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Abstract. In this paper, we establish fixed point results using some contractive type mappings
in the setting of cone Sb-metric spaces. Our results extend, unify and generalize several results
given in the current existing literature.

1 Introduction and Preliminaries

The Banach contraction principle [3] is a basic tool in studying the existence of solutions to many
problems in mathematics and many different fields. In recent times, the contraction principle has
been extended in various directions. The Banach fixed point theorem (or Banach contraction
principle) is stated as follows.

Theorem 1.1. (Banach contraction principle) ([3]) Let (X, d) be a complete metric space and
T be a mapping of X into itself satisfying:

d(T (x), T (y)) ≤ λ d(x, y) ∀x, y ∈ X, (1.1)

where λ is a constant in (0, 1). Then T has a fixed point v ∈ X .

Since then, fixed point theory has had a rapid development. There is a great number of gener-
alization of the Banach contraction principle. The underlying metric space can be generalized in
many ways. In addition to the improvement of Banach’s contractive condition, more and more
attention is devoted itself to the generalization of metric spaces such as 2-metric spaces, D∗-
metric spaces, partial metric spaces, cone metric spaces, b-metric spaces, G-metric spaces and
cone b-metric spaces etc.

The notion of a b-metric space was introduced by Bakhtin [2] and then extensively used by
Czerwik in [5]. Since then b-metric fixed point theory grew up in the classical metric fixed point
theory to obtain a generalization of some known metric version of fixed point results. On the
other hand, some authors are interested and have tried to give generalizations of metric spaces in
different way.

In 2007, Huang and Zhang [8] introduced the concept of cone metric spaces as a gener-
alization of metric spaces by replacing the set of real numbers by a general Banach space E
which is partially ordered with respect to a cone P ⊂ E and establish some fixed point theo-
rems for contractive mappings in normal cone metric spaces. Subsequently, several other authors
[1, 10, 15, 22] studied the existence of fixed points and common fixed points of mappings satis-
fying contractive type condition on a normal cone metric space.

In 2011, Hussain and Shah [9] introduced the concept of cone b-metric space as a general-
ization of b-metric space and cone metric spaces. They established some topological properties
in such spaces and improved some recent results about KKM mappings in the setting of a cone
b-metric space.
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In 2012, Sedghi et al. [16] introduced the concept of S-metric space which is different from
other space and proved fixed point theorems in S-metric space. They also give some examples
of S-metric space which shows that S-metric space is different from other spaces.

In 2016, Souayah and Mlaiki [19] introduced the concept of Sb-metric space. The concept
of Sb-metric space is further used in many other research papers. In 2017, Dhamodharan and
Krishnakumar [6] further extended the notion of S-metric spaces to cone S-metric spaces and
proved fixed point results using different contractive type mappings.

Recently, K. A. Singh and M. R. Singh [18] have introduced the concept of cone Sb-metric
space and proved some fixed point results via different contractive conditions which extend var-
ious results in the existing literature.

The importance of cone Sb-metric space is to further study of topological properties like
continuity and compactness and to extend and generalise several standard results, for example,
Banach contraction principle, Kannan contraction, Chatterjae contraction etc. in the said space.

The main interest of this paper is to establish some existence of fixed point theorems under
various contractive type conditions in the setting of cone Sb-metric spaces. Our results extend,
generalize and unify several results from the existing literature.

We need the following definitions and properties in the sequel.

Definition 1.2. ([8]) Let E be a real Banach space. A subset P of E is called a cone whenever
the following conditions hold:

(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;
(c3) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define a partial ordering ≤ in E with respect to P by x ≤ y if and

only if y− x ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y, while x� y will stand
for y − x ∈ P 0, where P 0 stands for the interior of P . If P 0 6= ∅ then P is called a solid cone
(see [21]).

There exist two kinds of cones- normal (with the normal constant K) and non-normal ones
([7]).

Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering defined by P . Then P is
called normal if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y imply ‖x‖ ≤ K‖y‖, (1.2)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.3)

The least positive number K satisfying (1.2) is called the normal constant of P .
The cone P is called regular if every increasing sequence which is bounded from above is

convergent, that is, if {xn} is a sequence such that x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y for some
y ∈ E, then there is x ∈ E such that ‖xn − x‖ → 0 as n → ∞. Equivalently, the cone P is
regular if and only if every decreasing sequence which is bounded from below is convergent. It
is well known that a regular cone is a normal cone. Suppose E is a Banach space, P is a cone in
E with int(P ) 6= ∅ and ≤ is partial ordering in E with respect to P .

Example 1.3. ([12]) Let K > 1 be given. Consider the real vector space

E =
{
ax+ b : a, b ∈ R;x ∈

[
1− 1

K
, 1
]}

with supremum norm and the cone

P =
{
ax+ b ∈ E : a ≥ 0, b ≥ 0

}
in E. The cone P is regular and so normal.

