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Abstract The aim of this paper is to introduce the notions of (I, ψ)-contractions and present
a related fixed point theorem for this type of contraction in the setting of metric spaces. This
result extends and generalizes [12]. We give examples to explain our findings. Also we discuss
an application to nonlinear integral equations.

1 Introduction and Preliminaries

Metric fixed point theory plays a central role in many areas of mathematics and other scientific
branches (see [1], [3], [4], [8]). Many researchers have extended the classic metric fixed point
theorems to single and multi-valued mappings ( [6], [7], [9], [11], [15], [17]). Recently, many
authors showed an interest for so-called related fixed point theorems ([5], [11], [14],[15]). Lately,
Hamaizia et al. [12] have extended results in [13] for two pairs of mappings of two metric spaces.

The following result is Theorem 2.1 in [12].

Theorem 1.1. Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be mappings of X into
Y , and let S, T be mappings of Y into X to satisfy

d(Sy, Ty′)d(SAx, TBx′) ≤ cmax{d(Sy, Ty′)ρ(Ax,Bx′), d(x′, Sy)ρ(y′, Ax),
d(x, x′)d(Sy, Ty′), d(Sy, SAx)d(Ty′, TBx′)},

ρ(Ax,Bx′)ρ(BSy,ATy′) ≤ cmax{d(Sy, Ty′)ρ(Ax,Bx′), d(x′, Sy)ρ(y′, Ax),
ρ(y, y′)ρ(Ax,Bx′), ρ(Ax,BSy)ρ(Bx′, ATy′)},

for all x, x in X and y, y′ in Y , where 0 ≤ c < 1. If one of the mappings A,B, S and T is
continuous then SA and TB have a common fixed point z in X and BS and AT have a common
fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.

The aim of this paper is to make use of C-class functions to provide a new condition on the
mappingsA,B, S and T that guarantees the existence of related fixed points in two metric spaces.
Our results generalize those in [12] and some older ones. First, we start with the definition of a
C-class function introduced in 2014, by A. H. Ansari [2].

Definition 1.2. [2] A continuous function F : [0,∞)2 → R is called a C-class function if for any
s, t ∈ [0,∞); the following conditions hold

c1 F (s, t) ≤ s,
c2 F (s, t) = s implies that either s = 0 or t = 0.
An extra condition on F that F (0, 0) = 0 could be imposed in some cases if required. The

letter C will denote the class of all C- functions.

Example 1.3. The following examples show that the class C is nonempty:
1. F (s, t) = s− t.
2. F (s, t) = ms; for some m ∈ (0, 1).
3. F (s, t) = s

(1+t)r for some r ∈ (0, 1).

4.F (s, t) = log(t+as)
(1+t) , for some a > 1.

5. F (s, t) = s− ( 1+s
2+s)(

t
1+t),



538 Taieb Hamaizia and Arsalan Hojjat Ansari Komachali

6. F (s, t) = sβ(s), β : [0,∞)→ (0, 1), and β(s) is continuous,
7. F (s, t) = s− t

k+t .

Let Φu denotes the class of the functions ϕ : [0,∞) → [0,∞) that satisfy the following
conditions:

a) ϕ is continuous,
b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Definition 1.4. [10] A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied:

i) ψ is non-decreasing and continuous,
ii) ψ(t) = 0 if and only if t = 0.

Let us suppose that Ψ denote the class of the altering distance functions.

Definition 1.5. A triplet (ψ,ϕ, F ) where ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C is said to be monotone if
for any x, y ∈ [0,∞) ;

x ≤ y ⇒ F (ψ(x), ϕ(x)) ≤ F (ψ(y), ϕ(y)).

The next example shows that the class of monotone triplets (ψ,ϕ, F ) is nonempty.

Example 1.6. Let F (s, t) = s− t, ϕ(x) =
√
x

ψ(x) =

{ √
x if 0 ≤ x ≤ 1
x2 if x > 1

,

then (ψ,ϕ, F ) is monotone.

