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Abstract The aim of this paper is to introduce the notions of (1, ¢))-contractions and present
a related fixed point theorem for this type of contraction in the setting of metric spaces. This
result extends and generalizes [12]. We give examples to explain our findings. Also we discuss
an application to nonlinear integral equations.

1 Introduction and Preliminaries

Metric fixed point theory plays a central role in many areas of mathematics and other scientific

branches (see [1], [3], [4], [8]). Many researchers have extended the classic metric fixed point

theorems to single and multi-valued mappings ( [6], [7], [9], [11], [15], [17]). Recently, many

authors showed an interest for so-called related fixed point theorems ([5], [11], [14],[15]). Lately,

Hamaizia et al. [12] have extended results in [13] for two pairs of mappings of two metric spaces.
The following result is Theorem 2.1 in [12].

Theorem 1.1. Let (X, d) and (Y, p) be complete metric spaces, let A, B be mappings of X into
Y, and let S, T be mappings of Y into X to satisfy

d(Sy, Ty )d(SAz, TBx') < cmax{d(Sy, Ty )p(Ax, Bx'),d(z',Sy)p(y’, Az),
d(z,2")d(Sy, Ty"),d(Sy, SAz)d(Ty', TBz')},
cmax{d(Sy, Ty')p(Az, Bx'),d(z’, Sy)p(y’, Ax),
p(y.y")p(Az, Ba'), p(Az, BSy)p(Bz', ATy")},

p(Azx, Bx")p(BSy, ATy")

IN

Jorall x,x in X and y,y' inY , where 0 < ¢ < 1. If one of the mappings A, B,S and T is
continuous then SA and T B have a common fixed point z in X and BS and AT have a common
fixed point winY . Further, Az = Bz = w and Sw = Tw = z.

The aim of this paper is to make use of C'-class functions to provide a new condition on the
mappings A, B, S and T that guarantees the existence of related fixed points in two metric spaces.
Our results generalize those in [12] and some older ones. First, we start with the definition of a
C-class function introduced in 2014, by A. H. Ansari [2].

Definition 1.2. [2] A continuous function F : [0, 00)? — R is called a C-class function if for any
s,t € [0, 00); the following conditions hold

cl F(s,t) <s,

c2 F(s,t) = s implies that either s = 0 or t = 0.

An extra condition on F that F(0,0) = 0 could be imposed in some cases if required. The
letter C' will denote the class of all C- functions.

Example 1.3. The following examples show that the class C' is nonempty:
1. F(s,t) =s—t.
2. F(s,t) = ms; for some m € (0,1).

3. F(s,t) = 77 for some r € (0, 1).

4.F(s,t) = log((lt;;;s), for some a > 1.

5. F(s,t) = s — (22)(14),
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6. F(s,t) = sB(s), B :]0,00) — (0,1), and (s) is continuous,
7. F(s,t) =s— %

k+t°

Let ®,, denotes the class of the functions ¢ : [0,00) — [0,0) that satisfy the following
conditions:

a) ¢ is continuous,

b) p(t) > 0,¢ > 0and ©(0) > 0.

Definition 1.4. [10] A function ¢ : [0,00) — [0, 00) is called an altering distance function if the
following properties are satisfied:

1) ¢ is non-decreasing and continuous,

i) ¢ (t) = 0 if and only if t = 0.

Let us suppose that ¥ denote the class of the altering distance functions.

Definition 1.5. A triplet (¢, p, F') where ¢» € ¥, ¢ € ®,, and F' € C is said to be monotone if
for any z,y € [0,00) ;

<y = F((z),0(x) < F(dy), o))
The next example shows that the class of monotone triplets (v, ¢, F') is nonempty.

