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Abstract In this paper we study the existence of traveling wave solutions for a Keller-Segel
model with bacterial population growth. We show the existence of exactly two heteroclinic
orbits. The result is verified by using appropriate numerical simulations.

1 Introduction

The mathematical study of chemotaxis began with the pioneering work of Keller and Segel [4]
in which {

ut = Duxx − χ (u (ϕ (v))x)x + h(u, v)

vt = εvxx + g(u, v)
(1.1)

was proposed for x ∈ (−∞, ∞), t > 0, ϕ(v) = log(v), g(u, v) = −uvm, h(u, v) ≡ 0. When
0 ≤ m < 1, it was shown that model (1.1) has a traveling wave solution which agrees fully
with the experiments of Adler [1, 2] on bacteria Escherichia Coli. Subsequently, many works
on various aspects of traveling wave solutions of system (1.1) with ε ≥ 0 and h(u, v) ≡ 0 have
been carried out [6, 7, 8, 9, 10, 11] and the reference therein. When m > 1, this model does not
have a traveling wave solution [11, 14]. For m = 1, the existence of traveling wave solution of
system (1.1) was obtained in [12] and in [13] for ε > 0.

It is known that the bacterial population growth was not considered in Keller Segel model
(1.1); that is, h(u, v) ≡ 0. Since v corresponds to nutrient source (like arginine, glucose,
or oxygen), it is natural to consider the bacterial population growth. Hence, it would be in-
teresting to investigate whether the bacterial population growth plays a significant role in the
existence of traveling wave solution. Ai and Wang [3] have considered the model (1.1) for
ϕ(v) = log(v), g(u, v) = −uvm, h(u, v) = ruvm, ε = 0, D = 1, 0 < r ≤ 1 and found that
when the bacterial population growth is considered, the profile of traveling bands, the minimum
wave speed and the range of the chemical consumption rate for the existence of traveling wave
solutions will alter. Li and Park [5] have considered the model (1.1) for ε = 0, D > 0, ϕ(v) =
log(v), g(u, v) = −u+ γv, h(u, v) = µu(1− u) and found that the existence and nonexistence
of traveling wave solutions, and proved the existence of heteroclinic orbit.

In this paper, we consider the following Keller-Segel model with bacterial population growth:{
ut = uxx − χ (u (log (v))x)x + ruv(1 − v)

vt = −uv
(1.2)

where u(x, t) and v(x, t) at x ∈ (−∞,∞), t > 0, represent the bacterial density and chemical
concentration respectively. χ is the chemotactic sensitivity coefficient describing the strength of
chemotaxis; r is the growth rate of the bacteria.

This paper is organized as follows: In Section 2, we show the existence of exactly two het-
eroclinic traveling wave solutions of system (1.2). In Section 3, we verify the result using
appropriate numerical simulations.
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2 Main result

In this section, we investigate the existence of two heteroclinic traveling wave solutions of system
(1.2).

Assume that (u, v)(x, t) = (U, V ) (z), z = x − st, is a traveling wave solution of system
(1.2), where s > 0 denotes the wave speed. Then, the traveling wave solution (U, V ) of system
(1.2) satisfies the following system of ordinary differential equations: U ′′ + sU ′ + rsV ′(1 − V )− χ

(
U V ′

V

)′
= 0

sV ′ − UV = 0
(2.1)

where ( . )′ := d/dz. As it can be seen from the second equation of (2.1), V is an increasing
wave front. Hence, without loss of generality, we can assume that V (+∞) = 1 and V ′(+∞) =
U(+∞) = U ′(+∞) = 0. With these conditions, (2.1) leads to the equation

U ′ + sU − χ

(
U
V ′

V

)
+ rsV − rs

V 2

2
− rs

2
= 0.

Thus, traveling wave solution of system (1.2) satisfies the system{
U ′ = s

(
r
2 − rV − U

)
+ χ

sU
2 + rsV 2

2
V ′ = UV

s

(2.2)

and the conditions

0 < U, 0 < V < 1, (U, V ) (+∞) = E0 := (0, 1). (2.3)

Let us now find equilibrium points of system (2.2). The equilibrium points satisfy the fol-
lowing two equations:

(i) s
( r

2
− rV − U

)
+

χ

s
U2 + rs

V 2

2
= 0,

(ii)
UV

s
= 0.

If U = 0, then we obtain the first equilibrium point of system (2.2) as E0 = (0, 1). Other-
wise, V = 0, and we have the equation 2χU2 − 2s2U + rs2 = 0. Hence, we obtain the following
three cases:

(a) When s >
√

2rχ, we have three equilibriums, that is one is E0 = (0, 1) and two of them

are E1 := (u∗
1 , 0) and E2 := (u∗

2 , 0) where u∗
1 =

s2 − s
√

∆
2χ

and u∗
2 =

s2 + s
√

∆
2χ

for

∆ := s2 − 2rχ are the roots of the equation 2χU2 − 2s2U + rs2 = 0.

(b) When
√

2rχ > s > 0, we have only one equilibrium E0 = (0, 1).

(c) When s =
√

2rχ, we have two equilibriums E0 = (0, 1) and E3 =

(
s2

2χ
, 0

)
.

Throughout of this paper, we consider only the case s >
√

2rχ.
Let us now find the stability of the equilibriums.

Lemma 2.1. Assume that s >
√

2rχ.

(i) E0 is a stable equilibrium of system (2.2).