Definition 1.4. ([8, 23]) Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies:
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(CM1) 0 ≤ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = 0 ⇔ x = y;
(CM2) d(x, y) = d(y, x) for all x, y ∈ X;
(CM3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called a cone metric [8] on X and (X, d) is called a cone metric space [8] or simply

CMS.

The concept of a cone metric space is more general than that of a metric space, because each
metric space is a cone metric space where E = R and P = [0,+∞).

Lemma 1.5. [15] Every regular cone is normal.

Example 1.6. ([8]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R and d : X ×X → E
defined by d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric
space with normal cone P where K = 1.

Example 1.7. ([14]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ) a metric space,
and d : X ×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of metric
spaces.

Definition 1.8. ([16, 13]) Let X be a nonempty set and S : X3 → [0,∞) be a function satisfying
the following conditions for all x, y, z, t ∈ X:

(SM1) S(x, y, z) ≥ 0;
(SM2) S(x, y, z) = 0 if and only if x = y = z;
(SM3) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).
Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric

space or simply SMS.

Example 1.9. ([20]) LetX be a nonempty set and d be the ordinary metric onX . Then S(x, y, z) =
d(x, z) + d(y, z) is an S-metric on X .

Example 1.10. ([16]) LetX = Rn and ‖.‖ a norm onX , then S(x, y, z) = ‖y+z−2x‖+‖y−z‖
is an S-metric on X .

Example 1.11. ([16]) Let X = Rn and ‖.‖ a norm on X , then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is
an S-metric on X .

Definition 1.12. ([19]) Let X be a nonempty set and b ≥ 1 be a given real number. A function
Sb : X3 → [0,∞) is said to be Sb-metric if and only if for all x, y, z, t ∈ X the following
conditions are satisfied:

(SbM1) Sb(x, y, z) = 0 if and only if x = y = z,
(SbM2) Sb(x, y, z) ≤ b[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)].

The pair (X,Sb) is called an Sb-metric space.

Remark 1.13. Note that the class of Sb-metric spaces is larger than the class of S-metric spaces.
Indeed every S-metric space is an Sb-metric space with b = 1. However, the converse is not
always true.

Example 1.14. ([19]) Let X be a non-empty set and card(X) ≥ 5. Suppose X = X1 ∪ X2 a
partition of X such that card(X1) ≥ 4. Let s ≥ 1. Then

Sb(x, y, z) =



0 if x = y = z,

3s if (x, y, z) ∈ X3
1 ,

1 if (x, y, z) /∈ X3
1 ,

for all x, y, z ∈ X , Sb is a Sb-metric on X with the coefficient s ≥ 1.
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Proof. (i) If x = y = z then Sb(x, y, z) = 0. Thus the first assertion of the definition of Sb-metric
space is satisfied.

(ii) Now to prove the triangle inequality:

Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)] (∗).

(a1) Case 1. If (x, y, z) /∈ X3
1 , we have Sb(x, y, z) = 1, Sb(x, x, t) ≥ 1, Sb(y, y, t) ≥ 1 and

Sb(z, z, t) ≥ 1 for all t ∈ X . Thus (∗) holds (1 ≤ 3s).
(a2) Case 2. If (x, y, z) ∈ X3

1 , we have the following two sub-cases:
(b1) if t ∈ X1, (∗) is satisfied since Sb(x, y, z) = Sb(x, x, t) = Sb(y, y, t) = Sb(z, z, t) = 3s.
(b2) if t /∈ X1, we have Sb(x, x, t) = Sb(y, y, t) = Sb(z, z, t) = 1 and Sb(x, y, z) = 3s. Then

(∗) holds.

Example 1.15. ([17]) Let (X,S) be an S-metric space and S∗(x, y, z) =
{
S(x, y, z)

}p
, where

p > 1 is a real number. Then S∗ is an Sb-metric on X with b = 22(p−1).

Example 1.16. ([18]) LetX = R and let the function S : X3 → R be defined as S(x, y, z) = |x−

z|+ |y− z|. Then S is an S-metric on X . Therefore, the function Sb(x, y, z) =
{
S(x, y, z)

}2
={

|x− z|+ |y − z|
}2

is an Sb-metric on X with b = 22(2−1) = 4.

Definition 1.17. ([6]) Suppose thatE is a real Banach space, P is a cone inE with int P 6= ∅ and
≤ is partial ordering with respect to P . LetX be a nonempty set and let the function S : X3 → E
satisfy the following conditions:

(1) S(x, y, z) ≥ 0;
(2) S(x, y, z) = 0 if and only if x = y = z;
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), ∀x, y, z, a ∈ X .

Then the function S is called a cone S-metric on X and the pair (X,S) is called a cone
S-metric space or simply CSMS.

Example 1.18. ([6]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R and d be
the ordinary metric on X . Then the function S : X3 → E defined by S(x, y, z) =

(
d(x, z) +

d(y, z), α(d(x, z) + d(y, z))
)

, where α > 0 is a constant, is a cone S-metric on X .