Example 1.6. Let F'(s,t) = s — ¢, p(z) = /x

w(x)_{ VT if 0<z<l

)

22 if x>1
then (¢, p, F') is monotone.
Lemma 1.7. [16] Let (X, d) be a metric space and let {x,,} be a sequence in X such that

i 2l Tt) =0

If {x,} is not a Cauchy sequence, then there exist € > 0 and two sequences {x,, } and {x,, }
of positive integers such that ny, > my, > 0 and
the following sequences tend to e when k — oo

d(l'n;C , wmk)a d(mnk+la xmk)a d(‘rnk s Ty —1, d(‘rn;ﬁ»lv xmk—l>~

Lemma 1.8. [/6] Let (X,d) be a metric space and let {y,} be a sequence in X such that
d(Yn, Yn+1) = 0 is nonincreasing and

lim d(yn, yn+1) = 0.

n—r+oo

If {yan} is not a Cauchy sequence, then there exist ¢ > 0 and sequences {my} and {ny} of
positive integers such that the following sequences tend to € when k — oo

d(@an s Tamy )y A X2ng+1, Tamy )s A(T2ng s T2mp—1, A(T2np 415 T2mp—1) s A(T2np 415 T2mp+1)s -

Our result extends Theorem 2.1 of Hamaizia et al [12] . Examples are provided to illustrate
the validity of our results.

2 Main Results

Now we present our main result.

Theorem 2.1. Let (X, d) and (Y, p) be complete metric spaces, let A, B be mappings of X into
Y, and let S, T be mappings of Y into X satisfying the inequalities

d(Sy,Ty/)d(SAl',TB(L'/) F(md(x,x'7y,y')7cp(md(x,m/,y,y’))), (21)
p(Az, Bx')p(BSy, ATy') < F(my(z,2",y,9), 0(m,(z,2",y,9"))), (2.2)

VANVAN
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forall z,z in X and y,y' inY, where ¢ € ®,, and F € C such that (I, p, F) is monotone
and
ma(z, 2’ y,y') = max{d(Sy,Ty')p(Az, Bx'),d(z’, Sy)p(y', Az),
d(x,2')d(Sy, Ty'),d(Sy, SAz)d(Ty', TBx')}
my(z,2',y,y") = max{d(Sy,Ty")p(Az, Bx'),d(z’, Sy)p(y', Ax),
p(y, v )p(Az, Bx'), p(Az, BSy)p(Bx', ATy')}.

If one of the mappings A, B, S and T is continuous then SA and T B have a common fixed
point z in X and BS and AT have a common fixed point w in Y . Further, Az = Bz = w and
Sw=Tw = z.

Proof. Let’s consider x an arbitrary point in X, we define the sequences {z,,} in X and {y, } in
Y as

SYn—1 = Ton—1, Broan_1 = Yon, TY2n = Ton, AT2n = Yony1
Applying inequality (2.1), we get

d(Syan—1,Tyan)d(S Az, TBon—1) < F(ma(Tom, Ton—1, Y2n—1,Y21)), e(Ma(Z2n, T2n—1,Y2n—1, Y2n))),

where

md(IZny Ton—1,Y2n—1, y2n> = max{d(SyZn—l 5 TyZn)p(AIZna Bz, )7 d(xZn—l 5 Sy2n—1 )p(yzm AI)
s d(x2n, 2 —1)d(SY, Tyan), d(SYy2n—1, SAz2,)d(TY2n, TBx2n—1)}),

Then, we obtain

d(T2n—1,020)d(T2n11,22,) < F(max{d(v2n—1,%20)p(Y2n+1,Y2n)s A(T2n, T2n—1)d(T2n -1, T2n) }),
e(max {d(z2n—1,%20) P(Y2n+1, Y2n ), A(T2n, T2 —1)d(T2n—1, 221)})),
Thus,
(2211, 220) < F(max {p(yani1,Y2n), d(x2n, 220-1)})s (Max {p(y2n+1, y2n), d(@2m -1, 720)}))-
Similar, applying inequality (2.2) , we get &
P(Y2ns Yan 1) PW2ns Yons1) < F(max {d(z2n—1,220) p(Y2n, Y2n11), P(Y2n—1, Y20) P (Y205 Y2m41) })
w(cmax {d(x2n—1, T2n) P(Y2n, Y2n+1)s P(Y2n—1, Y2n) P(Y2n, Y2ns1) }))-
Then
P(Y2n, Yan+1) < F(max {d(z2n—1,22n), p(Y2n—1, Y2n) }), p(Max {d(22n—1,20), p(Y20—1,Y20) }))-

