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Abstract. The Fibonacci sequence has been generalized in many ways, some by preserving
the initial conditions, and others by preserving the recurrence relation. The Fibonacci sequence,
Lucas numbers and their generalization have many interesting properties and applications to
almost every field. In this note, the D’Ocagne’s identity for the generalized Fibonacci and Lucas
sequences is established in terms of log convex identity of generalized Fibonacci and Lucas
sequence by using mathematical induction.

1 Introduction

In recent years, many interesting properties of classic Fibonacci numbers, classic Lucas numbers
and their generalizations have been shown by researchers and applied to almost every field of
science and art.

A sequence is an arrangement of any objects or a set of numbers in a particular order followed
by some rule, based on this the Fibonacci and Lucas number are the examples of sequence in
a particular order that, by adding the previous two numbers of the sequence with different two
initial values.

The Fibonacci sequence exhibits a certain numerical pattern which originated as the answer
to an exercise in the first ever high school algebra text. This pattern turned out to have an interest
and importance far beyond what its creator imagined. It can be used to model or describe an
amazing variety of phenomena, in mathematics and science, art and nature. The mathematical
ideas of the Fibonacci sequence leads to, such as the golden ratio, spirals and self- similar curves,
have long been appreciated for their charm and beauty, but no one can really explain why they
are echoed so clearly in the world of art and nature. The Fibonacci sequence is the series of
numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · . Any number in this sequence is the sum of the previous
two numbers, and this pattern is mathematically written as

Fn = Fn−1 + Fn−2,

where n is a positive integer greater than 1, Fn is the n-th Fibonacci number with F0 = 0
and F1 = 1. Several interesting results and identities on Fibonacci numbers were found in [2, 3].
Some interesting results on sequences, double sequences and its applications are found in [5, 6].

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where
each term is the sum of the two previous terms, but with different starting values. This produces
a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms
themselves are rounding of integer powers of the golden ratio. The sequence also has a variety of
relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers
two terms apart in the Fibonacci sequence results in the Lucas number in between. The first few



752 Dhanya. P, K. M. Nagaraja and P. Siva Kota Reddy

Lucas numbers are: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, · · ·

The Lucas numbers may thus be defined as follows:

Ln =


2 if n = 0
1 if n = 1
Ln−1 + Ln−2 if n ≥ 2.

where n belongs to the natural numbers. Several interesting results and identities on Lucas
numbers were found in [4].

It is well known that N -bonacci numbers have huge number of application in and around all
fields of study and real life. Particular values of N , we have the following:

Sl.No. N =Sum of consecutive numbers Name
1 2 Fibonacci number
2 3 Tribonacci number
3 4 Tetra-bonacci number
...

...
...

n N N -bonacci number

Table 1. N -bonacci numbers

In [1], Zvonko Cerin studied on factors of sums of consecutive Fibonacci and Lucas numbers.

The author discovered that the sums
4i+3∑
j=0

Fk+j have the Fibonacci number F2i+2 as a common

factor, the alternating sums of 20 and 22 consecutive Fibonacci numbers are all respectively di-
visible by F10 and L11. Also, obtained some interesting results on sums of consecutive products,
and squares of consecutive numbers. The following are the few identities involving Fibonacci
and Lucas numbers.

4i+3∑
j=0

Fk+j = F2i+2Lk+2i+3 and
4i+3∑
j=0

(−1)jFk+j = F2i+2Lk+2i (1.1)

4i+1∑
j=0

Fk+j = L2i+1Fk+2i+2 and
4i+1∑
j=0

(−1)jFk+j = L2i+1Fk+2i−1 (1.2)

4i∑
j=0

Fk+j = F2iLk+2i + L2i+1Fk+2i and
4i∑
j=0

(−1)jFk+j = Fk+2iL2i+1 − Lk+2iF2i (1.3)

and for other identities interested readers may refer [1].

Definition 1.1. [8] For any two positive integers j and k, the generalized Fibonacci sequence
{Dk

j } is defined as;

Dk
j = Fj + Fj+1 + Fj+2 + . . .+ Fj+k−1 + Fj+k =

j+k∑
i=j

Fi (1.4)

Dk
j+2 = Dk

j +Dk
j+1, for all j, k = 0, 1, 2, 3, . . . (1.5)
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Definition 1.2. [8] For any two positive integers j and k, the generalized Lucas sequence {Ek
j }

is defined as;

Ek
j = Lj + Lj+1 + Lj+2 + . . .+ Lj+k−1 + Lj+k =

j+k∑
i=j

Li (1.6)

Ek
j+2 = Ek

j +Ek
j+1, for all j, k = 0, 1, 2, 3, . . . (1.7)

In [2, 3], the D’Ocagne’s identity for Fibonacci numbers is given as follows:

FmFn+1 − FnFm+1 = (−1)nFm−n. (1.8)

The objective of this article is to develop D’Ocagne’s identity for the generalized Fibonacci and
Lucas numbers {Dk

j } and {Ek
j }. Using strong mathematical induction, some interesting results

are developed in [7].