Lemma 1.19. ([6]) Let (X,S) be a cone S-metric space. Then we have S(x, x, y) = S(y, y, x).

Definition 1.20. ([6]) Let (X,S) be a cone S-metric space.
(i) A sequence {un} in X converges to u if and only if S(un, un, u)→ 0 as n→∞, that is,

there exists n0 ∈ N such that for all n ≥ n0, S(un, un, u)� c for each c ∈ E, 0� c. We denote
this by limn→∞ un = u or limn→∞ S(un, un, u) = 0.

(ii) A sequence {un} in X is called a Cauchy sequence if S(un, un, um)→ 0 as n,m→∞,
that is, there exists n0 ∈ N such that for all n,m ≥ n0, S(un, un, um) � c for each c ∈ E,
0� c.

(iii) The cone S-metric space (X,S) is called complete if every Cauchy sequence in X is
convergent in X .

In the following lemma, we see the relationship between a cone metric and a cone S-metric.

Lemma 1.21. ([6]) Let (X,S) be a cone S-metric space. Then, the following properties are
satisfied:

(1) S(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ X , is a cone S-metric on X .
(2) un → u in (X, d) if and only if un → u in (X,Sd).
(3) {un} is Cauchy in (X, d) if and only if {un} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

The notion of cone Sb-metric space is introduced by K. Anthony Singh and M. R. Singh [18]
in 2018 as follows:
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Definition 1.22. ([18]) Suppose that E is a real Banach space, P is a cone in E with int P 6= ∅
and ≤ is partial ordering in E with respect to P . Let X be a nonempty set and let the function
S : X3 → E satisfy the following conditions:

(CSbM1) S(x, y, z) ≥ 0;
(CSbM2) S(x, y, z) = 0 if and only if x = y = z;
(CSbM3) S(x, y, z) ≤ b

[
S(x, x, a) + S(y, y, a) + S(z, z, a)

]
, ∀x, y, z, a ∈ X;

where b ≥ 1 is a constant. Then the function S is called a cone Sb-metric on X and the pair
(X,S) is called a cone Sb-metric space or simply CSbMS.

We note that cone Sb-metric spaces are generalizations of cone S-metric spaces since every
cone S-metric space is a cone Sb-metric space with b = 1.

Example 1.23. ([18]) Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, a
normal cone inE. LetX = R and S : X3 → E be such that S(x, y, z) =

(
αS∗(x, y, z), βS∗(x, y, z)

)
,

where α, β > 0 are constants and S∗ is an Sb-metric on X . Then S is a cone Sb-metric on X .

In particular, the function S∗(x, y, z) =
{
|x−z|+ |y−z|

}2
for all x, y, z ∈ X is an Sb-metric

on X with b = 4.
Therefore, the function S(x, y, z) =

[
{|x − z| + |y − z|}2, 1

4{|x − z| + |y − z|}2
]

for all
x, y, z ∈ X is a cone Sb-metric on X with b = 4.

Definition 1.24. ([18]) Let (X,S) be a cone Sb-metric space.
(1) A sequence {un} in X converges to u if and only if S(un, un, u)→ 0 as n→∞, that is,

there exists n0 ∈ N such that for all n ≥ n0, S(un, un, u)� c for each c ∈ E, 0� c. We denote
this by limn→∞ un = u or un → u as n→∞.

(2) A sequence {un} in X is called a Cauchy sequence if S(un, un, um)→ 0 as n,m→∞,
that is, there exists n0 ∈ N such that for all n,m ≥ n0, S(un, un, um) � c for each c ∈ E,
0� c.

(3) The cone Sb-metric space (X,S) is called complete if every Cauchy sequence in X is
convergent in X .

Lemma 1.25. ([18]) Let (X,S) be a cone Sb-metric space, P be a normal cone with normal
constant K. Then a sequence {un} in X converges to u if and only if S(un, un, u) → 0 as
n→∞.

Lemma 1.26. ([18]) Let (X,S) be a cone Sb-metric space, P be a normal cone with normal
constant K. Let {un} be a sequence in X . If the sequence {un} converges to u1 and u2, then
u1 = u2, that is, the limit of a convergent sequence is unique.

Lemma 1.27. ([18]) Let (X,S) be a cone Sb-metric space, P be a normal cone with normal
constant K. Then a sequence {un} in X is a Cauchy sequence if and only if S(un, un, um)→ 0
as n,m→∞.

Lemma 1.28. ([18]) Let (X,S) be a cone Sb-metric space, P be a normal cone with normal
constant K. Let {un} be a sequence in X . If the sequence {un} converges to u, then {un} is a
Cauchy sequence, that is, every convergent sequence is a Cauchy sequence.

2 Main Results

In this section, we shall prove some existence of fixed point results under contractive type con-
ditions in the setting of cone Sb-metric spaces.