2.4)
By(2.3),(2.4) and from n, it follow

d(xm—laxn) < F(maX{p(yn_H,yn),d(xn,mnq)}%Lp(max{p(yn_H,yn),d(xn,l,xn)})).
P(Yn,yns1) < F(max{d(xn—laxn)vp(yn—l»yn)})a‘P(max{d(xn—laCUZn)vP(yn—l»yn)}))v

witch implies

d(x’ﬂ+17 xn) F(max {p(yn+17 yn)a d(xna xnfl)})» @(max {p(yn+la yn)7 d(xn,h ffn)}))

<
< ¢(max {p(ynJrlayn)ad(xn—lyxn)} (2.5)

and

PYnsyYns1) < F(max{d(xn—laxn)vp(yn—l,yn)});W(max{d(xn—lvxZn)?P(yn—hyn)}))
= w(max{d(xn—l7x2n)’p(yn—17y7z)})- (26)

A



540 Taieb Hamaizia and Arsalan Hojjat Ansari Komachali

So, from (2.4)and(2.5), respectively, it becomes
d(@ns1,2n) < max{p(Yn+1,Yn), d(Tn-1,25)} 2.7
P(Ynsynt1) < max{d(zn_1,2n), p(Yn—1,yn)}, (2.8)
also from this, we have
d(Tpt1, Tn) < max {max {d(Tn_1,%n), P(Yn—1,Yn)}, A Tn_1,%4)} = max {d(xn_1,%n), P(Yn—1,Yn)} -
Therefore
max {p(Yni1,Yn), ATni1, Tn)} < max {d(xn_1,%n), P(Yn—_1,Yn)} — h >0, (2.9)
from (2.4)and(2.5)
max {p(Yn+1,Yn), d(@nt1,20)} < F(max{p(yn+1,yn), d(@n, 2n-1)}),
p(max {p(yn+1,Yn), d(@n—1,21)}))

F(max {d(zp—1,2n), p(Yn—1,Yn)}),
w(max {d(xn—1,%n), P(Yn—1,Yn)}))- (2.10)

IN

We prove now that h = 0. If we take h > 0 letting n — o0, we obtain in (2.10) with
max {p(Yn+1,Yn), A(Tnt1,Tn)} — h ,we conclude that

h < F(h,o(h)) <h

that is hold F'(h, p(h)) = h, F is of C-class, thus h = 0 or ¢(h) = 0, we get a contradiction.
Hence

nl_l}rl] d(Tps1,%n) =0 (2.11)
and
Jim  p(yn, yni1) = 0. (2.12)

Now proving that {z,, } and {y, } are the Cauchy sequences with the limits z in X and w in
Y.

- Lets {z,,} and {y, } are not the Cauchy sequence. For this, there exists ¢ for which we can
find subsequences {2, } and {x2,, } of {x, } with ny, > myg > k such that

d(zan,, Tam, ) = €, (2.13)
if we take noy, is a smallest, so
d(Tan,—1,Tam,,) < €, (2.14)
and {y2n, }-{y2my } Of {yn} With ngy, > may > k such that
P(Yany, Yomy) = €, (2.15)
if we take n,y, is a smallest, so

p(Qan—h?ﬁmk) < 57 (216)

Then, taking into consideration the inequalities we have (2.13),(2.14) and (2.15), (2.16)
respevtively, we have

£ < d($2nk ) $27rzk) S d($2nk 3 $2nk—]) + d($2nk—1 ) xZnLk) < d($2nk ) xan—]) +e

< 3 S p(y2nk7m2mk) p(yZn“?anfl) + p(yanfla/!Dmk) < p(y2nkyy2nk71) + g.

