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Abstract. This paper deals with the initial-boundary value problem for generalized heat
equations with variable exponent in a bounded domain. Under suitable conditions, we discuss
the lower and upper bounds for the blow up time of solutions.

1 Introduction

In this paper, we deal with the lower and upper bounds for the blow up time of solutions of the
following generalized heat equations with variable exponents

ut + ∆2ut − div
(
|∇u|m(x)−2∇u

)
= |uv|p(x)−2

uv2 in Ω× (0, T ) ,

vt + ∆2vt − div
(
|∇v|n(x)−2∇v

)
= |uv|p(x)−2

u2v in Ω× (0, T ) ,

u = 0, v = 0 on ∂Ω× (0, T ) ,
u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , in Ω,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω. The exponents m (·) ,
n (·) , p (·) are given measurable functions on Ω satisfying

p+ > max
{
m+, n+

}
, min

{
m−, n−

}
≥ 2, (1.2)

m+ ≥ n−, n+ ≥ m−, (1.3)

where 
m− = ess infm (x)

x∈Ω

, m+ = ess supm (x)
x∈Ω

,

n− = ess infn (x)
x∈Ω

, n+ = ess supn (x)
x∈Ω

,

p− = ess inf p (x)
x∈Ω

, p+ = ess sup p (x)
x∈Ω

,

and 
m− ≤ m (x) ≤ m+,

n− ≤ n (x) ≤ n+,
p− ≤ p (x) ≤ p+.

The problems with variable exponents arises in many branches in sciences such as image pro-
cessing, electrorheological fluids and nonlinear elasticity theory [4, 6, 16].

Alaoui et al. [1] studied the following nonlinear heat equation with variable exponent

ut − div
(
|∇u|m(x)−2∇u

)
= |u|p(x)−2

u. (1.4)

They proved the blow up of solutions. Also, Wu [18] proved the blow up of solutions for the
equation (1.4). When m (·) ≡ 2, many authors [3, 9, 13, 17, 19] studied the lower bounds for the
blow up time and blow up of solutions for the equation (1.4).
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Di et al. [5] considered

ut − ∆ut − div
(
|∇u|m(x)−2∇u

)
= |u|p(x)−2

u, (1.5)

and established the lower and upper bounds for the blow up time of solutions. Recently, some
authors was obtained the global existence, blow up and asymptotic stability of solutions for 1.5,
see [11, 12, 20]. In [8] Gao and Gao studied the following equation

ut − ∆ut − div
(
|∇u|m(x)−2∇u

)
= 0,

and proved the existence and asymptotic behavior of solutions.
Bai and Zhang [2] considered the following system{

ut − ∆u = vp(x),

vt − ∆v = uq(x).

They proved the global existence and the blow up of solutions. In 2017, Qi et al. [15] discussed
the following equation ut − div

(
|∇u|m(x)−2∇u

)
− ∆ut = |uv|p(x)−2

uv2,

vt − div
(
|∇v|n(x)−2∇v

)
− ∆vt = |uv|p(x)−2

u2v.

They proved the bounds for the blow up time of solutions.
Motivated by previous paper, we consider the lower and upper bounds for the blow up time

of solutions. Therefore, we try to extend the previous results from constant exponents to variable
exponents.

Our paper is organized as follows: In Section 2, we state some results about the variable ex-
ponent Lebesgue and Sobolev spaces Lp(x) (Ω) and W 1,p(x) (Ω). In Sections 3-4, we investigate
the upper bound for blow-up time and lower bound for blow up time of solutions, respectively,
using the similar arguments as in [1, 5, 15].

2 Preliminaries

In this section, we state some results about the variable exponent Lebesgue and Sobolev spaces
Lp(x) (Ω) and W 1,p(x) (Ω) (see [6, 7, 10, 14]). Also, ‖ · ‖ and ‖ · ‖p denote the usual L2(Ω) norm
and Lp(Ω) norm, respectively.