Lemma 1.7. [16] Let (X, d) be a metric space and let {xn} be a sequence in X such that

lim
n→+∞

d(xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist ε > 0 and two sequences {xnk
} and {xmk

}
of positive integers such that nk > mk > 0 and

the following sequences tend to ε+ when k →∞

d(xnk
, xmk

), d(xnk+1, xmk
), d(xnk

, xmk−1, d(xnk+1, xmk−1).

Lemma 1.8. [16] Let (X, d) be a metric space and let {yn} be a sequence in X such that
d(yn, yn+1) = 0 is nonincreasing and

lim
n→+∞

d(yn, yn+1) = 0.

If {y2n} is not a Cauchy sequence, then there exist ε > 0 and sequences {mk} and {nk} of
positive integers such that the following sequences tend to ε when k →∞

d(x2nk
, x2mk

), d(x2nk+1, x2mk
), d(x2nk

, x2mk−1, d(x2nk+1, x2mk−1), d(x2nk+1, x2mk+1), ...

Our result extends Theorem 2.1 of Hamaizia et al [12] . Examples are provided to illustrate
the validity of our results.

2 Main Results

Now we present our main result.

Theorem 2.1. Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be mappings of X into
Y , and let S, T be mappings of Y into X satisfying the inequalities

d(Sy, Ty′)d(SAx, TBx′) ≤ F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))), (2.1)

ρ(Ax,Bx′)ρ(BSy,ATy′) ≤ F (mρ(x, x
′, y, y′), ϕ(mρ(x, x

′, y, y′))), (2.2)
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for all x, x in X and y, y′ in Y , where ϕ ∈ Φu and F ∈ C such that (I, ϕ, F ) is monotone
and

md(x, x
′, y, y′) = max{d(Sy, Ty′)ρ(Ax,Bx′), d(x′, Sy)ρ(y′, Ax),

d(x, x′)d(Sy, Ty′), d(Sy, SAx)d(Ty′, TBx′)}
mρ(x, x

′, y, y′) = max{d(Sy, Ty′)ρ(Ax,Bx′), d(x′, Sy)ρ(y′, Ax),
ρ(y, y′)ρ(Ax,Bx′), ρ(Ax,BSy)ρ(Bx′, ATy′)}.

If one of the mappings A,B, S and T is continuous then SA and TB have a common fixed
point z in X and BS and AT have a common fixed point w in Y . Further, Az = Bz = w and
Sw = Tw = z.

Proof. Let’s consider x an arbitrary point in X , we define the sequences {xn} in X and {yn} in
Y as

Sy2n−1 = x2n−1, Bx2n−1 = y2n, T y2n = x2n, Ax2n = y2n+1
Applying inequality (2.1), we get

d(Sy2n−1, T y2n)d(SAx2n, TBx2n−1) ≤ F (md(x2n, x2n−1, y2n−1, y2n)), ϕ(md(x2n, x2n−1, y2n−1, y2n))),

where

md(x2n, x2n−1, y2n−1, y2n) = max{d(Sy2n−1, Ty2n)ρ(Ax2n, Bx2n−1), d(x2n−1, Sy2n−1)ρ(y2n, Ax)

, d(x2n, x2n−1)d(Sy, Ty2n), d(Sy2n−1, SAx2n)d(Ty2n, TBx2n−1)}),

Then, we obtain

d(x2n−1, x2n)d(x2n+1, x2n) ≤ F (max {d(x2n−1, x2n)ρ(y2n+1, y2n), d(x2n, x2n−1)d(x2n−1, x2n)}),
ϕ(max {d(x2n−1, x2n)ρ(y2n+1, y2n), d(x2n, x2n−1)d(x2n−1, x2n)})),

