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Abstract This paper investigates the numerical solution of the 1-D Helmholtz equation via
the new wavelet-Galerkin method (NWGM). The numerical solution of the Helmholtz equation
is very expensive if attempted by traditional discretization methods (finite difference method,
Galerkin method). The proposed scheme is rather simple than the existing ones, the power
of this technique is illustrated by comparing numerical solutions with the exact solution. The
solutions presented here are comparably good and give higher accuracy than the Haar wavelet
collocation method (HWCM) with an exact solution by increasing the resolution level.

1 Introduction

Many of the science and engineering problems can be modeled mathematically as a boundary
value problem. Thus, it is very important to build a method to solve a boundary value problem.
For some simple boundary value problems, it may be possible to solve it analytically by sep-
aration of variables. However, in most applications, boundary value problems are much more
complex and there are no available analytical methods. For this reason, some of the numerical
methods such as finite differences, finite elements and multigrid are used for the solution. The
wavelet method, however, offers several advantages over traditional methods. Wavelet analysis
is a newly developed numerical concept which permits one to represent a function in terms of a
set of basis functions, called as wavelets, which are localized in space. We can expect numerical
methods based on wavelet bases to be able to attain good spatial and spectral resolutions. Re-
cently so many efforts have been put into developing the techniques based on the properties of
wavelet bases introduced in the 1980s by Stromberg and Meyer.
Nowadays, the ideas of thoughtful wavelets were provided by Daubechies, Mallat, and others
[1-3]. The number of applications where the wavelets have been used has been found in the lit-
erature. Various types of wavelet functions have existed since from many years. The Daubechies
family of wavelets will be reflected due to their useful properties. Since the contribution of or-
thogonal bases of compactly supported wavelet by Daubechies [2] and multiresolution analysis
based fast wavelet transform algorithm by Beylkin et al. [4], wavelet based approximation of dif-
ferential equations gained momentum in an attractive way. Wavelets have the ability to represent
the solutions in different levels of resolutions, which make them generally useful for emerging
hierarchical solutions in science and engineering problems.
In the approximations theory, wavelet based Galerkin method is the furthermost recurrently used
technique nowadays. Daubechies wavelets based Galerkin method to solve certain differential
equations requires a computational domain of modest nature. This tremendous work has been
done by many researchers, for example, see reference [5-9]. Yet there is difficulty in dealing
with connection coefficients for different scales. In order to demonstrate the wavelet technique
i.e a new wavelet-Galerkin method (NWGM), we consider the one dimensional Helmholtz’s
equation. By comparison with a Haar wavelet (simple wavelet but not continuous) collocation
method (HWCM) [10-15] solution to this problem, we show how a wavelet technique may be
efficiently developed.



NWGM for solution of Helmholtz equation 733

The present paper is organized as follows. Section 2 highlights the Daubechies wavelets. The
method of solution is presented in section 3. Section 4 deals with the implementation of the test
problem. Finally, concluding remarks of the proposed work are discussed in section 5.

2 Daubechies wavelets

Wavelets are a family of orthonormal functions which are characterized by the translation and
dilation of a single function. Daubechies wavelets are compactly supported functions introduced
by Daubechies [2]. This means that they have non zero values within a finite interval and have a
zero value everywhere else. That’s why it is useful for representing the solution of a differential
equation. They are orthonormal bases for functions in L2(R). The construction of wavelet
functions starts from building the scaling or dilation function, φ(x) and a set of coefficients
hk , k ∈ Z, which satisfies the two-scale relation or refinement equation,

φ(x) =
L−1∑
k=0

hkφ(2x− k) (2.1)

where L denotes the order of the Daubechies wavelet. The associated wavelet function is given
by

ψ(x) =
L−1∑
k=0

gkφ(2x− k) (2.2)

where gk = (−1)khL−1−k and
∫
φ(x)dx = 1.