Let p : Ω→ [1,∞] be a measurable function, where Ω is a bounded domain ofRn.We define
the variable exponent Lebesgue space by

Lp(x) (Ω) =
{
u : Ω→ R, u is measurable and ρp(.) (λu) <∞, for some λ > 0

}
,

where
ρp(.) (u) =

∫
Ω

|u|p(x) dx.

Also endowed with the Luxemburg norm

‖u‖p(x) = inf

λ > 0 :
∫
Ω

∣∣∣u
λ

∣∣∣p(x) dx ≤ 1

 ,

Lp(x) (Ω) is a Banach space.
The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : ∇u exists and |∇u| ∈ Lp(x) (Ω)

}
.

Variable exponent Sobolev space is a Banach space with respect to the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) .
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The space W 1,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) in W 1,p(x) (Ω) with respect to the

norm ‖u‖1,p(x) . For u ∈W 1,p(x)
0 (Ω) , we can define an equivalent norm

‖u‖1,p(x) = ‖∇u‖p(x) .

Let the variable exponents p (.) and q (.) satisfy the log-Hölder continuity condition:

|p (x)− p (y)| ≤
A

log 1
|x−y|

, for all x, y ∈ Ω with |x− y| < δ, (2.1)

where A > 0 and 0 < δ < 1.

Lemma 2.1. (Poincare inequality) Let Ω be a bounded domain of Rn and p (.) satisfies log-
Hölder condition, then

‖u‖p(x) ≤ c ‖∇u‖p(x) , for all u ∈W 1,p(x)
0 (Ω) ,

where c = c (p−, p+, |Ω|) > 0.

Lemma 2.2. Let p (.) ∈ C
(
Ω
)

and q : Ω→ [1,∞) be a measurable function and satisfy

essinf
x∈Ω

(p∗ (x)− q (x)) > 0.

Then the Sobolev embedding W 1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is continuous and compact. Where

p∗ (x) =

{
np−

n−p− , if p− < n,

∞, if p− ≥ n.

3 Upper bound for blow-up time

In this section, we shall prove the upper bound for blow up time of solutions to system (1.1).

Theorem 3.1. Suppose that (2.1), (1.2) and (1.3) hold. Let u0 ∈ W
1,m(·)
0 (Ω) ∩ Lp(·) (Ω) ,

v0 ∈W
1,n(·)
0 (Ω) ∩ Lp(·) (Ω) such that ‖u0‖H1

0
, ‖v0‖H1

0
> 0 and

E (0) ≤ 0. (3.1)

Then, the solution (u, v) of the system (1.1) blows-up in finite time T ∗. Moreover, an upper
bound for blow-up time is given by

T ∗ ≤ (F (0))1− 1
b b

β (b− 1)
, (3.2)

where β and b are suitable positive constants given later and F (0) = ‖u0‖2
H1

0
+ ‖v0‖2

H1
0
.

Proof. We multiplying the first equation of (1.1) by ut, the second equation of (1.1) by vt, and
integrating over the domain Ω, we obtain∫

Ω

(
|ut|2 + |vt|2 + |∆ut|2 + |∆vt|2

)
dx+

d

dt

∫
Ω

(
1

m (x)
|∇u|m(x) +

1
n (x)

|∇v|n(x)
)
dx

=
d

dt

∫
Ω

1
p (x)

|uv|p(x) dx, (3.3)
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E′ (t) = −
(
‖ut‖2 + ‖∆ut‖2 + ‖vt‖2 + ‖∆vt‖2

)
≤ 0, (3.4)

where
E (t) =

∫
Ω

(
1

m (x)
|∇u|m(x) +

1
n (x)

|∇v|n(x) − 1
p (x)

|uv|p(x)
)
dx. (3.5)

We then define
F (t) = ‖u‖2 + ‖∆u‖2 + ‖v‖2 + ‖∆v‖2

. (3.6)