Thus,

d(x2n+1, x2n) ≤ F (max {ρ(y2n+1, y2n), d(x2n, x2n−1)});ϕ(max {ρ(y2n+1, y2n), d(x2n−1, x2n)})).
(2.3)

Similar, applying inequality (2.2) , we get

ρ(y2n, y2n+1)ρ(y2n, y2n+1) ≤ F (max {d(x2n−1, x2n)ρ(y2n, y2n+1), ρ(y2n−1, y2n)ρ(y2n, y2n+1)}),
ϕ(cmax {d(x2n−1, x2n)ρ(y2n, y2n+1), ρ(y2n−1, y2n)ρ(y2n, y2n+1)})).

Then

ρ(y2n, y2n+1) ≤ F (max {d(x2n−1, x2n), ρ(y2n−1, y2n)}), ϕ(max {d(x2n−1, x2n), ρ(y2n−1, y2n)})).
(2.4)

By(2.3),(2.4) and from n, it follow

d(xn+1, xn) ≤ F (max {ρ(yn+1, yn), d(xn, xn−1)}), ϕ(max {ρ(yn+1, yn), d(xn−1, xn)})).
ρ(yn, yn+1) ≤ F (max {d(xn−1, xn), ρ(yn−1, yn)}), ϕ(max {d(xn−1, x2n), ρ(yn−1, yn)})),

witch implies

d(xn+1, xn) ≤ F (max {ρ(yn+1, yn), d(xn, xn−1)}), ϕ(max {ρ(yn+1, yn), d(xn−1, xn)}))
≤ ψ(max {ρ(yn+1, yn), d(xn−1, xn)} (2.5)

and

ρ(yn, yn+1) ≤ F (max {d(xn−1, xn), ρ(yn−1, yn)});ϕ(max {d(xn−1, x2n), ρ(yn−1, yn)}))
≤ ψ(max {d(xn−1, x2n), ρ(yn−1, yn)}). (2.6)
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So, from (2.4)and(2.5), respectively, it becomes

d(xn+1, xn) ≤ max {ρ(yn+1, yn), d(xn−1, xn)} (2.7)

ρ(yn, yn+1) ≤ max {d(xn−1, xn), ρ(yn−1, yn)} , (2.8)

also from this, we have

d(xn+1, xn) ≤ max {max {d(xn−1, xn), ρ(yn−1, yn)} , d(xn−1, xn)} = max {d(xn−1, xn), ρ(yn−1, yn)} .

Therefore

max {ρ(yn+1, yn), d(xn+1, xn)} ≤ max {d(xn−1, xn), ρ(yn−1, yn)} → h ≥ 0, (2.9)

from (2.4)and(2.5)

max {ρ(yn+1, yn), d(xn+1, xn)} ≤ F (max {ρ(yn+1, yn), d(xn, xn−1)}),
ϕ(max {ρ(yn+1, yn), d(xn−1, xn)}))

≤ F (max {d(xn−1, xn), ρ(yn−1, yn)}),
ϕ(max {d(xn−1, xn), ρ(yn−1, yn)})). (2.10)

We prove now that h = 0. If we take h > 0 letting n → +∞, we obtain in (2.10) with
max {ρ(yn+1, yn), d(xn+1, xn)} → h ,we conclude that

h ≤ F (h, ϕ(h)) ≤ h

that is hold F (h, ϕ(h)) = h, F is of C-class, thus h = 0 or ϕ(h) = 0 , we get a contradiction.
Hence

lim
n→+∞

d(xn+1, xn) = 0 (2.11)

and
lim

n→+∞
ρ(yn, yn+1) = 0. (2.12)

Now proving that {xn} and {yn} are the Cauchy sequences with the limits z in X and w in
Y.

