u, v)$;
(2) $\eta(t, u, v)=(u, v), \forall(u, v) \in f^{c-\varepsilon_{0}} \cup\left\{(\Sigma \cap \mathcal{M}) \backslash f^{c+\varepsilon_{0}}\right\}, \forall t \in[0,1]$;
(3) $\eta\left(1, f^{c+\frac{\varepsilon_{0}}{2}}\right) \subset f^{c-\frac{\varepsilon_{0}}{2}}$.

From definition of c, there exists $\tilde{\mathcal{A}} \in \Gamma$ such that

$$
c \leq \max _{(u, v) \in \tilde{\mathcal{A}}} f(u, v)<c+\frac{\varepsilon_{0}}{2}
$$

where

$$
\begin{equation*}
\tilde{\mathcal{A}} \subset f^{c+\frac{\varepsilon_{0}}{2}} \tag{4.34}
\end{equation*}
$$

Since $\tilde{\mathcal{A}} \in \Gamma$, we have $\tilde{\mathcal{A}} \subset(\Sigma \cap \mathcal{M})$ and there exists $\bar{h} \in \mathcal{H}$ such that

$$
\begin{equation*}
\bar{h}(\Theta)=\tilde{\mathcal{A}} \tag{4.35}
\end{equation*}
$$

From definition of η, we have

$$
\begin{equation*}
\eta(1, \tilde{\mathcal{A}}) \subset(\Sigma \cap \mathcal{M}) \tag{4.36}
\end{equation*}
$$

Let $\hat{h}:(\Sigma \cap \mathcal{M}) \rightarrow(\Sigma \cap \mathcal{M})$ be the function given by $\hat{h}(u, v)=\eta(1, \bar{h}(u, v))$ and note that $\hat{h} \in C(\Sigma \cap \mathcal{M})$. We are going to show that

$$
\begin{equation*}
f^{c+\varepsilon_{0}} \backslash f^{c-\varepsilon_{0}} \subset f^{2^{2 s / N}} S \backslash f^{\left(S+c_{0}\right) / 2} \tag{4.37}
\end{equation*}
$$

Considering $(u, v) \in f^{c+\varepsilon_{0}} \backslash f^{c-\varepsilon_{0}}$, we have

$$
c-\varepsilon_{0}<f(u, v) \leq c+\varepsilon_{0}
$$

and by (4.31), for ε_{0} sufficiently small, we get

$$
\begin{equation*}
c-\varepsilon_{0}<f(u, v) \leq c+\varepsilon_{0}<2^{2 / N} \widetilde{S}_{K} \tag{4.38}
\end{equation*}
$$

Now from Lemma 4.7 and (4.32), we obtain

$$
\frac{\widetilde{S}_{K}+c_{0}}{2}<c_{0}-\varepsilon_{0}<c-\varepsilon_{0}<2^{2 / N} \widetilde{S}_{K}
$$

and

$$
\begin{equation*}
\frac{\widetilde{S}_{K}+c_{0}}{2}<c_{0}-\varepsilon_{0} \leq c-\varepsilon_{0}<f(u, v) \tag{4.39}
\end{equation*}
$$

which implies

$$
(u, v) \in f^{2^{2 / N} \widetilde{S}_{K}} \backslash f^{\left(\widetilde{S}_{K}+c_{0}\right) / 2}
$$

Consider $(u, v) \in(\Sigma \cap \mathcal{M})$ such that

$$
\begin{equation*}
f(u, v)<\frac{\widetilde{S}_{K}+c_{0}}{2} \tag{4.40}
\end{equation*}
$$

Then,

$$
\bar{h}(u, v)=(u, v)
$$

and from (4.40), we have that $(u, v) \notin f^{2^{2 / N}} \widetilde{S}_{K} \backslash f^{\left(\widetilde{S}_{K}+c_{0}\right) / 2}$ and by (4.37), we get

$$
(u, v) \notin f^{c+\varepsilon_{0}} \backslash f^{c-\varepsilon_{0}}
$$

Then,

$$
(u, v) \in f^{c-\varepsilon_{0}} \cup\left\{(\Sigma \cap \mathcal{M}) \backslash f^{c+\varepsilon_{0}}\right\}
$$

and from Deformation Lemma, we obtain

$$
\eta(1, u, v)=(u, v)
$$

Hence,

$$
\hat{h}(u, v)=\eta(1, \bar{h}(u, v))=\eta(1, u, v)=(u, v)
$$

where we conclude that $\hat{h} \in \mathcal{H}$, which implies

$$
\hat{h}(\boldsymbol{\Theta})=\eta(1, \bar{h}(\boldsymbol{\Theta}))
$$

and from (4.35), we conclude that

$$
\begin{equation*}
\hat{h}(\boldsymbol{\Theta})=\eta(1, \bar{h}(\boldsymbol{\Theta}))=\eta(1, \tilde{\mathcal{A}}) \tag{4.41}
\end{equation*}
$$