Letting k — +oo and using (2.11) and (2.12) , we find
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lim d(zan,,Tom,) = e
k—+o0
lim p(y2nk>y2mk) = &
k—+o00

Take Syznk = T2ny+1> szmk = Yomy» Tyzmk = T2my+1> sznk = Yon, in (2.1), we obtain

d(Z2n+1, Y2me ) (T2ne+1, Tamp+1) < F(ma(@an, s T2my > Yone > Yoms )

Qo(md(zZRk y L2my s Y2ny s Y2my, )))7
where

md(xanmekaankayZMk) = max{d(ZanJrlamekJrl)p(yanvyka)ad(mekaxanJrl)p(ykaayan)a

A2y Tomy ) A @20, 41, T2mp 1) A T2 +15 SY2ni ) A (T2 +15 Tamp41) }-

Letting k — oo

IN

e F(max {e¢, ee, ee,0} , p(max {ee, ee,ee,0}))

IN

Ee.

Analogously, we can calculate with the same manner in (2.2) , we deduce

IN

€ F(max {e,e,e},p(max {e,e,e})) <e

N

€ F(max {e,¢,e}, p(max {e,e,e})) < ¢,

that is ¢ = 0, which is a contradiction. Since (X, d) is a complete metric space it follows
that: the sequence {x,,} is a Cauchy sequence with limit z in X and {y, } is a Cauchy sequence
with limit w in Y.

By using inequality (2.1) , we get

d(SAZJTBI'anl) S F((max{p(szB*/L'anl)vp(y}nuAZ)7d(m2n717x2n))7
@(max {p<AZa BxZn—l)v p(y2na AZ)> d(xZn—l ) xZH)}))
< max {p(Az, Bron—1), p(y2n, A2), d(T2n—1,720)})-

Implies that
d(SAz, TBxyn—1) < max {p(Az, Bxan_1), p(y2n, Az), d(x2n—1,T2n) } -
Letting n grow to infinity, we deduce
d(Sw, z) < max {p(Az,w), p(w, Az),0}.

Then Sw = z = SAz.

Similarly, using inequality (2.2), we get
p(BSymm—1,ATyrn) < F(max {d(Sy2n—1,TY2n), d(x2n-1, SY2n—1), P(Y2n, Y2n—1), p(Az, BSyrm_1)}),
@(max {d(San—l 5 Ty2n)7 d(SCZn—l y San—l )7 p(y2n7 Yon—1 )a P(AZ, BS:’JZn— 1 )}))
max {d(Sy2n—1,Ty2n)s A @201, SY20-1), P(Y21, Y2n—1), p(Az, BSyzn—1)}).

IN

Thus,
p(BSyan—1, ATy2,,) < max {d(Syan—1,Ty2n), d(x2n—1, SY2n—1), p(Y2n: Y2n-1), p(AZ, BSY2,—1)} .
Taking n — oo, we have

p(w, Az) <max {d(z,Tw),d(z, Sw),0, p(Az,w)}.
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Then Tw = z = T Bz.

By symmetry, a similar calculation again hold if one of the mappings B, S, T is continuous
instead of A.

To establish uniqueness, suppose that 7'B and S A have a second distinct common fixed point
zo. Then, using inequality (2.1), we obtain

d(Sy, Ty )d(SAz,TBz') < F(max{d(Sy, Ty )p(Az, Bz"),d(z',Sy)p(y, Az),
d(z,2")d(Sy,Ty"),d(Sy, SAz)d(Ty',TBz")}
s p(max{d(Sy, Ty')p(Az, B'),d(2", Sy)p(y’, Az),
d(z,2")d(Sy, Ty'),d(Sy, SAz)d(Ty', TBz")})).

So,

d(z,2")d(SAz, TBZ'") < F(max{d(z,z2)p
d(z,2")d(z,2"),d
,o(max{d(z,2")p(Az, B2'),d(7, z)p(Bz', Az),
d(z,2")d(z,2"),d(z,2)d(Z, 2")}.