Multiplying the first equation of (1.1) by u,∫
Ω

uutdx+

∫
Ω

∆u∆utdx+

∫
Ω

|∇u|m(x) dx =

∫
Ω

|uv|p(x) dx, (3.7)

and the second equation of (1.1) by v,∫
Ω

vvtdx+

∫
Ω

∆v∆vtdx+

∫
Ω

|∇v|n(x) dx =

∫
Ω

|uv|p(x) dx. (3.8)

Adding (3.7) and (3.8), we have∫
Ω

uutdx+

∫
Ω

∆u∆utdx+

∫
Ω

vvtdx+

∫
Ω

∆v∆vtdx

= −
∫

Ω

(
|∇u|m(x) + |∇v|n(x)

)
dx+ 2

∫
Ω

|uv|p(x) dx. (3.9)

By differentiating F (t) , we obtain

F ′ (t) = 2
∫

Ω

uutdx+ 2
∫

Ω

∆u∆utdx+ 2
∫

Ω

vvtdx+ 2
∫

Ω

∆v∆vtdx

= 4
∫

Ω

|uv|p(x) dx− 2
∫

Ω

(
|∇u|m(x) + |∇v|n(x)

)
dx

= 4
∫

Ω

p (x)

[
|uv|p(x)

p (x)
−

(
|∇u|m(x)

m (x)
+
|∇v|n(x)

n (x)

)]
dx

+4
∫

Ω

p (x)

(
1

m (x)
− 1
p (x)

)
|∇u|m(x) dx

+4
∫

Ω

p (x)

(
1

n (x)
− 1
p (x)

)
|∇v|n(x) dx+ 2

∫
Ω

(
|∇u|m(x) + |∇v|n(x)

)
dx.(3.10)

Since E′ (t) ≤ 0, we get∫
Ω

p (x)

[
|uv|p(x)

p (x)
−

(
|∇u|m(x)

m (x)
+
|∇v|n(x)

n (x)

)]
dx

≥
∫

Ω

p (x)

[
|u0v0|p(x)

p (x)
−

(
|∇u0|m(x)

m (x)
+
|∇v0|n(x)

n (x)

)]
dx

≥
∫

Ω

p−

[
|u0v0|p(x)

p (x)
−

(
|∇u0|m(x)

m (x)
+
|∇v0|n(x)

n (x)

)]
dx

≥ 0. (3.11)

Therefore (3.10) takes the form

F ′ (t) ≥ 4
∫

Ω

p−
(

1
m+
− 1
p−

)
|∇u|m(x) dx+ 4

∫
Ω

p−
(

1
n+
− 1
p−

)
|∇v|n(x) dx

+2
∫

Ω

(
|∇u|m(x) + |∇v|n(x)

)
dx

= C1

∫
Ω

|∇u|m(x) dx+ C2

∫
Ω

|∇v|n(x) dx,
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where C1 = 2 + 4p−
(

1
m+ − 1

p−

)
, C2 = 2 + 4p−

(
1
n+ − 1

p−

)
. We define the sets

Ω+ = {x ∈ Ω | |∇u| ≥ 1, |∇v| ≥ 1} and Ω− = {x ∈ Ω | |∇u| < 1, |∇v| < 1} .

By the embedding of Lr (Ω) ↪→ L2 (Ω) for all r ≥ 2 (‖∇u‖2 ≤ C ‖∇v‖r), we get

F ′ (t) ≥ C1

(∫
Ω−

|∇u|m
+

dx+

∫
Ω+

|∇u|m
−
dx

)
+ C2

(∫
Ω−

|∇v|n
+

dx+

∫
Ω+

|∇v|n
−
dx

)

≥ C3

[∫
Ω−

(
|∇u|2 dx

)m+

2
+

∫
Ω+

(
|∇u|2 dx

)m−
2

]

+C4

[∫
Ω−

(
|∇v|2 dx

)n+

2
+

∫
Ω+

(
|∇v|2 dx

)n−
2

]
.

