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Abstract. In this paper, establish a fixed point theorem for a weak contraction condition
(B) map on a complete metric spaces endowed with w- distance. Presented fixed point theorem
generalize some results existing in the literature.

1 Introduction and Preliminaries

The classical Banach’s contraction principle [2] is one of the most useful results in fixed point
theory. But suffer from one drawback the contractive condition forces to be continuous. In 1969,
Kannan [11] proved a fixed point theorem for a map satisfying a contractive condition that didn’t
require continuity at each point. This paper was a genesis for a multitude of fixed point papers
over the next three decades.

On the other hand, Berinde[4] introduced the concept of almost contraction and proved some
fixed point theorems for almost contractions in complete metric spaces. This concept by Berinde
in [3] was called weak contraction, but in [4], Berinde renamed it as almost contraction which
is appropriate. In [3], Berinde shows that any Banach, Kannan, Chatterjea and Zamfirescu map-
pings are weak contraction. The latter has been studied in some other papers [5, 6, 7] for the
case of both single valued and multi valued mappings.

Very recently, Babu et al.[1] considered the class of mappings that satisfy condition (B) and
proved the existence of fixed point theorem for such mappings on complete metric spaces. They
discussed in details about quasi-contraction, almost contraction and the class of mappings that
satisfy condition (B).

Branciari [8] established a fixed point result for an integral-type inequality, which is a gen-
eralization of Banach contraction principle. Vijayaraju et al. [12] obtained a general principle,
which made it possible to prove many fixed point theorems for pairs of integral type maps. In
1996, Kada et al.[10] introduced and studies the concept of w-distance on a metric space and
also give some examples of w-distances and improved Caristi’s fixed point theorem, Ekeland’s
ε-variational’s principle, and the convex minimization theorem according to Takahashi.

The following definition is the concept of w-distance on metric space.

Definition 1.1. [10] Let X be a metric space endowed with a metric d. A function p : X ×X →
[0,∞) is called a w-distance on X if it satisfies the following properties:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(w2) p is lower semi-continuous in its second variable;

(w3) for each ε > 0, there exists a δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Example 1.2. [10] Let (X, d) be a metric space. A function p : X × X → [0,∞) defined by
p(x, y) = c for every x, y ∈ X is a w-distance on X , where c is a positive real number. But p is
not a metric since p(x, x) = c(> 0) for any x ∈ X.

Lemma 1.3. [10] Let (X, d) be a metric space and p be a w-distance on metric space X ,

(i) if {xn} is a sequence in X such that limn p(xn, x) = limn p(xn, y) = 0 then x = y,
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(ii) if p(xn, yn) ≤ αn, p(xn, y) ≤ βn for any n ∈ N , where {αn} and {βn} are sequences in
[0,∞) converging to 0, then {yn} converges to y,

(iii) let p be a w-distance on a metric space (X, d) and {xn} be a sequence in X such that, for
each, for each ε > 0, there exists an Nε ∈ N such that m > n > Nε implies p(xn, xm) < ε
(or limm,n p(xn, xm) = 0), then {xn} is a Cauchy sequence.

If p(a, b) = p(b, a) = 0 and p(a, a) ≤ p(a, b) + p(b, a) = 0 and by (i) of Lemma 1.3, a = b.

Definition 1.4. Let (X, d) be a metric space. A map T : X → X

(a) is called a weak contraction(or (δ, L)-weak contraction) [3] if there exist a constant δ ∈
(0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + L d(y, Tx), for all x, y ∈ X (1.1)

(b) is called a almost contraction [4] if there exist a constant δ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + L d(x, Tx), for all x, y ∈ X (1.2)

(c) is called quasi-contraction[9] if there exists h ∈ (0, 1) and for any x, y ∈ X such that

d(Tx, Ty) ≤ h max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1.3)

(d) is said to satisfy condition (B)[1] if there exists 0 < δ < 1, L ≥ 0 and for any x, y ∈ X
such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1.4)

Remark 1.5. [1] The following observations are very interesting

(i) inequality (1.1) and (1.2) are independent,

(ii) inequality (1.1) and (1.3) are independent,

(iii) inequality (1.4) implies that (1.1) and (1.2), but its converse not true,

(iv) inequality (1.4) need not be continuous.

The aim of this paper is to establish a fixed point theorem defined on complete metric space
with w-distance and using contractive condition (B).