Az, B2"),d(7,z)p(BZ', Az),

(
(2,2)d(2', 2")}

This implies:
d(z,2") < F(p(Az, BZ'), p(p(Az, BZ')). (2.17)

Hence, by the same manner, applying (2.2), it follow

p(Az, B2") < F(d(z,7"),p(d(z,2")). (2.18)

From inequalities (2.17) and (2.18) which implies the uniqueness.
So z = z'. The uniqueness of w is proved similary. This complete the proof of the theorem.
|

If we assume A = B and S = T in Theorem 2.1, we deduce the following corollary:

Corollary 2.2. Let (X, d) and (Y, p) be complete metric spaces, let A be mapping of X into' Y
and let S be mapping of Y into X satisfying the inequalities

d(Sy, Sy')d(SAz,SAz') < F(ma(z,2',y,v), o(ma(z,2’,y,9))),
p(Az, Az)p(ASy,ASy") < F(m,(z,2',y.y), e(m,(z,2",y,v))),

Sforall z,z in X and y,y' in Y, where ¢ € ®,, and F € C such that (I, p, F) is monotone
and

mg(z, 2’ y,y") = max{d(Sy, Sy’ )p(Az, Ax"),d(z’, Sy)p(y’, Ax),
d(z,2")d(Sy, Sy'),d(Sy, SAz)d(Sy', SAz")}
my(z, 2’ y,y") = max{d(Sy,Sy) (Az, Az'),d(z', Sy)p(y', Ax),

p(y,y)p(Ax, Az'), p(Ax, ASy)p(Ax', ASy')}.

If one of the mappings A and S is continuous then SA has a unique fixed point z in X and
AS has a unique fixed point w in Y, Further, Az = w and Sw = z.

By setting A = S and (X, d) = (Y, p) in Corollary 2.2, then we have the following corollary:

Corollary 2.3. Let (X, d) be complete metric spaces, let S be a continuous mapping of X into
X satisfying the inequality

d(Sy, Sy')d(S*z, S?2") < F(ma(z,2',y,9), o(ma(z,2’,y,9"))),
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forall z,z in X and y,y' inY, where ¢ € ®,, and F € C such that (I, p, F) is monotone
and

ma(z, 2’ y,y") = max{d(Sy, Sy')d(Sz,Sz"),d(z', Sy)d(y, Sz),
d(z,")d(Sy, Sy'), d(Sy, S*x)d(Sy', $?z")}.

Then S has a unique fixed point z in X.

Remark 2.4. - Putting in (2.1) and (2.2) : ¢ (t) = ¢, 0 (t) = (1 —)t,0 < c < 1 and F(s,t) =
s — t, we get a well-known Hamaizia’s result from [12].

- Theorem 1.2 of [13] is a special case of Corollary 2.2.

- Corollary 1.3 of [13] is a special case of Corollary 2.3

Now, we give some examples which satisfies all the conditions of Theorem 2.1 and to demon-
strate the validity of the hypotheses of our result.

Example 2.5. Let F'(s,t) = s —t, X = [0,1] and Y = [1,2] be complete metric spaces with
d=p=lz—y|lIfAB: X —=Y,and S,T : Y — X be a mappings , where

Logf o<z gi 1

A(m): 12 . 3 4 ) B(x)_*v
3o0f 1<y<? 3of 1<y<?3
S(y): 41 . 3_ ~ 2 ) T(y): 43 - 3_ _ )
if 3<y=<2 3 if 3<y<2

The altering functions ¢, ¢ : [0, 00) — [0, 00) are defined by p(z) = /z

22 if x>1

7

w(x):{ VT if 0<z<l

Thus, % is the unique common fixed point of the maps SA,T'B and % is the unique common
fixed point of the maps AT, B.S since all the conditions of Theorem 2.1 are satisfied

Example 2.6. Suppose X = {0,1,2},Y ={0,1},

d(z,y) |0 |1 ]2
0 01212 P ({E, y) 011
o1 10 0|4
1 2101 —2
1 Lo
2 I11]o >

We define the mappings A, B, S and T as

wloll \z[o0[1]2
s |1
T

(e
N
—_
]
—_

o
Sy
o

Let also F'(s,t) = 1005 o(z) = (z) = .
Case 1: Itz =0,2' =1 y—Oand =1
¥ (d(Sy, Ty')d(S Az, TBa')) = 1 (d(1,0)d(0,0)) =