The translation and dilations of the scaling function φ(2Jx−k) or the wavelet function ψ(2Jx−
k) form a complete and orthogonal basis.
The wavelet basis induces a multiresolution analysis (MRA) [3] onL2(R), i.e. the decomposition
of the Hilbert space L2(R) into a chain of closed subspaces

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · (2.3)

such that ⋃
VJ = L2(R) (2.4)

and ⋂
VJ = {0} (2.5)

By defining WJas an orthogonal complement of VJ in VJ+1,

VJ+1 = VJ ⊕WJ (2.6)

The space L2(R) is represented as a direct sum of Wj’s as

L2(R) = ⊕WJ (2.7)

On each fixed scale J(≥ 0), the wavelets
{
ψJ, k(x) = 2J/2ψ(2Jx− k), k ∈ Z

}
form an or-

thonormal basis ofWJ and the functions
{
φJ, k(x) = 2J/2φ(2Jx− k), k ∈ Z

}
form an orthonor-

mal basis of VJ . The set of spaces VJ is called a multiresolution analysis ofL2(R), these
spaces will be used to approximate the solutions of differential equations using the new wavelet-
Galerkin method.

3 Method of solution

The Russian engineer V. I. Galerkin had developed a projection method based on weak form in
which a set of test functions are selected such that residual of the differential equation becomes
orthogonal to test functions [16, 17].

If the base functions in the Galerkin method are wavelets, then it is called the wavelet-
Galerkin method (WGM). Here, we have proposed the new wavelet-Galerkin method, which
has advantages over the classical WGM in terms of time consumption that is; we applied the
method instead of finding the connection coefficients.



734 S. C. Shiralashetti1, M. H. Kantli2, A. B. Deshi3

Theorem 3.1. [18] Let VJ , J ∈ Z be a given MRA with scaling function φ and PJf is a projec-
tion of f ∈ L2(R) onto VJ so that

PJf =
∑
k

ck2J/2φ(2Jx− k)

Then for sufficiently large J , ck ∼= 2−J/2f(k2−J) with
∫
φ(x) dx = 1 .

Here, we develop an NWGM is followed by the basics of finite difference scheme.

Lemma 3.2. For an unknown function u(x) and large J ∈ Z+, then

u(n)(x) =
1
hn

n−1∑
i=−1

(−1)n+i+1nCi+1 u(x+ ih).

Proof. For small h = 1
2J , finite difference discretizations of the unknown functionu(x) is as

follows,

u′(x) =
u(x)− u(x− h)

h
,

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2 ,

and so on upto nth difference, we have

un(x) = u(x+(n−1)h)−nC1u(x+(n−2)h)+nC2u(x+(n−3)h)+ ··· + nCn−1u(x)−u(x−h)
hn

= 1
hn

∑n−1
i=−1(−1)n+i+1nCi+1 u(x+ ih).

Method of solution:
Consider nth order ODE

n∑
p=0

A p u
p(x) = F (x), a < x < b, (3.1)

where A p is the constant/variable coefficient and F (x) is a polynomial of any degree in x.
Let the solution u(x) of the problem be approximated by its J th level wavelet series on the
interval (a, b), i.e.

u(x) =
∑
k

ck2J/2φ(2Jx− k) (3.2)

Using the above lemma, we have

up(x) = 1
hp

p−1∑
i=−1

( p
i+1)(−1)p+i+1∑

k ck2J/2φ
(
2J(x+ i

2J )− k
)

= 1
hp

p−1∑
i=−1

( p
i+1)(−1)p+i+1∑

k ck2J/2φ(2Jx+ i− k)

= 1
hp

p−1∑
i=−1

( p
i+1)(−1)p+i+1∑

k ck+i φk

, (3.3)

Substituting Eqn. (3.3) in (3.1), we get

n∑
p=0

Ap
1
hp

p−1∑
i=−1

(
p

i+ 1

)
(−1)p+i+1

∑
k

ck+i φk = F (x) (3.4)

By taking an inner product with φm, we get

n∑
p=0

Ap
1
hp

p−1∑
i=−1

(
p

i+ 1

)
(−1)p+i+1ck+i = G(x), (3.5)

where G(x) =
∫
R
F (x)φmdx.

