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Abstract In this paper, firstly we introduced the Hadamard fractional integral operator whose
kernel is of log(xt ) instead of the form of (x−t), which is involves both in the Riemann-Liouville
and Caputo integral. In view of these, we obtain some new weighted fractional integral inequal-
ities for positive and continuous function by employing Hadamard fractional integral operator.

1 Introduction

Fractional calculus has significant importance due to its application in various fields of science
and engineering such as life sciences, chemical science and physical sciences. Fractional integral
inequalities plays a very important role in different fields of mathematics, especially for contin-
uous dependence solution and uniqueness of solution in fractional differential equation. In the
recent decades, many mathematicians have studied on the different type of fractional integral in-
equalities and its applications by using the Riemann-Liouville, Erdelyi-Kober, Saigo, Hadamard,
Atangana-Baleanu, generalized fractional integral, k-fractional integral operator and generalized
k-fractional integral operator, see [1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 23, 24, 26, 28]. In [4, 5],
Chinchane V. L. and Pachpatte D. B. established fractional integral inequalities for Chebychev
and Extended Chebychev functional using the generalized Hadamard integral operator. In [18],
Mohammed P.O and et al. fractional Hermite–Hadamard–Fejer inequalities for a convex function
by using weighted fractional operators. Mohammed P.O and et al proposed few integral inequal-
ities of Hermite–Hadamard’s type for a σ-convex function with respect to an increasing function
involving the φ-Riemann–Liouville fractional integral operator and have performed a connection
between the Atangana–Baleanu and Riemann–Liouville fractional integrals of a function with re-
spect to an increasing function with nonsingular kernel, see [19, 20, 21]. Recently, Mohammed
P.O and et al. have works on midpoint and trapezoid type for twice differentiable convex func-
tions in a form classical integral and Riemann-Liouville fractional integrals, see [22]. In [28],
authors have proposed some new integral inequalities of Gruss type by using one or two param-
eters by employing Hadamard Fractional integral operators. W. Sudsuta et al. [27], Several new
integral inequalities are obtained including the Gruss type Hadamard fractional integral inequal-
ity by considering Young and weighted AM-GM inequalities. In [15], Houas M. obtained certain
weighted integral inequalities by considering the fractional hypergeometric operators. Motivated
from above work aimed to establish some new weighted fractional integral inequalities by using
Hadamard fractional integral operators. The paper has been organized as follows. In Section 2,
we define basic definitions and proposition related to Hadamard fractional derivatives and inte-
grals. In Section 3, we give weighted fractional integral inequalities by employing Hadamard
fractional integral operator. In section 4, concluding remarks are given.
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2 Preliminaries

The necessary details of fractional Hadamard calculus are given in the book A. A. Kilbas et
al. [16], and in book of S. G. Samko et al. [25], here we present some definitions of Hadamard
derivative and integral as given in [3].

Definition 2.1. The Hadamard fractional integral of order α ∈ R+ of function f(x), for all x > 1
is defined as

HD−α1,x f(x) =
1

Γ(α)

∫ x

1
(log

x

t
)α−1f(t)

dt

t
, (2.1)

where Γ(α) =
∫∞

0 e−uuα−1du.

Definition 2.2. The Hadmard fractional derivative of order α ∈ [n − 1, n), n ∈ Z+, of function
f(x) is given as follows

HDα1,xf(x) =
1

Γ(n− α)
(x

d

dx
)n

∫ x

1
(log

x

t
)n−α−1f(t)

dt

t
. (2.2)

From the above definitions, we can see obviously the difference between Hadamard fractional
and Riemann-Liouville fractional derivative and integrals, which include two aspects. The ker-
nel in the Hadamard integral has the form of log(xt ) instead of the form of (x − t), which is
involves both in the Riemann-Liouville and Caputo integral. The Hadamard derivative has the
operator(x d

dx)
n, whose construction is well suited to the case of the half-axis and is invariant

relation to dilation [25], while the Riemann-Liouville derivative has the operator ( ddx)
n.