This means that  (F ′ (t))
a ≥ C5

(
‖∇u‖2 + ‖∇v‖2

)
≥ 0,

(F ′ (t))
b ≥ C6

(
‖∇u‖2 + ‖∇v‖2

)
≥ 0,

(3.12)

where a = max
{ 2
m+ ,

2
n+

}
, b = max

{ 2
m− ,

2
n−

}
.The Poincare inequality gives ‖u‖2 ≤ 1

λ1
‖∇u‖2

,
where λ1 is the first eigenvalue of the problem{

∆w = −λw, in Ω,

w = 0, on ∂Ω,

Thus, we obtain 

‖∇u‖2 = 1
1+λ1

‖∇u‖2 + λ1
1+λ1

‖∇u‖2

≥ λ1
1+λ1

‖u‖2 + λ1
1+λ1

‖∇u‖2

= λ1
1+λ1

‖u‖2
H1

0
,

‖∇v‖2 = 1
1+λ1

‖∇v‖2 + λ1
1+λ1

‖∇v‖2

≥ λ1
1+λ1

‖v‖2 + λ1
1+λ1

‖∇v‖2

= λ1
1+λ1

‖v‖2
H1

0
.

(3.13)

Combining (3.12) and (3.13) yields

(F ′ (t))
a ≥ C5λ1

1 + λ1

(
‖u‖2

H1
0
+ ‖v‖2

H1
0

)
,

and
(F ′ (t))

b ≥ C6λ1

1 + λ1

(
‖u‖2

H1
0
+ ‖v‖2

H1
0

)
.

Thus, adding the above inequalities, we obtain

(F ′ (t))
a
+ (F ′ (t))

b ≥ λ1 (C5 + C6)

1 + λ1

(
‖u‖2

H1
0
+ ‖v‖2

H1
0

)
= C7F (t) , (3.14)

this implies
(F ′ (t))

b
(

1 + (F ′ (t))
a−b
)
≥ C7F (t) . (3.15)

By (3.14) and the fact that F (t) ≥ F (0) > 0 (since F ′ (t) ≥ 0) , we get

(F ′ (t))
a ≥ C7

2
F (t) ≥

C7

2
F (0) ,

and
(F ′ (t))

b ≥ C7

2
F (t) ≥

C7

2
F (0) .
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This implies that
F ′ (t) ≥ C8 (F (0))

1
a ,

and
F ′ (t) ≥ C9 (F (0))

1
b .

Hence F ′ (t) ≥ α, where α = min
{
C8 (F (0))

1
a , C9 (F (0))

1
b

}
. By te (1.3), it is easy to see

a− b ≤ 0. We have
F ′ (t) ≥ β (F (t))

1
b , (3.16)

where β =
(

C7
1+αa−b

) 1
b

is the constant. Consequently, we have

F ′ (t)

(F (t))
1
b

≥ β. (3.17)

A simple integrating the of (3.17) over (0, t) , then yields

(F (t))
1− 1

b ≤ (F (0))1− 1
b +

(b− 1)βt
b

, (3.18)

F (t) ≥
1[

(F (0))1− 1
b + (b−1)βt

b

] b
1−b

. (3.19)

Therefore, (3.19) shows that F (t) blows up at some finite time

T ∗ ≤ b (F (0))1− 1
b

(b− 1)β
. (3.20)

Remark 3.2. The larger F (0) is the quicker the blow up takes place.

4 Lower bound for blow-up time

In this section, we shall prove the lower bound for blow up time of solutions to system (1.1).