Theorem 2.1. Let (X,S) be a complete cone Sb-metric space with the coefficient b ≥ 1 and P
be a normal cone with normal constant K. Suppose that the mapping T : X → X satisfies the
following condition:

S(Tu, Tu, Tv) ≤ h1 [S(u, u, Tu) + S(v, v, Tv)] + h2 [S(u, u, Tv) + S(v, v, Tu)]

+h3 max
{
S(u, u, Tu), S(v, v, Tv), S(v, v, Tu)

}
+h4 [S(u, u, v) + S(u, u, Tv)] (2.1)



552 G. S. Saluja

for all u, v ∈ X , where h1, h2, h3, h4 > 0 are constants such that 2h1 + b(b+ 2)h2 + h3 + (b+
1)2h4 < 1. Then T has a unique fixed point w in X and we have limn→∞ Tn(u) = w, for each
u ∈ X .

Proof. Let u0 ∈ X and a sequence {un} be defined by Tn(u0) = un. Suppose that un 6= un+1
for all n. Using the inequality (2.1) and the condition (CSbM3) of definition 1.22, we get

S(un, un, un+1) = S(Tun−1, Tun−1, Tun)

≤ h1 [S(un−1, un−1, Tun−1) + S(un, un, Tun)]

+h2 [S(un−1, un + Tun−1) + S(un, un, Tun−1)]

+h3 max
{
S(un−1, un−1, Tun−1), S(un, un, Tun), S(un, un, Tun−1)

}
+h4 [S(un−1, un−1, un) + S(un−1, un−1, Tun)]

= h1 [S(un−1, un−1, un) + S(un, un, un+1)]

+h2 [S(un−1, un−1, un+1) + S(un, un, un)]

+h3 max
{
S(un−1, un−1, un), S(un, un, un+1), S(un, un, un)

}
+h4 [S(un−1, un−1, un) + S(un−1, un−1, un+1)]

= (h1 + h4)S(un−1, un−1, un) + h1 S(un, un, un+1)

+h3 max
{
S(un−1, un−1, un), S(un, un, un+1)

}
+(h2 + h4)S(un−1, un−1, un+1)

≤ (h1 + h4)S(un−1, un−1, un) + h1 S(un, un, un+1)

+h3 max
{
S(un−1, un−1, un), S(un, un, un+1)

}
+2b(h2 + h4)S(un−1, un−1, un)

+b2(h2 + h4)S(un, un, un+1)

= [h1 + 2bh2 + (2b+ 1)h4]S(un−1, un−1, un)

+[h1 + b2(h2 + h4)]S(un, un, un+1)

+h3 max
{
S(un−1, un−1, un), S(un, un, un+1)

}
. (2.2)

Here we consider the following cases.
Case I: If max

{
S(un−1, un−1, un), S(un, un, un+1)

}
= S(un−1, un−1, un), then from equa-

tion (2.2), we obtain

S(un, un, un+1) ≤ [h1 + 2bh2 + h3 + (2b+ 1)h4]S(un−1, un−1, un)

+[h1 + b2(h2 + h4)]S(un, un, un+1).

or

[1− h1 − b2(h2 + h4)]S(un, un, un+1) ≤ [h1 + 2bh2 + h3 + (2b+ 1)h4]×
S(un−1, un−1, un)

⇒ S(un, un, un+1) ≤
(h1 + 2bh2 + h3 + (2b+ 1)h4

1− h1 − b2(h2 + h4)

)
×

S(un−1, un−1, un)

= t S(un−1, un−1, un), (2.3)

where t =
(
h1+2bh2+h3+(2b+1)h4

1−h1−b2(h2+h4)

)
< 1 as 2h1 + b(b+ 2)h2 + h3 + (b+ 1)2h4 < 1.
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Case II: If max
{
S(un−1, un−1, un), S(un, un, un+1)

}
= S(un, un, un+1), then from equa-

tion (2.2), we obtain

S(un, un, un+1) ≤ [h1 + 2bh2 + (2b+ 1)h4]S(un−1, un−1, un)

+[h1 + b2(h2 + h4) + h3]S(un, un, un+1).

or

[1− h1 − b2(h2 + h4)− h3]S(un, un, un+1) ≤ [h1 + 2bh2 + (2b+ 1)h4]×
S(un−1, un−1, un)

⇒ S(un, un, un+1) ≤
( h1 + 2bh2 + (2b+ 1)h4

1− h1 − b2(h2 + h4)− h3

)
×

S(un−1, un−1, un)

= q S(un−1, un−1, un), (2.4)

where q =
(

h1+2bh2+(2b+1)h4
1−h1−b2(h2+h4)−h3

)
< 1 as 2h1 + b(b+ 2)h2 + h3 + (b+ 1)2h4 < 1.