- Lets {xn} and {yn} are not the Cauchy sequence. For this, there exists ε for which we can
find subsequences {x2nk

} and {x2mk
} of {xn} with n2k > m2k > k such that

d(x2nk
, x2mk

) ≥ ε, (2.13)

if we take n2k is a smallest, so

d(x2nk−1, x2mk
) < ε, (2.14)

and {y2nk
},{y2mk

} of {yn} with n2k > m2k > k such that

ρ(y2nk
, y2mk

) ≥ ε, (2.15)

if we take n2k is a smallest, so

ρ(y2nk−1, y2mk
) < ε, (2.16)

Then, taking into consideration the inequalities we have (2.13) , (2.14) and (2.15) , (2.16)
respevtively, we have

0 < ε ≤ d(x2nk
, x2mk

) ≤ d(x2nk
, x2nk−1) + d(x2nk−1, x2mk

) < d(x2nk
, x2nk−1) + ε

0 < ε ≤ ρ(y2nk
, x2mk

) ≤ ρ(y2nk
, y2nk−1) + ρ(y2nk−1, y2mk

) < ρ(y2nk
, y2nk−1) + ε.

Letting k→ +∞ and using (2.11) and (2.12) , we find
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lim
k→+∞

d(x2nk
, x2mk

) = ε.

lim
k→+∞

ρ(y2nk
, y2mk

) = ε.

Take Sy2nk
= x2nk+1, Bx2mk

= y2mk
, T y2mk

= x2mk+1, Ax2nk
= y2nk

in (2.1), we obtain

d(x2nk+1, y2mk
)d(x2nk+1, x2mk+1) ≤ F (md(x2nk

, x2mk
, y2nk

, y2mk
),

ϕ(md(x2nk
, x2mk

, y2nk
, y2mk

))),

where

md(x2nk
, x2mk

, y2nk
, y2mk

) = max{d(x2nk+1, x2mk+1)ρ(y2nk
, y2mk

), d(x2mk
, x2nk+1)ρ(y2mk

, y2nk
),

d(x2nk
, x2mk

)d(x2nk+1, x2mk+1), d(x2nk+1, Sy2nk
)d(x2mk+1, x2mk+1)}.

Letting k →∞

εε ≤ F (max {εε, εε, εε, 0} , ϕ(max {εε, εε, εε, 0}))
≤ εε.

Analogously, we can calculate with the same manner in (2.2) , we deduce

ε ≤ F (max {ε, ε, ε} , ϕ(max {ε, ε, ε})) ≤ ε
ε ≤ F (max {ε, ε, ε} , ϕ(max {ε, ε, ε})) ≤ ε,

that is ε = 0, which is a contradiction. Since (X, d) is a complete metric space it follows
that: the sequence {xn} is a Cauchy sequence with limit z in X and {yn} is a Cauchy sequence
with limit w in Y .

By using inequality (2.1) , we get

d(SAz, TBx2n−1) ≤ F ((max{ρ(Az,Bx2n−1), ρ(y2n, Az), d(x2n−1, x2n)),

ϕ(max {ρ(Az,Bx2n−1), ρ(y2n, Az), d(x2n−1, x2n)}))
≤ max {ρ(Az,Bx2n−1), ρ(y2n, Az), d(x2n−1, x2n)}).

Implies that

d(SAz, TBx2n−1) ≤ max {ρ(Az,Bx2n−1), ρ(y2n, Az), d(x2n−1, x2n)} .

Letting n grow to infinity, we deduce

d(Sw, z) ≤ max {ρ(Az,w), ρ(w,Az), 0} .

Then Sw = z = SAz.
Similarly, using inequality (2.2) , we get

ρ(BSy2n−1, ATy2n) ≤ F (max {d(Sy2n−1, T y2n), d(x2n−1, Sy2n−1), ρ(y2n, y2n−1), ρ(Az,BSy2n−1)}),
ϕ(max {d(Sy2n−1, T y2n), d(x2n−1, Sy2n−1), ρ(y2n, y2n−1), ρ(Az,BSy2n−1)}))

≤ max {d(Sy2n−1, T y2n), d(x2n−1, Sy2n−1), ρ(y2n, y2n−1), ρ(Az,BSy2n−1)}).