We give some image formulas under the operator (2.1) and (2.2), which would be used in the
derivation of our main result.

Proposition 2.1. [3] If 0 < α < 1, the following relation hold:

HD−α1,x (logx)β−1 =
Γ(β)

Γ(β + α)
(logx)β+α−1, (2.3)

HDα1,x(logx)β−1 =
Γ(β)

Γ(β − α)
(logx)β−α−1, (2.4)

respectively.
For the convenience of establishing the result, we give the semigroup property,

(HD−α1,x )(HD
−β
1,x )f(x) =H D−(α+β)1,x f(x). (2.5)

3 Weighted Fractional Integral Inequalities

Here, we obtain new some weighted fractional integral inequalities using Hadamard fractional
integral operator.

Theorem 3.1. Let z be positive and continuous functions on [1,∞), such that

(σ%z%(τ)− τ%z%(σ))(z$−λ(τ)− z$−λ(σ)) ≥ 0, (3.1)

and w : [1,∞)→ R+ be positive continuous function. Then for all x > 1, α, % > 0,$ ≥ λ > 0,
we have

HD−α1,x [w(x)z
%+λ(x)]HD−α1,x [w(x)x

%z$(x)]

≤ HD−α1,x [w(x)z
%+$(x)]HD−α1,x [w(x)x

%zλ(x)].
(3.2)
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Proof:- Since z be positive and continuous functions on [1,∞), then for all % > 0, $ ≥
0, λ > 0, τ, σ ∈ (1, x), x > 1. From (3.2), we have

σ%z$−λ(σ)z%(τ) + τ%z$−λ(τ)z%(σ)

≤ σ%z$+%−λ(τ) + τ%z$+%−λ(σ).
(3.3)

Again, multiplying both sides of (3.3) by (log xτ )
α−1

τΓ(α) w(τ)zλ(τ), τ ∈ (1, x), x > 1, then integrating
resulting identity with respect to τ from 1 to x, we obtain

1
Γ(α)

∫ x

1
(log

x

τ
)α−1σ%z$−λ(σ)w(τ)z%+λ(τ)

dτ

τ

+
1

Γ(α)

∫ x

1
(log

x

τ
)α−1τ%z$(τ)z%(σ)w(τ)

dτ

τ

≤ 1
Γ(α)

∫ x

1
(log

x

τ
)α−1σ%z$+%(τ)w(τ)

dτ

τ

+
1

Γ(α)

∫ x

1
(log

x

τ
)α−1τ%z$+%−λ(σ)w(τ)zλ(τ)

dτ

τ
,

(3.4)

consequently,

σ%z$−λ(σ) HD−α1,x [w(x)z
%+λ(x)] + z%(σ) HD−α1,x [w(x)x

%z$(x)]

≤ σ% HD−α1,x [w(x)z
%+$(x)] + z%+$−λ(σ) HD−α1,x [w(x)x

%zλ(x)].
(3.5)

Multiplying both side of equation (3.5) by (log x
σ )
α−1

σΓ(α) w(σ)zλ(σ), σ ∈ (1, x), x > 1 which is
positive, and integrating the obtain result with respective to σ from 1 to x, we have

HD−α1,x [w(x)z
%+λ(x)] HD−α1,x [w(x)x

%z$(x)]

+ HD−α1,x [w(x)x
%z$(x)]HD−α1,x [w(x)z

%+λ(x)]

≤ HD−α1,x [w(x)z
%+$(x)] HD−α1,x [w(x)x

%zλ(x)]

+ HD−α1,x [w(x)x
%zλ(x)] HD−α1,x [w(x)z

%+$(x)],

(3.6)

which completes the proof. Now, we give our main result.