(ii) E1 is a saddle point of system (2.2) with the unstable manifold Wu(E1) which is tangent to

the eigenvector of J(E1), V1 :=
[
1, (2χ−1)u∗

1 −s2

rs2

]T
corresponding to the eigenvalue β1 =

u∗
1/s.

(iii) E2 is an unstable node of system (2.2).
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Proof. Firstly, since the Jacobian matrix J(E0) =

[
−s 0
1/s 0

]
has eigenvalues γ1 = 0 and

γ2 = −s, part (i) follows.

Secondly, the Jacobian matrix J(E1, 2) =

[
−s+ 2χu∗

1, 2/s −rs

0 u∗
1, 2/s

]
has the eigenvalues

α1, 2 = −s + 2χu∗
1, 2/s and β1, 2 = u∗

1, 2/s. As −s2 + 2χu∗
1 < 0, the eigenvalue α1 = −s +

2χu∗
1/s < 0 and the other eigenvalue β1 = u∗

1/s > 0; hence E1 is a saddle point of system
(2.2). Moreover, V1 is an eigenvector of J(E1) corresponding to the eigenvalue β1. Thus, using
unstable manifold theorem we see that there is an unstable manifold Wu(E1) tangent to the
eigenvector V1. The proof of part (ii) is completed. Thirdly, it can be seen that α2 and β2 are all
positive; hence part (iii) follows.

Lemma 2.2. Assume that s > max{
√
u∗

1 ,
√

2rχ}. Let O := (0, 0) be the origin of the plane and
α = max

{
u∗

2 , s
2
}
.

(i) Let R1 be the region bounded by the line segments OE0, O E1, E0 E1. Then, R1 is a posi-
tively invariant set of system (2.2).

(ii) Let Pα := (α, 0), and R2 the region bounded by the line segments E0 E1, E0 Pα, E1 Pα.
Then, R2 is a negatively invariant set of system (2.2).

Proof. (i) Let (U, V ) be an arbitrary point on int
(
OE0

)
. Then

U ′ = rs
(V − 1)2

2
> 0.

Let (U, V ) be an arbitrary point on int
(
E0 E1

)
. Then, for V = 1 − U

u∗
1

we have

dV

dU
=

UV
rs2

2 (V − 1)2
+ χU2 − s2U

=
(u∗

1 − U)(
rs2 U

2(u∗
1 )

2 + χU − s2

)
u∗

1

= − 1
s2 > − 1

u∗
1
.

This implies that the vector field of system (2.2) on int
(
E0 E1

)
points into the interior of

R1. Therefore, R1 is a positively invariant set of system (2.2). This completes the proof of
part (i).

(ii) Let (U, V ) be an arbitrary point on int
(
E0 Pα

)
. Then, for V = 1 − U

α we have

Kα := (1, α) .
(
dU

dt
,
dV

dt

)
=

U

s

((
rs2

2α2 + χ− 1
)
U −

(
s2 − α

))
.

If α = u∗
2 ≥ s2, then we have

Ku∗
2
=

U

su∗
2

(
s2 − u∗

2
)
(U − u∗

2) ≥ 0.

If α = s2 > u∗
2 , then we have

Ks2 =
U2

s

( r

2s2 + χ− 1
)
> 0

whenever
r

2s2 + χ > 1. We note that s2 ≤ u∗
2 is satisfied if 2χ ≤ 1 or r

2s2 + χ ≤ 1.

Hence, the vector field of system (2.2) on int
(
E0 Pα

)
points out of the interior of R2.

Therefore, R2 is a negatively invariant set of system (2.2). This completes the proof of part
(ii).

Now we shall give the existence of exactly two heteroclinic solutions of system (2.2).
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Theorem 2.3. For every s > max
{√

u∗
1 ,

√
2rχ

}
, there exist exactly two heteroclinic orbits

(U, V ) of system (2.2) satisfying V ′ > 0 on (−∞, ∞) such that the first orbit lying in the region
R1 satisfies (U, V ) (−∞) = E1, (U, V ) (+∞) = E0, and the second orbit lying in the region
R2 satisfies (U, V ) (−∞) = E2, (U, V ) (+∞) = E0, where the regions R1 and R2 are defined
in Lemma 2.2.

Proof. We note that as V ′ > 0, system (2.2) does not have any periodic orbit for U, V > 0, and
the interior of invariant regions R1 and R2 does not contain any equilibrium point. Hence, using
Lemma 2.1, Lemma 2.2 and Poincare Bendixson Theorem, the proof is completed.

3 Numerical simulations

Let us consider several situations to verify the result.
For s = 2, χ = 0.5, r = 3, we have the numerical simulation showing two heteroclinic orbits

moving from E1 = (2, 0) and E2 = (6, 0) to E0 = (1, 0) in the regions R1 and R2 respectively
as in Figure 1. For s = 2, χ = 1.8, r = 0.9, we have the numerical simulation showing two
heteroclinic orbits moving from E1 = (0.6268, 0) and E2 = (1.5954, 0) to E0 = (1, 0) in the
regions R1 and R2 respectively as in Figure 2.
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Figure 1. The heteroclinic orbits of system (2.2) for s = 2, χ = 0.5, r = 3 moving from
E1 = (2, 0) and E2 = (6, 0) to E0 = (0, 1).
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Figure 2. The heteroclinic orbits of system (2.2) for s = 2, χ = 1.8, r = 0.9 moving from
E1 = (0.6268, 0) and E2 = (1.5954, 0) to E0 = (0, 1).
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