Thus,

ρ(BSy2n−1, ATy2n) ≤ max {d(Sy2n−1, Ty2n), d(x2n−1, Sy2n−1), ρ(y2n, y2n−1), ρ(Az,BSy2n−1)} .

Taking n→∞, we have

ρ(w,Az) ≤ max {d(z, Tw), d(z, Sw), 0, ρ(Az,w)} .
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Then Tw = z = TBz.
By symmetry, a similar calculation again hold if one of the mappings B,S, T is continuous

instead of A.
To establish uniqueness, suppose that TB and SA have a second distinct common fixed point

z0. Then, using inequality (2.1), we obtain

d(Sy, Ty′)d(SAz, TBz′) ≤ F (max{d(Sy, Ty′)ρ(Az,Bz′), d(z′, Sy)ρ(y′, Az),
d(z, z′)d(Sy, Ty′), d(Sy, SAz)d(Ty′, TBz′)}
, ϕ(max{d(Sy, Ty′)ρ(Az,Bz′), d(z′, Sy)ρ(y′, Az),
d(z, z′)d(Sy, Ty′), d(Sy, SAz)d(Ty′, TBz′)})).

So,

d(z, z′)d(SAz, TBz′) ≤ F (max{d(z, z′)ρ(Az,Bz′), d(z′, z)ρ(Bz′, Az),
d(z, z′)d(z, z′), d(z, z)d(z′, z′)}
, ϕ(max{d(z, z′)ρ(Az,Bz′), d(z′, z)ρ(Bz′, Az),
d(z, z′)d(z, z′), d(z, z)d(z′, z′)}.

This implies:
d(z, z′) ≤ F (ρ(Az,Bz′), ϕ(ρ(Az,Bz′)). (2.17)

Hence, by the same manner, applying (2.2) , it follow

ρ(Az,Bz′) ≤ F (d(z, z′), ϕ(d(z, z′)). (2.18)

From inequalities (2.17) and (2.18) which implies the uniqueness.
So z = z′. The uniqueness of w is proved similary. This complete the proof of the theorem.

If we assume A = B and S = T in Theorem 2.1, we deduce the following corollary:

Corollary 2.2. Let (X, d) and (Y, ρ) be complete metric spaces, let A be mapping of X into Y
and let S be mapping of Y into X satisfying the inequalities

d(Sy, Sy′)d(SAx, SAx′) ≤ F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))),

ρ(Ax,Ax′)ρ(ASy,ASy′) ≤ F (mρ(x, x
′, y, y′), ϕ(mρ(x, x

′, y, y′))),

for all x, x in X and y, y′ in Y , where ϕ ∈ Φu and F ∈ C such that (I, ϕ, F ) is monotone
and

md(x, x
′, y, y′) = max{d(Sy, Sy′)ρ(Ax,Ax′), d(x′, Sy)ρ(y′, Ax),

d(x, x′)d(Sy, Sy′), d(Sy, SAx)d(Sy′, SAx′)}
mρ(x, x

′, y, y′) = max{d(Sy, Sy′)ρ(Ax,Ax′), d(x′, Sy)ρ(y′, Ax),
ρ(y, y′)ρ(Ax,Ax′), ρ(Ax,ASy)ρ(Ax′, ASy′)}.

If one of the mappings A and S is continuous then SA has a unique fixed point z in X and
AS has a unique fixed point w in Y,Further, Az = w and Sw = z.

By setting A = S and (X, d) = (Y, ρ) in Corollary 2.2, then we have the following corollary:

Corollary 2.3. Let (X, d) be complete metric spaces, let S be a continuous mapping of X into
X satisfying the inequality

d(Sy, Sy′)d(S2x, S2x′) ≤ F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))),
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for all x, x in X and y, y′ in Y , where ϕ ∈ Φu and F ∈ C such that (I, ϕ, F ) is monotone
and

md(x, x
′, y, y′) = max{d(Sy, Sy′)d(Sx, Sx′), d(x′, Sy)d(y′, Sx),

d(x, x′)d(Sy, Sy′), d(Sy, S2x)d(Sy′, S2x′)}.