Theorem 3.2. Let z be a positive and continuous function on [1,∞) and satisfies (3.1). Let
w : [1,∞) → R+ be positive continuous function. Then for all x > 1, α, % > 0, $ ≥ λ > 0, we
have

HD−β1,x [w(x)x
%z$(x)] HD−α1,x [w(x)z

%+λ(x)]

+ HD−α1,x [w(x)x
%z$(x)]HD−β1,x [w(x)z

%+λ(x)]

≤ HD−β1,x [w(x)x
%zλ(x)]HD−α1,x [w(x)z

%+$(x)]

+ HD−α1,x [w(x)x
%zλ(x)]HD−β1,x [w(x)z

%+$(x)].

(3.7)

Proof:- Multiplying both sides of (3.3) by (log x
σ )
β−1

σΓ(β) w(σ)zλ(σ), (σ ∈ (1, x), x > 1), this
function remains positive under the conditions stated with the theorem. Integrating the obtain
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result with respective to σ from 1 to x, we get

z%(τ)

Γ(β)

∫ x

1
(log

x

τ
)β−1w(σ)σ%z$(σ)

dσ

σ

+
τ%z$−λ(τ)

Γ(β)

∫ x

1
(log

x

τ
)β−1w(σ)z%+λ(σ)

dσ

σ

≤ z$+%−λ(τ)

Γ(β)

∫ x

1
(log

x

τ
)β−1w(σ)σ%zλ(σ)

dσ

σ

+
τ%

Γ(β)

∫ x

1
(log

x

τ
)β−1w(σ)z$+%(σ)

dσ

σ
,

(3.8)

consequently

z%(τ) HD−β1,x [w(x)x
%z$(x)] + τ%z$−λ(τ) HD−β1,x [w(x)z

%+λ(x)]

≤ z%+$−λ(τ) HD−β1,x [w(x)x
%zλ(x)] + τ% HD−β1,x [w(x)z

%+$(x)].
(3.9)

Multiplying both side of equation (3.9) by (log xτ )
α−1

τΓ(α) w(τ)zλ(τ), τ ∈ (1, x), x > 1 which is posi-
tive, and integrating the obtain result with respective to τ from 1 to x, we get

HD−β1,x [w(x)x
%z$(x)]

1
Γ(α)

∫ x

1
(log

x

τ
)α−1w(τ)z%+λ

dτ

τ

+H D−β1,x [w(x)z
%+λ(x)]

1
Γ(α)

∫ x

1
(log

x

τ
)α−1w(τ)τ%z$(τ)

dτ

τ

≤H D−β1,x [w(x)x
%zλ(x)]

1
Γ(α)

∫ x

1
(log

x

τ
)α−1w(τ)z$+%(τ)

dτ

τ

+H D−β1,x [w(x)z
%+$(x)]

1
Γ(α)

∫ x

1
(log

x

τ
)α−1w(τ)τ%zλ(τ)

dτ

τ
,

(3.10)

This complete the proof of Theorem 3.2.

Theorem 3.3. Let z and y be two positive and continuous functions on [1,∞), such that

(y%(σ)z%(τ)− y%(τ)z%(σ))(z$−λ(τ)− z$−λ(σ)) ≥ 0, (3.11)

and let w : [1,∞) → R+ be positive continuous function.Then for all x > 1, % > 0, $ ≥ λ > 0
we have

HD−α1,x [w(x)z
%+λ(x)] HD−α1,x [w(x)y

%(x)z$(x)]

≤ HD−α1,x [w(x)z
%+$(x)]HD−α1,x [w(x)y

%(x)zλ(x)].
(3.12)

Proof:- Let (τ, σ) ∈ (1, x), x > 1, for any $ > λ > 0, % > 0. From (3.11), we have

(y%(σ)z$−λ(σ)z%(τ)) + y%(τ)z%(σ)z$−λ(τ) ≤ (y%(σ)z$+%−λ(τ) + y%(τ)z$+%−λ(σ). (3.13)

Multiplying both sides of (3.13) by (log xτ )
α−1

τΓ(α) w(τ)zλ(τ), τ ∈ (1, x), x > 1, then integrating
resulting identity with respect to τ from 1 to x, we obtain

y%(σ)z$−λ(σ)

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z%+λ(τ)]

dτ

τ

+
z%(σ)

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)y%(τ)z$(τ)]

dτ

τ

≤ h%(σ)
Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z$+%(τ)]

dτ

τ

+
z%+$−λ(σ)

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)y%(τ)zλ(τ)]

dτ

τ
.