Combining above two cases, we have

S(un, un, un+1) ≤ µS(un−1, un−1, un), (2.5)

where 0 < µ < 1 and µ ∈ {t, q} < 1 as 2h1 + b(b+ 2)h2 + h3 + (b+ 1)2h4 < 1.
Let Vn = S(un, un, un+1) and Vn−1 = S(un−1, un−1, un), then from equation (2.5), we get

Vn ≤ µVn−1. (2.6)

Using equation (2.6), we obtain

Vn ≤ µVn−1 ≤ µ2 Vn−2 ≤ µ3 Vn−3 ≤ · · · ≤ µn V0. (2.7)

Now for m,n ≥ 1 and m > n, we have

S(un, un, um) ≤ b[2S(un, un, un+1) + S(um, um, un+1)]

≤ 2bS(un, un, un+1) + b2S(um, um, un+1)

≤ 2bS(un, un, un+1) + 2b3S(un+1, un+1, un+2)

+b4S(un+2, un+2, um)

≤ 2bS(un, un, un+1) + 2b3S(un+1, un+1, un+2)

+2b5S(un+2, un+2, un+3) + . . .

+2b2(m−n−1)S(um−1, um−1, um)

< 2b
{
S(un, un, un+1) + b2S(un+1, un+1, un+2)

+b4S(un+2, un+2, un+3) + . . .

+b2(m−n−1)S(um−1, um−1, um)
}

≤ 2b
{
µn + b2µn+1 + b4µn+2 + · · ·+ b2(m−n−1)µm−1

}
S(u0, u0, u1)

= 2bµn
{

1 + b2µ+ (b2µ)2 + · · ·+ (b2µ)m−n−1
}
V0

≤
( 2bµn

1− b2µ

)
V0.

This implies that

‖S(un, un, um)‖ ≤
( 2bµnK

1− b2µ

)
‖V0‖.
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Taking limit as n,m→∞, we get

‖S(un, un, um)‖ → 0,

since 0 < µ < 1. Thus, we have S(un, un, um)→ 0 as n,m→∞.
Therefore, the sequence {un} is a Cauchy sequence in X . By the completeness of the space,

there exists w ∈ X such that limn→∞ un = w, i.e., limn→∞ Tnu0 = w.
Also, we have

S(Tw, Tw,w) ≤ 2bS(Tw, Tw, Tun) + bS(w,w, Tun)

≤ 2b
{
h1[S(w,w, Tw) + S(un, un, Tun)]

+h2[S(w,w, Tun) + S(un, un, Tw)]

+h3 max{S(w,w, Tw), S(un, un, Tun), S(un, un, Tw)}

+h4[S(w,w, un) + S(w,w, Tun)]
}

+bS(w,w, Tun)

= 2b
{
h1[S(w,w, Tw) + S(un, un, un+1)]

+h2[S(w,w, un+1) + S(un, un, Tw)]

+h3 max{S(w,w, Tw), S(un, un, un+1), S(un, un, Tw)}

+h4[S(w,w, un) + S(w,w, un+1)]
}

+bS(w,w, un+1)

≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2bh3 max{S(w,w, Tw), S(un, un, un+1), S(un, un, Tw)}
(2.8)

We consider the following cases.
Case I: If max{S(w,w, Tw), S(un, un, un+1), S(un, un, Tw)} = S(w,w, Tw), then from

equation (2.8), we obtain

S(Tw, Tw,w) ≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2bh3S(w,w, Tw)

≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2b2h3S(Tw, Tw,w)

= 2b2(h1 + h3)S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w). (2.9)
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From equation (2.9), we obtain

S(Tw, Tw,w) ≤ 1
1− 2b2(h1 + h3)

[
2bh1S(un, un, un+1) + b2(2h2 + 2h4 + 1)×

S(un+1, un+1, w) + b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)
]
.

This implies that

‖S(Tw, Tw,w)‖ ≤ K

1− 2b2(h1 + h3)

[
2bh1‖S(un, un, un+1)‖

+b2(2h2 + 2h4 + 1)‖S(un+1, un+1, w)‖
+b2(2h2 + 2h4 + 1)‖S(un+1, un+1, w)‖

+2b2h2‖S(Tw, Tw, un)‖+ 2b2h4‖S(un, un, w)‖
]
.

Taking the limit as n→∞, we get

‖S(Tw, Tw,w)‖ ≤ 2b2h2K

1− 2b2(h1 + h3)
‖S(Tw, Tw,w)‖,

or (
1− 2b2h2K

1− 2b2(h1 + h3)

)
‖S(Tw, Tw,w)‖ ≤ 0

⇒ ‖S(Tw, Tw,w)‖ ≤ 0.