Then S has a unique fixed point z in X .

Remark 2.4. - Putting in (2.1) and (2.2) : ψ (t) = t, ϕ (t) = (1− c) t, 0 ≤ c < 1 and F (s, t) =
s− t, we get a well-known Hamaizia’s result from [12].

- Theorem 1.2 of [13] is a special case of Corollary 2.2.
- Corollary 1.3 of [13] is a special case of Corollary 2.3

Now, we give some examples which satisfies all the conditions of Theorem 2.1 and to demon-
strate the validity of the hypotheses of our result.

Example 2.5. Let F (s, t) = s − t, X = [0, 1] and Y = [1, 2] be complete metric spaces with
d = ρ = |x− y| If A,B : X → Y , and S, T : Y → X be a mappings , where

A(x) =

{
1
2 if 0 ≤ x ≤ 3

4
1
2x if 3

4 < x ≤ 1
, B(x) =

1
2
,

S(y) =

{
3
4 if 1 ≤ y ≤ 3

2
1 if 3

2 < y ≤ 2
, T (y) =

{
3
4 if 1 ≤ y ≤ 3

2
3
2 if 3

2 < y ≤ 2

The altering functions ψ,ϕ : [0,∞)→ [0,∞) are defined by ϕ(x) =
√
x

ψ(x) =

{ √
x if 0 ≤ x ≤ 1
x2 if x > 1

,

Thus, 3
4 is the unique common fixed point of the maps SA, TB and 1

2 is the unique common
fixed point of the maps AT,BS since all the conditions of Theorem 2.1 are satisfied

Example 2.6. Suppose X = {0, 1, 2} , Y = {0, 1} ,

d(x, y) 0 1 2
0 0 5

6
7
6

1 5
6 0 1

2 7
6 1 0

ρ (x, y) 0 1
0 0 1

5

1 1
5 0

We define the mappings A , B, S and T as

\y 0 1
S 1 0
T 1 0

\x 0 1 2
A 1 0 1
B 1 1 0

Let also F (s, t) = 99
100s, ϕ(x) = ψ (x) =

√
x.

Case 1: If x = 0, x′ = 1, y = 0 and y′ = 1
ψ (d(Sy, Ty′)d(SAx, TBx′)) = ψ (d(1, 0)d(0, 0)) =
ψ (ρ(Ax,Bx′)ρ(BSy,ATy′)) = ψ (ρ(1, 1)ρ(BS0, AT1))
Case 2: If x = 0, x′ = 2, y = 0 and y′ = 1



544 Taieb Hamaizia and Arsalan Hojjat Ansari Komachali

ψ (d(Sy, Ty′)d(SAx, TBx′)) = ψ (d(1, 0)d(0, 1)) =
5
6

≤ F (ψ (max{d(1, 0)ρ(1, 0), d(2, 1)ρ(1, 1), d(0, 2)d(1, 0), d(1, 0)d(0, 1)}) ;

ϕ (max{d(1, 0)ρ(1, 0), d(2, 1)ρ(1, 1), d(0, 2)d(1, 0), d(1, 0)d(0, 1)})
= F (ψ (d(0, 2)d(1, 0)) , ϕ (max (d(0, 2)d(1, 0))))

= F

(
ψ

(
5
6
.
7
6

)
, ϕ

(
5
6
.
7
6

))

= F

((√
5
6
.
7
6

)
,

(√
5
6
.
7
6

))
=

99
100

.

√
35
36
.