(3.14)
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Thus, we obtain

y%(σ)z$−λ(σ)HD−α1,x [w(x)z
%+λ(x)] + z%(σ)HD−α1,x [w(x)y

%(x)z$(x)]

≤ y%(σ)HD−α1,x [w(x)z
$+%(x)] + z%+$−λ(σ)HD−α1,x [w(x)y

%(x)zλ(x)].
(3.15)

Multiplying both sides of (3.15) by (log x
σ )
α−1

σΓ(α) w(σ)zλ(σ), then integrating the resulting inequality
with respect to σ over (1, x), we obtain

HD−α1,x [w(x)z
%+λ(x)]

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)y%(σ)z$(σ)

dσ

σ

+H D−α1,x [w(x)y
%(x)z$(x)]

1
Γ(α)

∫ x

1
(log

x

σ
)α−1z%+λ(σ)w(σ)

dσ

σ

≤H D−α1,x [w(x)z
$+%(x)]

1
Γ(α)

∫ x

1
(log

x

σ
)α−1zλ(σ)w(σ)y%(σ)

dσ

σ

+H D−α1,x [w(x)y
%(x)zλ(x)]

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)z$+%(σ)

dσ

σ
,

(3.16)

which implies that

HD−α1,x [w(x)z
%+λ(x)]HD−α1,x [w(x)y

%(x)z$(x)

+H D−α1,x [w(x)y
%(x)z$(x)]HD−α1,x [z

%+λ(x)w(x)]

≤ HD−α1,x [w(x)z
$+%(x)]HD−α1,x [z

λ(x)w(x)y%(x)]

+H D−α1,x [w(x)y
%(x)zλ(x)]HD−α1,x [w(x)z

$+%(x)],

(3.17)

which completes the proof.

Theorem 3.4. Let z and y be two positive and continuous functions on [1,∞) and satisfying
(3.11). Let w : [1,∞)→ R+ be positive continuous function. Then for all x > 1, % > 0, we have

HD−β1,x [w(x)y
%(x)z$(x)]HD−α1,x [w(x)z

%+λ(x)]

+HD−α1,x [w(x)z
%+$(x)]HD−β1,x [w(x)y

%(x)z$(x)]

≤ HD−β1,x [w(x)y
%zλ(x)]HD−α1,x [w(x)z

$+%(x)]

+HD−β1,x [w(x)z
%+$−λ(x)]HD−α1,x [w(x)y

%(x)zλ(x)].

(3.18)

Proof:- Multiplying the inequality (3.15) by (log x
σ )
β−1

σΓ(β) w(σ)zλ(σ), σ ∈ (1, x), x > 1 , this
function remains positive under the conditions stated with the theorem. Integrating the obtain
result with respective to σ from 1 to x, we get

HD−α1,x [w(x)z
%+λ(x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)y%(σ)z$(σ)

dσ

σ

+H D−α1,x [w(x)y
%(x)z$(x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1z%+λ(σ)w(σ)

dσ

σ

≤ HD−α1,x [w(x)z
$+%(x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1zλ(σ)w(σ)y%(σ)

dσ

σ

+H D−α1,x [w(x)y
%(x)zλ(x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)z$+%(σ)

dσ

σ
,

(3.19)
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which implies that,

HD−β1,x [w(x)y
%(x)z$(x)]HD−α1,x [w(x)z

%+λ(x)]

+HD−β1,x [w(x)z
%+λ(x)]HD−α1,x [w(x)y

%(x)z$(x)]

≤ HD−β1,x [w(x)y
%zλ(x)]HD−α1,x [w(x)z

$+%(x)]

+HD−β1,x [w(x)z
%+$(x)]HD−α1,x [w(x)y

%(x)zλ(x)],

(3.20)

This completes the proof of Theorem 3.4.
Next, we shall present a new generalization of weighted fractional integral inequalities using a
family of n positive functions defined on [1,∞).