Thus, we have S(Tw, Tw,w) = 0. Hence Tw = w. This shows that w is a fixed point of T .
Case II: If max{S(w,w, Tw), S(un, un, un+1), S(un, un, Tw)} = S(un, un, un+1), then from

equation (2.8), we obtain

S(Tw, Tw,w) ≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2bh3S(un, un, un+1)

= 2b2h1S(Tw, Tw,w) + 2b(h1 + h3)S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w). (2.10)

From equation (2.10), we obtain

S(Tw, Tw,w) ≤ 1
1− 2b2h1

[
2b(h1 + h3)S(un, un, un+1) + b2(2h2 + 2h4 + 1)×

S(un+1, un+1, w) + b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)
]
.

This implies that

‖S(Tw, Tw,w)‖ ≤ K

1− 2b2h1

[
2b(h1 + h3)‖S(un, un, un+1)‖+ b2(2h2 + 2h4 + 1)×

‖S(un+1, un+1, w)‖+ b2(2h2 + 2h4 + 1)‖S(un+1, un+1, w)‖

+2b2h2‖S(Tw, Tw, un)‖+ 2b2h4‖S(un, un, w)‖
]
.
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Taking the limit as n→∞, we get

‖S(Tw, Tw,w)‖ ≤ 2b2h2K

1− 2b2h1
‖S(Tw, Tw,w)‖,

or (
1− 2b2h2K

1− 2b2h1

)
‖S(Tw, Tw,w)‖ ≤ 0

⇒ ‖S(Tw, Tw,w)‖ ≤ 0.

Thus, we have S(Tw, Tw,w) = 0. Hence Tw = w. This shows that w is a fixed point of T .
Case III: If max{S(w,w, Tw), S(un, un, un+1), S(un, un, Tw)} = S(un, un, Tw), then from

equation (2.8), we obtain

S(Tw, Tw,w) ≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2bh3S(un, un, Tw)

≤ 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2h2S(Tw, Tw, un) + 2b2h4S(un, un, w)

+2b2h3S(Tw, Tw, un)

= 2b2h1S(Tw, Tw,w) + 2bh1S(un, un, un+1)

+b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2(h2 + h3)S(Tw, Tw, un) + 2b2h4S(un, un, w).

(2.11)

From equation (2.11), we obtain

S(Tw, Tw,w) ≤ 1
1− 2b2h1

[
2bh1S(un, un, un+1) + b2(2h2 + 2h4 + 1)×

S(un+1, un+1, w) + b2(2h2 + 2h4 + 1)S(un+1, un+1, w)

+2b2(h2 + h3)S(Tw, Tw, un) + 2b2h4S(un, un, w)
]
.

This implies that

‖S(Tw, Tw,w)‖ ≤ K

1− 2b2h1

[
2bh1‖S(un, un, un+1)‖+ b2(2h2 + 2h4 + 1)×

‖S(un+1, un+1, w)‖+ b2(2h2 + 2h4 + 1)‖S(un+1, un+1, w)‖

+2b2(h2 + h3)‖S(Tw, Tw, un)‖+ 2b2h4‖S(un, un, w)‖
]
.

Taking the limit as n→∞, we get

‖S(Tw, Tw,w)‖ ≤ 2b2(h2 + h3)K

1− 2b2h1
‖S(Tw, Tw,w)‖,

or (
1− 2b2(h2 + h3)K

1− 2b2h1

)
‖S(Tw, Tw,w)‖ ≤ 0

⇒ ‖S(Tw, Tw,w)‖ ≤ 0.
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Thus, we have S(Tw, Tw,w) = 0. Hence Tw = w. This shows that w is a fixed point of T .
From above three cases we see that w is a fixed point of T .
Now to show that the fixed point of T is unique.
Let w0 be another fixed point of T in X such that Tw0 = w0. Then,

S(w,w,w0) = S(Tw, Tw, Tw0)

≤ h1[S(w,w, Tw) + S(w0, w0, Tw0)]

+h2[S(w,w, Tw0) + S(w0, w0, Tw)]

+h3 max{S(w,w, Tw), S(w0, w0, Tw0), S(w0, w0, Tw)}
+h4[S(w,w,w0) + S(w,w, Tw0)]

= h1[S(w,w,w) + S(w0, w0, w0)]

+h2[S(w,w,w0) + S(w0, w0, w)]

+h3 max{S(w,w,w), S(w0, w0, w0), S(w0, w0, w)}
+h4[S(w,w,w0) + S(w,w,w0)]

= (h2 + 2h4)S(w,w,w0) + (h2 + h3)S(w0, w0, w)

≤ (h2 + 2h4)S(w,w,w0) + b(h2 + h3)S(w,w,w0)

= [(b+ 1)h2 + bh3 + 2h4]S(w,w,w0),

or

[1− (b+ 1)h2 − bh3 − h4]S(w,w,w0) ≤ 0

⇒ S(w,w,w0) ≤ 0,

since 1− (b+ 1)h2 − bh3 − h4 < 1. Therefore, we have S(w,w,w0) = 0. Hence w = w0. This
shows that the fixed point of T is unique. This completes the proof.