ψ (ρ(Ax,Bx′)ρ(BSy,ATy′)) = ψ (ρ(1, 0)ρ(1, 1)) = 0
Case 3: If x = 1, x′ = 2, y = 0 and y′ = 1
ψ (d(Sy, Ty′)d(SAx, TBx′)) = ψ (d(1, 0)d(1, 1)) = 0
ψ (ρ(Ax,Bx′)ρ(BSy,ATy′)) = ψ (ρ(0, 0)ρ(BS1, AT1)) = 0.
Thus, 0 is the unique common fixed point of the maps SA, TB and 1 is the unique common

fixed point of the maps AT,BS since all the conditions of Theorem 2.1 are satisfied .

3 Application to nonlinear integral equations

Let X = C[a, b] be the space of all real valued continuous functions on [a, b], a closed bounded
interval in R: The metric of uniform convergence: d(x, y) = maxt∈[a,b] |x− y| is complete.

In this section. In this section, we apply our theorem 2.1 to establish the existence of common
solutions of a system of nonlinear integral equations defined by:

x(t) = g(t) +

b∫
a

ξ(t, τ, x(τ))dτ, (3.1)

where x ∈ C[a, b] is the unknown function, t, τ ∈ [a, b], ξ : [a, b] × [a, b] × R → R and
g : [a, b]→ R are given continuous functions.

Theorem 3.1. Assume that the following conditions
(i) There exists a continuous functions θ1, θ2 : [a, b]× [a, b]→ R+ such that for all x, y ∈ X ,

and t, τ ∈ [a, b], we get

|(ξ(t, τ, y(τ))− ξ(t, τ, y′(τ)))| ≤ θ1(t, τ) (F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))))
1
2∣∣(ξ(t, τ, x2(τ))− ξ(t, τ, x′2(τ)

)
)
∣∣ ≤ θ2(t, τ) (F (md(x, x

′, y, y′), ϕ(md(x, x
′, y, y′))))

1
2 ,

where ϕ ∈ Φu and F ∈ C such that (I, ϕ, F ) is monotone such that

md(x, x
′, y, y′) = max{d(Sy, Sy′)d(Sx, Sx′), d(x′, Sy)d(y′, Sx),

d(x, x′)d(Sy, Sy′), d(Sy, S2x)d(Sy′, S2x′)}.

(ii)  max
τ∈[a,b]

b∫
a

θ1(t, τ)dτ

×
 max
τ∈[a,b]

b∫
a

θ2(t, τ)dτ

 ≤ 1.

Then, the equation (3.1) has a unique solution z ∈ C[a, b].

Proof. Define the mapping S : X → X by:

Sx(t) = g(t) +

b∫
a

ξ1(t, τ, x(τ))dτ,
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for all t ∈ [a, b]. So, the existence of a solution of (3.1) is equivalent to the existence of a
fixed point of S, we have

d(Sy, Sy′)d(S2x, S2x′) = |Sy(t)− Sy′(t)| × |S2x(t)− S2x′(t)|

≤ max
t∈[a,b]

 b∫
a

|(ξ(t, τ, y(τ))− ξ(t, τ, y′(τ)))| dτ

 .

× max
t∈[a,b]

 b∫
a

∣∣(ξ(t, τ, x2(τ))− ξ(t, τ, x′2(τ)
)
)
∣∣ dτ


≤

max
t∈[a,b]

b∫
a

θ1(t, τ)dτ

 (F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))))
1
2

×

max
t∈[a,b]

b∫
a

θ2(t, τ)dτ

 (F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))))
1
2

≤ (F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))))
1
2

× (F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))))
1
2

≤ F (md(x, x
′, y, y′), ϕ(md(x, x

′, y, y′))).

Thus
d(Sy, Sy′)d(S2x, S2x′) ≤ F (md(x, x

′, y, y′), ϕ(md(x, x
′, y, y′))).

Then, all the conditions of theorem 2.1 hold. Consequently, the equation (3.1) has a solution
z ∈ C[a, b].
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