Theorem 3.5. Let zi, i = 1, ..., n be n positive and continuous functions on [1,∞) such that

(σ%z%r (τ)− τ%z%r (σ))(z$−λrr (τ)− z$−λr(σ)) ≥ 0. (3.21)

Let w : [1,∞) → R+ be positive continuous function. Then for all x > 1, % > 0, $ ≥ λr >
0, r ∈ {1, ..., n}, the following fractional inequality

HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)] HD−α1,x [w(x)x

%z$r (x)Π
n
i 6=rz

λi
i (x)]

≤ HD−α1,x [w(x)x
%
Π
n
i=1z

λi
i (x)]HD−α1,x [w(x)z

$+%
r (x)Πn

i6=rz
λi
i (x)],

(3.22)

valid.

Proof:- Suppose zi, i = 1, ..., n be n positive and continuous functions on [1,∞), then for
any fixed r ∈ {1, ..., n} and for any % > 0, $ ≥ λr > 0, τ, σ ∈ (1, x), x > 1. From (3.21), we
have

σ%z$−λrr (σ)z%r (τ) + τ%z%r (σ)z
$−λr
r (τ)

≤ σ%z$+%−λr
r (τ) + τ%z$+%−λr

r (σ),
(3.23)

multiplying both sides of (3.23) by (log xτ )
α−1

τΓ(α) w(τ)Πn
i=1z

λi
i (τ), then integrating the resulting in-

equality with respect to τ over (1, x), we obtain

σ%z$−λrr (σ)
1

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z%r (τ)Π

n
i=1z

λi
i (τ)]

dτ

τ

+ z%(σ)
1

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)τ%Π

n
i6=rz

λi
i (τ)]

dτ

τ

≤ σ% 1
Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z$+%

r (τ)Πn
i 6=rz

λi
i (τ)]

dτ

τ

+ z$+%−λr
r (σ)

1
Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)τ%Π

n
i=1z

λi
i (τ)]

dτ

τ
,

(3.24)

consequently

σ%z$−λrr (σ)HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]

+ z%(σ)HD−α1,x [w(x)x
%
Π
n
i6=rz

λi
i (x)]

≤ σ% HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]

+ z$+%−λr
r (σ)HD−α1,x [w(x)x

%
Π
n
i=1z

λi
i (x)].

(3.25)

Again, multiplying the inequality (3.25) by (log x
σ )
α−1

σΓ(α) w(σ)Πn
i=1z

λi
i (σ), σ ∈ (1, x), x > 1 , this

function remains positive under the conditions stated with the theorem. Integrating the obtain
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result with respective to σ from 1 to x, we get

HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]×

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)σ%z$r (σ)Π

n
i 6=rz

λi
i (σ)

dσ

σ

+ HD−α1,x [w(x)x
%
Π
n
i 6=rz

λi
i (x)]×

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)z%r (σ)Π

n
i=1z

λi
i (σ)

dσ

σ

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]×

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)σ%Π

n
i=1z

λi
i (σ)

dσ

σ

+ HD−α1,x [w(x)x
%
Π
n
i=1z

λi
i (x)]×

1
Γ(α)

∫ x

1
(log

x

σ
)α−1w(σ)z$+%

r (σ)Πn
i 6=rz

λi
i (σ)

dσ

σ
,

(3.26)

therefore,

HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]HD−α1,x [x

%z$r (x)Π
n
i 6=rz

λi
i (x)]

+ HD−α1,x [w(x)x
%
Π
n
i 6=rz

λi
i (x)]HD−α1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−α1,x [w(x)x

%
Π
n
i=1z

λi
i (x)]

+ HD−α1,x [w(x)x
%
Π
n
i=1z

λi
i (x)]HD−α1,x [w(x)z

$+%
r (x)Πn

i 6=rz
λi
i (x)].