¢ (p(Az, Ba")p(BSy, ATy')) = ¥ (p( 1)p(BS0, AT1))
Case2: Ifx =02/ =2,y=0andy’ =1
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¥ (d(Sy, Ty )d(SAz, TBx')) = 1 (d(1,0)d(0,1)) =

Case3: Ifx =12 =2,y=0andy’ =

¥ (d(Sy, Ty')d(SAx, TBx")) =1 (d(1,0)d(1,1)) =0

¥ (p(Az, Ba')p(BSy, ATy')) = ¥ (p(0,0)p(BS1, AT'1)) = 0.

Thus, 0 is the unique common fixed point of the maps SA,T'B and 1 is the unique common
fixed point of the maps AT, BS since all the conditions of Theorem 2.1 are satisfied .

3 Application to nonlinear integral equations

Let X = C[a, b] be the space of all real valued continuous functions on [a, b], a closed bounded
interval in R: The metric of uniform convergence: d(x,y) = max,¢|q ) |7 — y| is complete.

In this section. In this section, we apply our theorem 2.1 to establish the existence of common
solutions of a system of nonlinear integral equations defined by:

+(8) = g(t) —0—/§(t,7,x(7))d7, 3.1)

where z € C|a,b] is the unknown function, ¢t,7 € [a,b], £ : [a,0] X [a,b] x R — R and
g : [a,b] = R are given continuous functions.

Theorem 3.1. Assume that the following conditions
(i) There exists a continuous functions 61,6, : [a,b] X [a,b] — Ry such that for all z,y € X,
and t,T € [a,b], we get

o=

|(€(t77—7y(7—)) - €(t>7—> yl(T)))l < 91(t77—) (F(md(x,x’,y,y’),ap(md(x,m’,y,y/))))

| (S(ta T, IZ(T)) - f(t, 7, zlz(T))>| < 02<t7 7_) (F(md(xa Ilv Y, y/)7 @(md(z, l’/, Y, y/)))) ’
where ¢ € @, and F € C such that (I, ¢, F') is monotone such that

BI—=

ma(z, 2’ y,y') = max{d(Sy, Sy')d(Sz,Sz"),d(z', Sy)d(y, Sz),
d(z,2")d(Sy, Sy'), d(Sy, S*x)d(Sy', $*x')}.

b b
(max /91(1&,7)(17) X (max /Hz(t,r)dr) <1
TE[a,b] T€E[a,b]

Then, the equation (3.1) has a unique solution z € Cla, b].

(it)

Proof. Define the mapping S : X — X by:



Related fixed point on two metric spaces via C-class functions 545

for all ¢ € [a,b]. So, the existence of a solution of (3.1) is equivalent to the existence of a

fixed point of S, we have

A5y, Sy (8%, 5%') = |8y(0) = Sy ()] x |8%(0) — 5% (1)
< max | [l ruo) - st/ ()l dr

S

a

X max /| (t,7,2%(7)) — &(t, 7, 2"(7)))| dr

t€(a,b)

< | max /91 (t,7)dr | (F(ma(e, 2’ y,9), o(ma(z, 2’ y,y))))?
t€la
tléla)z /62 t T (F(md(337$/7y7y/)7@(md(%x/ayay/))))
1
§ (F(md(a:,x’,y,y’),gp(md(:r,:c',y,y’))))z
1
X (F(md(x,x/,y,y'),cp(md(x,z’,y,y/))))z
< F(md(xaxl7yay/)7@(md(ajax/ayay/)))‘

Thus
d(Sy7 Sy/)d(52x7 SZ.’L‘/) S F(md(‘/'[’.7 xl’ y’ y/)7 (p(md(‘r7 :I:/7 y7 y/)))'

Then, all the conditions of theorem 2.1 hold. Consequently, the equation (3.1) has a solution
Cla,b]. O
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