2 A fixed point theorem

Theorem 2.1. Let p be a w-distance on a complete metric space (X, d) such that p(x, x) =
0 ∀x ∈ X . Let T be a selfmap on X satisfying the condition if there exists a δ ∈ (0, 1) and some
L ≥ 0 such that

p(Tx, Ty) ≤ δp(x, y) + Lmin{p(x, Tx), p(x, Ty), p(y, Ty), p(y, Tx)} (2.1)

∀x, y ∈ X . Then T has a unique fixed point in X .

Proof. Let x0 be any arbitrary point in X and define the sequence {xn} by xn+1 = Txn for
each n ≥ 0. It is easy to observe that, if xn+1 = xn for some n, then xn is a fixed point of T .
Therefore, we assume that xn+1 6= xn for each n. Now taking x = xn and y = xn−1 in (2.1), we
obtain that

p(xn+1, xn) = p(Txn, Txn−1)

≤ δ p(xn, xn−1) + L min{p(xn, Txn), p(xn, Txn−1), p(xn−1, Txn−1), p(xn−1, Txn)}
= δ p(xn, xn−1) + L min{p(xn, xn+1), p(xn, xn), p(xn−1, xn), p(xn−1, xn+1)}
≤ δ p(xn, xn−1) ≤ · · · ≤ δnp(x1, x0),
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letting n→∞, we get
p(xn+1, xn)→ 0 as n→∞. (2.2)

Similarly, it can be shown that p(xn, xn+1)→ 0 as n→∞.

Now, we have to show that lim
n,m→∞

p(xn, xm) = 0.

Suppose not. there is a ε > 0 and two subsequences {mk}, {nk} of {xn} such that

p(xnk , xmk) ≥ ε, where mk > nk. (2.3)

By (2.2) there exists k0 ∈ N such that nk > k0 implies that

p(xnk , xnk+1) < ε.

If nk > k0 by (2.3), mk 6= nk+1. We can assume that mk is a minimal index such that

p(xnk , xmk) ≥ ε but p(xnk , xh) < ε, h ∈ {nk+1, · · · ,mk−1}.

We have

ε ≤ p(xnk , xmk) ≤ p(xnk , xmk−1) + p(xmk−1, xmk)

< ε+ p(xmk−1, xmk),

letting k →∞ this implies that
lim
k→∞

p(xnk , xmk) = ε. (2.4)

Now, we have to show that lim
k→∞

p(xnk+1, xmk+1) = ε.

p(xnk+1, xmk+1) ≤ p(xmk+1, xnk) + p(xnk , xmk) + p(xmk , xmk+1).

Letting k →∞ and using (2.2) and (2.4), then we obtain that

lim
k→∞

p(xnk+1, xmk+1) ≤ ε. (2.5)

Now, p(xnk , xmk) ≤ p(xnk , xnk+1) + p(xnk+1, xmk+1) + p(xmk+1, xmk)

by using (2.2) and letting k →∞, the get

ε ≤ lim
k→∞

p(xnk+1, xmk+1). (2.6)

From (2.5) and (2.6), we have

lim
k→∞

p(xnk+1, xmk+1) = ε. (2.8)

Now, from (2.1), (2.2) and (2.4), we have

p(xnk+1, xmk+1) = p(Txnk , Txmk)

≤ δ p(xnk , xmk) + Lmin{p(xnk , xnk+1), p(xnk , xmk+1),

p(xmk , xmk+1), p(xmk , xnk+1)}.

On taking limit as k →∞, we obtain that ε ≤ δε < ε, a contradiction. Thus

lim
n,m→∞

p(xn, xm) = 0. (2.8)

By (iii) of Lemma 1.3, {xn} is a cauchy sequence and since X is complete, there exist a point
t ∈ X such that xn → t as n→∞.

Finally, we have to show that t is fixed point of T . By (2.8), for each ε > 0 there exists an
Nε ∈ N such that n > Nε implies p(xN , xn) < ε. But xn → t and p(x, .) is a lower continuous.
Thus
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p(xNε , t) ≤ lim inf
n→∞

p(xNε , xn) ≤ ε.

Therefore p(xNε , t) ≤ ε. Set ε = 1
k , Nε = nk and we have

lim
k→∞

p(xnk , t) = 0. (2.9)

By the Definition 1.1, we can write

p(xnk , T t) ≤ p(xnk , xnk+1) + p(xnk+1, T t).