(3.27)

This completes the proof of Theorem 3.5.

Theorem 3.6. Let zi, i = 1, ..., n be n positive and continuous functions on [1,∞)and satisfying
(3.21). Let w : [1,∞) → R+ be positive continuous function. Then for all x > 1, % > 0,
$ ≥ λr > 0, r ∈ {1, ..., n}, then we have inequality

HD−β1,x [w(x)x
%z$r (x)Π

n
i 6=rz

λi
i (x)]HD−α1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]

+ HD−α1,x [w(x)x
%z$r (x)Π

n
i 6=rz

λi
i (x)]HD−β1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−β1,x [w(x)x

%
Π
n
i=1z

λi
i (x)]

+ HD−β1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−α1,x [w(x)x

%
Π
n
i=1z

λi
i (x)],

(3.28)

is valid.

Proof:- We multiplying the inequality (3.25) by (log x
σ )
β−1

σΓ(β) w(σ)Πn
i=1z

λi
i (σ), σ ∈ (1, x), x > 1,

this function remains positive under the conditions stated with the theorem. Integrating the obtain
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result with respective to σ from 1 to x, we get

HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)σ%z$r (σ)Π

n
i 6=rz

λi
i (σ)

dσ

σ

+ HD−α1,x [w(x)x
%
Π
n
i6=rz

λi
i (x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)z%r (σ)Π

n
i=1z

λi
i (σ)

dσ

σ

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)σ%Π

n
i=1z

λi
i (σ)

dσ

σ

+ HD−α1,x [w(x)x
%
Π
n
i=1z

λi
i (x)]

1
Γ(β)

∫ x

1
(log

x

σ
)β−1w(σ)z$+%

r (σ)Πn
i 6=rz

λi
i (σ)

dσ

σ
,

(3.29)

which gives the inequality (3.28).

Theorem 3.7. Let zi, i = 1, ..., n and y be two positive and continuous functions on [1,∞). such
that

(y%(σ)z%r (τ)− y%(τ)z%r (σ))(z$−λrr (τ)− z$−λrr (σ)) ≥ 0. (3.30)

and let w : [1,∞) → R+ be positive continuous function. Then for all x > 1, % > 0, $ ≥ λr >
0, r ∈ {1, ..., n}, the following fractional inequality

HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)] HD−α1,x [w(x)h

%(x)z$r (x)Π
n
i 6=rz

λi
i (x)]

≤ HD−α1,x [w(x)h
%(x)Πn

i=1z
λi
i (x)]HD−α1,x [w(x)z

$+%
r (x)Πn

i 6=rz
λi
i (x)].

(3.31)

Proof:- Let τ, σ ∈ (1, x), x > 1, for any % > 0, $ ≥ λi > 0, r ∈ {1, 2, ...n}. From (3.30),
we have

y%(σ)z$−λrr (σ)z%r (τ) + z%r (σ)y
%
r (τ)z

$−λr
r (τ)

≤ y%(σ)z$+%−λr
r (τ) + z$+%−λr

r (σ)y%(τ),
(3.32)

multiplying both sides of (3.32) by (log xτ )
α−1

τΓ(α) w(τ)Πn
i=1z

λi
i (τ), then integrating the resulting in-

equality with respect to τ over (1, x), we obtain

y%(σ)z$−λrr (σ)
1

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z%r (τ)Π

n
i=1z

λi
i (τ)]

dτ

τ

+ z%r (σ)
1

Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)y%(τ)z$r (τ)Π

n
i 6=rz

λi
i (τ)]

dτ

τ

≤ y%(σ) 1
Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)y%(τ)Πn

i=1z
λi
i (τ)]

dτ

τ

+ z$+%−λr
r (σ)