From (4.36), we have $\eta(1, \tilde{A}) \in \Gamma$, which implies

$$
\begin{equation*}
c=\inf _{\mathcal{A} \in \Gamma} \max _{u \in \mathcal{A}} f(u, v) \leq \max _{u \in \eta(1, \tilde{\mathcal{A}})} f(u, v) \tag{4.42}
\end{equation*}
$$

From Deformation Lemma again and by (4.34), we get

$$
\eta(1, \tilde{\mathcal{A}}) \subset \eta\left(1, f^{c+\frac{\varepsilon_{0}}{2}}\right) \subset f^{c-\frac{\varepsilon_{0}}{2}}
$$

Then,

$$
f(u, v) \leq c-\frac{\varepsilon_{0}}{2}, \quad \forall(u, v) \in \eta(1, \tilde{\mathcal{A}})
$$

which implies

$$
\max _{u \in \eta(1, \tilde{\mathcal{A}})} f(u, v) \leq c-\frac{\varepsilon_{0}}{2}
$$

and using (4.42), we conclude that

$$
c \leq \max _{u \in \eta(1, \tilde{\mathcal{A}})} f(u, v) \leq c-\frac{\varepsilon_{0}}{2}
$$

which is an absurd.
Then,

$$
f\left(u_{n}, v_{n}\right) \rightarrow c \text { and }\left.f^{\prime}\right|_{\mathcal{M}}\left(u_{n}, v_{n}\right) \rightarrow 0
$$

and from Lemma 3.7, up to a subsequence, $u_{n} \rightarrow \widetilde{u}_{0}, v_{n} \rightarrow \widetilde{v}_{0}$ in $D^{1,2}\left(\mathbb{R}^{N}\right)$, which implies that $\widetilde{u}_{0}, \widetilde{v}_{0} \geq 0$,

$$
f\left(\widetilde{u}_{0}, \widetilde{v}_{0}\right)=c \text { and }\left.f^{\prime}\right|_{\mathcal{M}}\left(\widetilde{u}_{0},\left(\widetilde{v}_{0}\right)=0\right.
$$

and from(4.31)

$$
\widetilde{S}_{K}<f\left(\widetilde{u}_{0}, \widetilde{v}_{0}\right)<2^{2 / N} \widetilde{S}_{K}
$$

The positivity of \widetilde{u}_{0} and \widetilde{v}_{0} is a consequence of the classical maximum principle.

References

[1] C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the pLaplacian, Nonlinear Anal. 51 (2002), 1187-1206.
[2] C. O. Alves and J. M. B do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud. 2 (2002), no. 4, 437-458.
[3] V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x) u=u^{\frac{N+2}{N-2}}$ in \mathbb{R}^{N}, J. Funct. Anal. 88(1990), 90-117.
[4] G. Cerami and D. Passaseo, Nonminiminzing positive solutions for equation with critical exponents in the half-space, SIAM J. Math. Anal. 28 (1997), 867-885.
[5] G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control Optim. Calc. Var. 25 (2019), Paper No. 73, 29 pp.
[6] J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math. 57 (2000), no. 3, 273-284.
[7] W. Chen, J. Wei and S. Yan, Infinitely many solutions for the Schrödinger equations in with critical growth, J. Differential Equations, 252 (2012), 2425-2447.
[8] J. N. Correia and G. M. Figueiredo, Existence of positive solution of the equation $(-\Delta)^{s} u+a(x) u=$ $|u|^{\left.\right|^{*}-2} u$, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 63, 39 pp.
[9] D.C. de Morais Filho and M.A.S. Souto, Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Diff. Equations 24 (1999),1537-1553.
[10] F. Gao, E. da Silva, M. Yang, and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 150(2), 921-954. doi:10.1017/prm.2018.131
[11] O. Kavian, Introduction à la théorie des points critiques, Springer-Verlag, 1991.
[12] P.L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana, 1(1):145-201, 1985.
[13] S. Penga, C. Wang and S. Yan, Construction of solutions via local Pohozaev identities, J. Funct. Anal. 274 (2018), no. 9, 2606-2633.
[14] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonliarities, Math. Z. 187, no. 4, (1984), 511-517.
[15] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
[16] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser 1996.
[17] Q. Xie, S. Ma and Z. Xu, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differential Equations 261 (2016), no. 2, 890-924.

Author information

Giovany M. Figueiredo and Leticia S. Silva, Departamento de Matemática, Universidade de Brasília, CEP: 70910-900 Brasília-DF, Brazil., U. S. A..
E-mail: giovany@unb.br, leticiadstos@gmail.com
Received: June 18, 2020.
Accepted: August 22, 2020.