Again by using the condition (2.1), we get

p(xnk , T t) ≤ p(xnk , xnk+1) + p(Txnk , T t)

≤ p(xnk , xnk+1) + δp(xnk , t) + Lmin{p(xnk , Txnk), p(xnk , T t),
p(t, T t), p(t, Txnk)}

= p(xnk , xnk+1) + δp(xnk , t) + Lmin{p(xnk , xnk+1), p(xnk , T t),

p(t, T t), p(t, xnk+1)}.

Letting k →∞ and by using (2.2) and (2.9), we obtain

lim
k→∞

p(xnk , T t) = 0. (2.10)

Hence by Lemma 1.3 and (2.9), (2.10) we conclude that t = Tt.

Uniqueness: Let t be fixed point of T . Assume that r be another fixed point of T . Now, we have
to show that t = r. Suppose not, p(t, r) 6= 0.
Consider x = t and y = r in (2.1), then we get
0 < p(t, r) = p(Tt, Tr) ≤ δ p(t, r) + L min{p(t, T t), p(t, T r), p(r, T r), p(r, T t)}

= δ p(t, r) < p(t, r),

a contradiction. Thus p(t, r) = 0. Similarly, we get p(r, t) = 0.
Then by (i) of Lemma 1.3, we get t = r.

Here we give a simple example illustrating Theorem 2.1.
Example 2.2. Let X = [0, 1] which is a complete metric space with usual metric d of reals.
Moreover, by defining p(x, y) = y, if x 6= y and p(x, y) = 0, if x = y, p is a w−distance on
(X, d) and T be a self map on X defined by Tx = x

2 ,∀x ∈ X . It is easy to verify that the
condition (2.1) holds with δ = 2

3 and L = 1. We note that 0 is a fixed point of T . And also
observe that p 6= d.

The following example shows that the condition p(x, x) = 0 is necessary in Theorem 2.1.
Example 2.3. Let X = [0, 1] which is a complete metric space with usual metric d of reals and
define p(x, y) = 1

2 ,∀x, y ∈ X , p is w− distance on (X, d). Let T be a self map on X defined by
Tx = 1, if x = 0 and Tx = x

2 , if x 6= 0. Then the condition (2.1) of Theorem 2.1 is satisfies
with for any δ ∈ (0, 1) and L = 1, but p(x, x) 6= 0 for any x ∈ X . Clearly, T possesses a no
fixed point in X .
Open problem: What further conditions are necessary, if p(x, x) = 0 for all x ∈ X is removed
in Theorem 2.1.

3 Some Applications

Denote by Ω the set of functions γ : R+ → R+ satisfying the following conditions:

a) γ is a Lebesgue integrable mapping on each compact subset of R+,

b) for every ε > 0, we have
∫ ε

0 γ(s) ds > 0.
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Theorem 3.1. Let (X, d) be a complete metric space and let T : X → X be a self-mapping
satisfying the condition if there exists a δ ∈ (0, 1) and some L ≥ 0 such that∫ d(Tx,Ty)

0
γ(s) ds ≤ δ

∫ d(x,y)

0
γ(s) ds+ L

∫ m(x,y)

0
ξ(s) ds

for all x, y ∈ X, where γ, ξ ∈ Ω. Then T has a unique fixed point.(where m(x, y)= second part
of RHS term in (2.1))

Proof. The function t ∈ [0,∞) 7→
∫ t

0 α(s) ds and the function t ∈ [0,∞) 7→
∫ t

0 β(s) ds belongs
to Ω. Now, in Theorem 2.1, set p = d.

Taking ξ(s) = 0 in Theorem 3.1. We obtain the following result.

Corollary 3.2. [8] Let (X, d) be a complete metric space and let T : X → X be a self-mapping
satisfying the condition if there exists a δ ∈ (0, 1) such that∫ d(Tx,Ty)

0
γ(s) ds ≤ δ

∫ d(x,y)

0
γ(s) ds

for all x, y ∈ X, where γ ∈ Ω and δ ∈ [0, 1). Then T has a unique fixed point.

Taking γ(s) = 1 in corollary 3.2, then we get the following.

Corollary 3.3. [2] Let (X, d) be a complete metric space and let T : X → X be a self-mapping
satisfying

d(Tx, Ty) ≤ δd(x, y)
for all x, y ∈ X, and there exists δ ∈ (0, 1). Then T has a unique fixed point.
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