Solving the system (3.5), for the coefficients ck. By substituting these coefficients in Eqn. (3.2),
we get the required solution of a given differential equation.
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4 Numerical implementation

Here we consider the 1-D Helmholtz equation and present the numerical results by varying the
wavenumber β, which shows the applicability of the method.
Test problem: Now consider the problem,

∂2u

∂x2 + βu = f (4.1)

where u = u(x), f = f(x) and β is a wave number with respect to boundary conditions u(0) =
a, u(1) = b. The implementation of the Eqn. (4.1) as per the method explained in section 3, is
as follows:
Here A 2 = 1, A 0 = β and F (x) = f = 0, having boundary conditions u(0) = 1, u(1) = 0. The
exact equation is u(x) = cos(

√
βx)− cot(

√
β) sin(

√
βx).

For sufficiently large J , c 0 = 〈u, φ0〉 = 2−J/2u(0), c 2J = 〈u, φ2J 〉 = 2−J/2u(1) for k =
0, k = 2J and

ck = 2−J/2u(k/2J) (4.2)

Let us assume,
∂2u

∂x2 =
1
h2

1∑
i=−1

(
2

i+ 1

)
(−1)2+i+1ck+i (4.3)

u =
−1∑

i=−1

(
0

i+ 1

)
(−1)i+1ck+i (4.4)

Substituting Eqns. (4.3) and (4.4) in Eqn. (4.1), we get a system of algebraic equations

1
h2

1∑
i=−1

(
2

i+ 1

)
(−1)2+i+1ck+i + β

−1∑
i=−1

(
0

i+ 1

)
(−1)i+1ck+i = 0 (4.5)

Now, we have a system of 2J−1 equations with 2J−1 unknown coefficients. We obtain the coef-
ficients c by solving Eqn. (4.5) i. e for J=4 & β = −2, c= {2.2515e-01, 2.0225e-01, 1.8111e-01,
1.6155e-01, 1.4341e-01, 1.2652e-01, 1.1076e-01, 9.5989e-02, 8.2081e-02, 6.8922e-02, 5.6405e-
02, 4.4427e-02, 3.2889e-02, 2.1698e-02, 1.0764e-02}. Substitute these coefficients in Eqn.
(4.2), we get the required numerical solution, the results are presented in the following fig-
ures for different values of β, which show the nature of the problem. Table 1 presents the error
analysis of the problem for different β. The errors are computed by Emax = max |ue − ua|, and

ERMS = max
(√∑

|ue−ua|2
N

)
, where ue and ua are exact and approximate solutions respec-

tively.

Figure 1. Comparison of numerical solutions with the exact solution for J=6 of the problem for
β = −2.
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Figure 2. Comparison of numerical solutions with the exact solution for J=5 of the problem for
β = −1.

Figure 3. Comparison of numerical solutions with the exact solution for J=6 of the problem for
β = −0.5.

Figure 4. Comparison of numerical solutions with the exact solution for J=6 of the problem for
β = 0.5.
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Figure 5. Comparison of numerical solutions with the exact solution for J=6 of the problem for
β = 1.

Figure 6. Comparison of numerical solutions with the exact solution for J=6 of the problem for
β = 2.

Table 1. Error analysis of the Test problem for different β.

5 Conclusions

In this paper, we have proposed a new wavelet-Galerkin method for the numerical solution of
the 1-D Helmholtz equation. Here we obtained the numerical results for different values of β
and are presented in figures and table. From the figures we have seen that, the solution nature of
the problem slightly changes from concave to convex as the values of βlies in [-2, 2]. From the
table, we conclude that the proposed technique has superconvergence in the above said values
of β especially in [-0.5, 0.5] than the existing ones. In order to obtain the solution of ODEs
using the usual WGM, one can need to find the connection coefficients for the preferred scale.
Whereas the method presented here is, to obtain comparable results with exact solutions in low
CPU time than existing ones. Hence, the proposed scheme is a powerful technique for the fast
and accurate solution of differential equations.
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J N = 2J β = −2
Emax ERMS