1
Γ(α)

∫ x

1
(log

x

τ
)α−1[w(τ)z$+%

r (τ)Πn
i6=rz

λi
i (τ)

dτ

τ
],

(3.33)

consequently

y%(σ)z$−λrr (σ)HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]+

z%r (σ)HD−α1,x [w(x)y
%(x)z$r (x)Π

n
i 6=rz

λi
i (x)]

≤ y%(σ)HD−α1,x [w(x)z
$+%
r (x)Πn

i6=rz
λi
i (x)]

z$+%−λr
r (σ)HD−α1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)].

(3.34)
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Multiplying both sides of (3.34) by (log x
σ )
β−1

σΓ(β) w(σ)Πn
i=1z

λi
i (σ), then integrating the resulting in-

equality with respect to σ over (1, x), we have

2HD−α1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)] HD−α1,x [w(x)y

%(x)z$r (x)Π
n
i6=rz

λi
i (x)]

≤ 2HD−α1,x [w(x)z
$+%
r (x)Πn

i6=rz
λi
i (x)]HD−α1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)].

(3.35)

This completes the proof of Theorem 3.7.

Theorem 3.8. Let zi, i = 1, ..., n and y be two positive and continuous functions on [1,∞). such
that

(y%(σ)z%r (τ)− y%(τ)z%r (σ))(z$−λrr (τ)− z$−λrr (σ)) ≥ 0, (3.36)

and let w : [1,∞) → R+ be positive continuous function. Then for all x > 1, % > 0, $ ≥ λr >
0, r ∈ {1, ..., n}, then we have inequality

HD−β1,x [w(x)y
%(x)z$r (x)Π

n
i 6=rz

λi
i (x)] HD−α1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]+

HD−α1,x [w(x)y
%(x)z$r (x)Π

n
i6=rz

λi
i (x)] HD−β1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−β1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)]

+HD−β1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−α1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)].

(3.37)

Proof:- Multiplying both sides of (3.32) by (log x
σ )
β−1

σΓ(β) w(σ)Πn
i=1z

λi
i (σ), then integrating the

resulting inequality with respect to σ over (1, x), we have

z%r (τ)HD
−β
1,x [w(x)y

%(x)z$r (x)Π
n
i 6=rz

λi
i (x)] +

y%(x)z$−λrr (τ)HD−β1,x [w(x)z
%
r (x)Π

n
i=1z

λi
i (x)]

≤ z$+%−λr
r (τ)HD−β1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)]+

y%(τ)HD−β1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)].

(3.38)

Multiplying both sides of (3.38) by (log xτ )
α−1

τΓ(τ) w(τ)Πn
i=1z

λi
i (τ), then integrating the resulting in-

equality with respect to τ over (1, x), we have

HD−β1,x [w(x)y
%(x)z$r (x)Π

n
i6=rz

λi
i (x)] HD−α1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]+

HD−α1,x [w(x)y
%(x)z$r (x)Π

n
i 6=rz

λi
i (x)] HD−β1,x [w(x)z

%
r (x)Π

n
i=1z

λi
i (x)]

≤ HD−α1,x [w(x)z
$+%
r (x)Πn

i 6=rz
λi
i (x)]HD−β1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)]+

HD−β1,x [w(x)z
$+%
r (x)Πn

i6=rz
λi
i (x)]HD−α1,x [w(x)y

%(x)Πn
i=1z

λi
i (x)],

(3.39)

which completes the proof.

4 Concluding Remarks

In this paper, we studied the Hadamard fractional integral operators and then we obtained some
weighted fractional integral inequalities using the Hadamard fractional integral operators. The
weighted fractional integral inequalities established in this paper give some contribution in the
fields of fractional calculus and Hadamard fractional integral operators. Moreover, they are ex-
pected to lead to some application for finding uniqueness of solutions in fractional differential
equations.
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