Theorem 4.1. Assume that (2.1) and (1.2) hold. Assume further that{
2 < p+ if n ≤ 2,

2 < p+ ≤ 2n
n−2 if n ≥ 3,

u0 ∈ W
1,m(·)
0 (Ω) ∩ Lp(·) (Ω) , v0 ∈ W

1,n(·)
0 (Ω) ∩ Lp(·) (Ω) and the solution (u, v) of the system

(1.1) becomes unbounded at finite time T ∗ in H1
0 (Ω)-norm, then a lower bound T ∗ for blow-up

time is given by

T ∗ ≥
∫ ∞
F (0)

dη

Mηp+ +Nηp−
, (4.1)

where M and N are suitable positive constants given later.

Proof. We define the function F (t) the same as (3.6). By (3.10), we have

F ′ (t) = 2
∫

Ω

uutdx+ 2
∫

Ω

∆u∆utdx+ 2
∫

Ω

vvtdx+ 2
∫

Ω

∆v∆vtdx

≤ 4
∫

Ω

|uv|p(x) dx. (4.2)

We define the sets

Ω+ = {x ∈ Ω | |uv| ≥ 1} and Ω− = {x ∈ Ω | |uv| < 1} .
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Thanks to the Cauchy-Schwarz and the Sobolev embedding inequalities, we obtain∫
Ω

|uv|p(x) dx ≤
∫

Ω+

|uv|p
+

dx+

∫
Ω−

|uv|p
−
dx

≤
∫

Ω

|uv|p
+

dx+

∫
Ω

|uv|p
−
dx

≤
(∫

Ω

|u|2p
+

dx

) 1
2
(∫

Ω

|v|2p
+

dx

) 1
2

+

(∫
Ω

|u|2p
−
dx

) 1
2
(∫

Ω

|v|2p
−
dx

) 1
2

≤
(
Bp

+

+

)2
‖∇u‖p

+

‖∇v‖p
+

+
(
Bp

−

−

)2
‖∇u‖p

−
‖∇v‖ p−, (4.3)

where B+, B− are the Sobolev embedding constants for H1
0 (Ω) ↪→ Lp

+

(Ω) and H1
0 (Ω) ↪→

Lp
−
(Ω) , respectively. By the Cauchy-Schwarz inequality, we get

(F ′ (t))
2 ≥

(∫
Ω

|∇u|2 dx
)2

+

(∫
Ω

|∇v|2 dx
)2

≥ 2
∫

Ω

|∇u|2 dx
∫

Ω

|∇v|2 dx.

Then

(F ′ (t))
p+ ≥ 2

p+

2

(∫
Ω

|∇u|2 dx
) p+

2
(∫

Ω

|∇v|2 dx
) p+

2

,

and

(F ′ (t))
p− ≥ 2

p−

2

(∫
Ω

|∇u|2 dx
) p−

2
(∫

Ω

|∇v|2 dx
) p−

2

,

which implies that

2−
p+

2 (F ′ (t))
p+ ≥ ‖∇u‖p

+

‖∇v‖p
+

, (4.4)

and

2−
p−

2 (F ′ (t))
p− ≥ ‖∇u‖

p−

‖∇v‖p
−
. (4.5)

Combining (3.20) and (4.5) yields

F ′ (t) ≤M (F (t))
p+

+N (F (t))
p−

,

where M = 2−
p+

2

(
Bp

+

+

)2
, N = 2−

p−

2

(
B

p−

+

)2
. Therefore

F ′ (t)

M (F (t))
p+

+N (F (t))
p−
≤ 1. (4.6)

A simple integrating the of (4.6) over (0, t) , then yields∫ F (t)

F (0)

dη

Mηp+ +Nηp−
≤ t.

If (u, v) blows up in H1
0 (Ω) norm, then we obtain a lower bound T ∗ given by

T ∗ ≥
∫ ∞
F (0)

dη

Mηp+ +Nηp−
.

Clearly, the integral is bound since exponents p+ ≥ p− > 2.
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Conclusion

In this paper, we considered the lower and upper bounds for the blow up time of solutions for
a generalized heat equations with variable exponent in a bounded domain. This improves many
results in the literature.
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