If we take h1 = h and h2 = h3 = h4 = 0 in Theorem 2.1, then we have the following result
as corollary.

Corollary 2.2. ([18], Theorem 2.2) Let (X,S) be a complete cone Sb-metric space with the
coefficient b ≥ 1 and P be a normal cone with normal constant K. Suppose that the mapping
T : X → X satisfies the following condition:

S(Tu, Tu, Tv) ≤ h [S(u, u, Tu) + S(v, v, Tv)]

for all u, v ∈ X , where 0 ≤ h < 1
2 , that is, h ∈ [0, 1

2) is a constant. Then T has a unique fixed
point w in X and we have limn→∞ Tn(u) = w, for each u ∈ X .

Remark 2.3. The contractive condition of Corollary 2.2 is similar with the well known Kannan
[11] contraction type condition in the setting of complete cone Sb-metric space.

If we take h2 = h and h1 = h3 = h4 = 0 in Theorem 2.1, then we have the following result
as corollary.

Corollary 2.4. ([18], Theorem 2.3) Let (X,S) be a complete cone Sb-metric space with the
coefficient b ≥ 1 and P be a normal cone with normal constant K. Suppose that the mapping
T : X → X satisfies the following condition:

S(Tu, Tu, Tv) ≤ h [S(u, u, Tv) + S(v, v, Tu)]

for all u, v ∈ X , where 0 ≤ h < 1
b(b+2) <

1
2 , that is, h ∈ [0, 1

b(b+2)) is a constant. Then T has a
unique fixed point w in X and we have limn→∞ Tn(u) = w, for each u ∈ X .

Remark 2.5. The contractive condition of Corollary 2.4 is similar with the well known Chatter-
jae [4] contraction type condition in the setting of complete cone Sb-metric space.
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Theorem 2.6. Let (X,S) be a complete cone Sb-metric space with the coefficient b ≥ 1 and
P be a normal cone with normal constant K such that for positive integer n, Tn satisfies the
contraction condition (2.1) for all u, v ∈ X , where h1, h2, h3, h4 > 0 are constants such that
2h1 + b(b+ 2)h2 + h3 + (b+ 1)2h4 < 1. Then T has a unique fixed point in X .

Proof. From Theorem 2.1, let p0 be the unique fixed point of Tn. Then

T (Tnp0) = Tp0 or Tn(Tp0) = Tp0.

This gives Tp0 = p0. This shows that p0 is a unique fixed point of T . This completes the
proof.

Theorem 2.7. Let (X,S) be a complete cone Sb-metric space with the coefficient b ≥ 1 and P
be a normal cone with normal constant K. Suppose that the mapping T : X → X satisfies the
following condition:

S(Tu, Tu, Tv) ≤ λ
[
S(u, u, v) + S(u, u, Tu) + S(v, v, Tv)

]
+µ
[
S(u, u, Tv) + S(v, v, Tu)

]
(2.12)

for all u, v ∈ X , where λ, µ > 0 are constants such that 3λ + b(b + 2)µ < 1. Then T has a
unique fixed point w in X and we have limn→∞ Tn(u) = w, for each u ∈ X .

Proof. Let u0 ∈ X and a sequence {un} be defined by Tn(u0) = un. Suppose that un 6= un+1
for all n. Using the inequality (2.12) and the condition (CSbM3) of definition 1.22, we get

S(un, un, un+1) = S(Tun−1, Tun−1, Tun)

≤ λ
[
S(un−1, un−1, un) + S(un−1, un−1, Tun−1) + S(un, un, Tun)

]
+µ
[
S(un−1, un−1, Tun) + S(un, un, Tun−1)

]
= λ

[
S(un−1, un−1, un) + S(un−1, un−1, un) + S(un, un, un+1)

]
+µ
[
S(un−1, un−1, un+1) + S(un, un, un)

]
= 2λS(un−1, un−1, un) + λS(un, un, un+1)

+µS(un−1, un−1, un+1)

≤ 2λS(un−1, un−1, un) + λS(un, un, un+1)

+2bµS(un−1, un−1, un) + b2µS(un, un, un+1)

= 2(λ+ bµ)S(un−1, un−1, un) + (λ+ b2µ)S(un, un, un+1). (2.13)

From equation (2.13), we obtain

S(un, un, un+1) ≤
( 2(λ+ bµ)

1− λ− b2µ

)
S(un−1, un−1, un)

= ρS(un−1, un−1, un), (2.14)

where ρ =
(

2(λ+bµ)
1−λ−b2µ

)
< 1 as 3λ+ b(b+ 2)µ < 1.