NWGM HWCM NWGM HWCM
3 8 2.6107e-02 3.0299e-02 9.8674e-03 1.0712e-02
4 16 1.2795e-02 3.0302e-02 3.3037e-03 7.5755e-03
5 32 6.3105e-03 3.0501e-02 1.1334e-03 5.3918e-03
6 64 3.1386e-03 3.0518e-02 3.9543e-04 3.8148e-03
7 128 1.5647e-03 3.0522e-02 1.3884e-04 2.6978e-03
8 256 7.8124e-04 3.0523e-02 4.8923e-05 1.9077e-03
9 512 3.9034e-04 3.0523e-02 1.7268e-05 1.3490e-03
10 1024 1.9510e-04 - 6.0999e-06 -
β = −1
3 8 1.4271e-02 1.5924e-02 5.3940e-03 5.6300e-03
4 16 7.0195e-03 1.6230e-02 1.8124e-03 4.0574e-03
5 32 3.4917e-03 1.6213e-02 6.2712e-04 2.8660e-03
6 64 1.7402e-03 1.6247e-02 2.1925e-04 2.0309e-03
7 128 8.6887e-04 1.6254e-02 7.7099e-05 1.4367e-03
8 256 4.3410e-04 1.6255e-02 2.7184e-05 1.0159e-03
9 512 2.1697e-04 - 9.5981e-06 -
10 1024 1.0846e-04 - 3.3912e-06 -
β = −0.5
3 8 7.4653e-03 8.1506e-03 2.8216e-03 2.8817e-03
4 16 3.7000e-03 8.3946e-03 9.5533e-04 2.0986e-03
5 32 1.8431e-03 8.4287e-03 3.3103e-04 1.4900e-03
6 64 9.2036e-04 8.4256e-03 1.1595e-04 1.0532e-03
7 128 4.5983e-04 8.4305e-03 4.0803e-05 7.4516e-04
8 256 2.2983e-04 8.4317e-03 1.4392e-05 5.2698e-04
9 512 1.1489e-04 - 5.0825e-06 -
10 1024 5.7440e-05 - 1.7959e-06 -
β = 0.5
3 8 8.1773e-03 8.9600e-03 3.0907e-03 3.1678e-03
4 16 4.1304e-03 9.1789e-03 1.0665e-03 2.2947e-03
5 32 2.0741e-03 9.2098e-03 3.7252e-04 1.6281e-03
6 64 1.0395e-03 9. 2099e-03 1.3096e-04 1.1512e-03
7 128 5.2023e-04 9. 2099e-03 4.6163e-05 1.1512e-03
8 256 2.6024e-04 9. 2137e-03 1.6297e-05 8.1438e-04
9 512 1.3015e-04 9. 2143e-03 5.7573e-06 5.7589e-04
10 1024 6.5080e-05 - 2.0348e-06 -
β = 1
3 8 1.7118e-02 1.9162e-02 6.4702e-03 6.7748e-03
4 16 8.7494e-03 1.9413e-02 2.2591e-03 4.8533e-03
5 32 4.4230e-03 1.9428e-02 7.9439e-04 3.4343e-03
6 64 2.2208e-03 1.9454e-02 2.7980e-04 2.4317e-03
7 128 1.1126e-03 1.9457e-02 9.8731e-05 1.7197e-03
8 256 5.5685e-04 1.9457e-02 3.4871e-05 1.2161e-03
9 512 2.7855e-04 - 1.2322e-05 -
10 1024 1.3931e-04 - 4.3555e-06 -
β = 2
3 8 3.7471e-02 4.4029e-02 1.4163e-02 1.5566e-02
4 16 1.9912e-02 4.4335e-02 5.1412e-03 1.1084e-02
5 32 1.0162e-02 4.4519e-02 1.8251e-03 7.8700e-03
6 64 5.1296e-03 4.4519e-02 6.4627e-04 5.5648e-03
7 128 2.5761e-03 4.4541e-02 2.2859e-04 3.9369e-03
8 256 1.2907e-03 4.4546e-02 8.0826e-05 2.7841e-03
9 512 6.4600e-04 - 2.8577e-05 -
10 1024 3.2316e-04 - 1.0104e-05 -
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