Let Dn = S(un, un, un+1) and Dn−1 = S(un−1, un−1, un), then from equation (2.14), we
get

Dn ≤ ρDn−1. (2.15)

Using equation (2.15), we obtain

Dn ≤ ρDn−1 ≤ ρ2 Dn−2 ≤ ρ3 Dn−3 ≤ · · · ≤ ρnD0. (2.16)
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Now for m,n ≥ 1 and m > n, we have

S(un, un, um) ≤ b[2S(un, un, un+1) + S(um, um, un+1)]

≤ 2bS(un, un, un+1) + b2S(um, um, un+1)

≤ 2bS(un, un, un+1) + 2b3S(un+1, un+1, un+2)

+b4S(un+2, un+2, um)

≤ 2bS(un, un, un+1) + 2b3S(un+1, un+1, un+2)

+2b5S(un+2, un+2, un+3) + . . .

+2b2(m−n−1)S(um−1, um−1, um)

< 2b
{
S(un, un, un+1) + b2S(un+1, un+1, un+2)

+b4S(un+2, un+2, un+3) + . . .

+b2(m−n−1)S(um−1, um−1, um)
}

≤ 2b
{
ρn + b2ρn+1 + b4ρn+2 + · · ·+ b2(m−n−1)ρm−1

}
S(u0, u0, u1)

= 2bρn
{

1 + b2ρ+ (b2ρ)2 + · · ·+ (b2ρ)m−n−1
}
D0

≤
( 2bρn

1− b2ρ

)
D0.

This implies that

‖S(un, un, um)‖ ≤
( 2bρnK

1− b2ρ

)
‖D0‖.

Taking limit as n,m→∞, we get

‖S(un, un, um)‖ → 0,

since 0 < ρ < 1. Thus, we have S(un, un, um)→ 0 as n,m→∞.

Therefore, the sequence {un} is a Cauchy sequence in X . By the completeness of the space,
there exists w ∈ X such that limn→∞ un = w, i.e., limn→∞ Tnu0 = w. Rest of the proof follows
from Theorem 2.1. This completes the proof.

Remark 2.8. If we take λ = 0 and µ = h in Theorem 2.7, then we obtain Theorem 2.3 of [18]
as corollary.

Theorem 2.9. Let (X,S) be a complete cone Sb-metric space with the coefficient b ≥ 1 and
P be a normal cone with normal constant K such that for positive integer n, Tn satisfies the
contraction condition (2.12) for all u, v ∈ X , where λ, µ > 0 are constants such that 3λ+ b(b+
2)µ < 1. Then T has a unique fixed point in X .

Proof. The proof of Theorem 2.9 follows from Theorem 2.6.

Example 2.10. Let E = R2, the Euclidean plane, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} a normal

cone inE andX = R. Then the function S : X3 → E defined by S(x, y, z) =
(
|x−z|+|y−z|

)2

for all x, y, z ∈ X . Then (X,S) is a cone Sb-metric space with coefficient b = 4. Now, we
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consider the mapping T : X → X by T (x) = x+1
2 . Then

S(Tx, Tx, Ty) =
[
|Tx− Ty|+ |Tx− Ty|

]2

= 4|Tx− Ty|2 = 4
∣∣∣(x+ 1

2

)
−
(y + 1

2

)∣∣∣2
= |x− y|2

≤ 1
3
[|x− 1|2 + |y − 1|2]

= h [S(x, x, Tx) + S(y, y, Ty)]

where h = 1
3 <

1
2 . Thus T satisfies all the conditions of Corollary 2.2 and clearly 1 ∈ X is the

unique fixed point of T .

Example 2.11. Let E = R2, the Euclidean plane, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} a normal

cone inE andX = R. Then the function S : X3 → E defined by S(x, y, z) =
(
|x−z|+|y−z|

)2

for all x, y, z ∈ X . Then (X,S) is a cone Sb-metric space with coefficient b = 4. Now, we
consider the mapping T : X → X by T (x) = x+2

3 . Then

S(Tx, Tx, Ty) =
[
|Tx− Ty|+ |Tx− Ty|

]2

= 4|Tx− Ty|2 = 4
∣∣∣(x+ 2

3

)
−
(y + 2

3

)∣∣∣2
=

4
9
|x− y|2.

S(x, x, Ty) = 4|x− Ty|2 = 4
9
|3x− y − 2|2.

S(y, y, Tx) = 4|y − Tx|2 = 4
9
|3y − x− 2|2.

Now, we have

S(Tx, Tx, Ty) ≤ 1
6

[4
9
|3x− y − 2|2 + 4

9
|3y − x− 2|2

]2

=
1
6
[S(x, x, Ty) + S(y, y, Tx)]

= h[S(x, x, Ty) + S(y, y, Tx)]

where h = 1
6 <

1
2 . Thus T satisfies all the conditions of Corollary 2.4 and clearly 1 ∈ X is the

unique fixed point of T .

Open Question: Can we extend the results for rational contraction/ rational type contraction/
contraction involving rational expression?

3 Conclusion

In this paper, we establish some existence of fixed point theorems via contractive type conditions
in the framework of cone Sb-metric spaces. Our results extend, unify and generalize several
results given in the existing literature.
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