2 D’Ocagne’s identity for generalized of Fibonacci numbers

For j = 0, 1, 2, · · · and k = 0, 1, 2, · · · , the identity of generalized Fibonacci sequence is devel-
oped in [8] and is stated as:

∆
k
j = (Dk

j+1)
2 −Dk

jD
k
j+2 = (−1)j

(−1)k +

(
1−
√

5
2

)k+1

+

(
1 +
√

5
2

)k+1

− 1

 (2.1)

Theorem 2.1. Let {Dk
j } be a sequence of generalized Fibonacci numbers and for fixed k, the

D’Ocagne’s identity is

Dk
mDk

n+1 −Dk
nD

k
m+1 = Fj∆

k
n, if m = n+ j, j ≥ 0, (2.2)

where Fj is the j-th Fibonacci number.

Proof. We prove the result by induction on j. For j = 0, we have F0 = 0 and

Dk
mDk

n+1 −Dk
nD

k
m+1 = Dk

nD
k
n+1 −Dk

nD
k
n+1 = 0 = F0∆

k
n.

For j = 1, we have F1 = 1 and

[(Dk
n+1)

2 −Dk
nD

k
n+2] = F1[(D

k
n+1)

2 −Dk
nD

k
n+2]

= F1∆
k
n.

Hence the result (2.2) holds for j = 0, 1.
Assume that the result (2.2) holds for m = n+ j, j > 1. Using (1.5), for m = n+ j − 1, we

have

Dk
n+j−1D

k
n+1 −Dk

nD
k
n+j = Fj−1[(D

k
n+1)

2 −Dk
nD

k
n+2] (2.3)

and for m = n+ j, we have

Dk
n+jD

k
n+1 −Dk

nD
k
n+j+1 = Fj [(D

k
n+1)

2 −Dk
nD

k
n+2] (2.4)

Now, for m = n+ (j + 1), using (2.3) and (2.4),we have

Dk
n+j+1D

k
n+1 −Dk

nD
k
n+j+2 = Dk

n+jD
k
n+1 +Dk

n+j−1D
k
n+1 −Dk

nD
k
n+j+1 −Dk

nD
k
n+j

= (Dk
n+j−1D

k
n+1 −Dk

nD
k
n+j)− (Dk

n+jD
k
n+1 −Dk

nD
k
n+j+1)

= Fj−1[(D
k
n+1)

2 −Dk
nD

k
n+2] + Fj [(D

k
n+1)

2 −Dk
nD

k
n+2]

= (Fj−1 + Fj)[(D
k
n+1)

2 −Dk
nD

k
n+2]

= Fj+1[(D
k
n+1)

2 −Dk
nD

k
n+2]

= Fj+1∆
k
n.

Thus, the result (2.2) holds for j + 1. Hence, by the principle of induction (2.2) holds for all
j ≥ 1.
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3 D’Ocagne’s identity for generalized of Lucas numbers

For j = 0, 1, 2, · · · and k = 0, 1, 2, · · · , the identity of generalized Lucas sequence is developed
in [8] and is stated as:

∇k
j = (Ek

j+1)
2−Ek

j E
k
j+2 = 5(−1)j

(−1)k +

(
1−
√

5
2

)k+1

+

(
1 +
√

5
2

)k+1

− 1

 (3.1)

Theorem 3.1. Let {Ek
j } be a sequence of generalized Lucas number, then for fixed k the D’Ocagne’s

identity is defined as

Ek
mEk

n+1 − Ek
nE

k
m+1 = Fj∇k

n, if m = n+ j, j ≥ 0, (3.2)

where Fj is the j-th Fibonacci number.

Proof. We prove the result by induction on j. For j = 0, we have F0 = 0 and

Ek
mEk

n+1 − Ek
nE

k
m+1 = Ek

nE
k
n+1 − Ek

nE
k
n+1 = 0 = F0∇k

n.

For j = 1, we have F1 = 1 and

[(Ek
n+1)

2 − Ek
nE

k
n+2] = F1[(E

k
n+1)

2 − Ek
nE

k
n+2]

= F1∇k
n.

Hence the result (3.2) holds for j = 0, 1.
Assume that the result (3.2) holds for m = n+ j, j > 1. Using (1.7), for m = n+ j − 1, we

have

Ek
n+j−1E

k
n+1 − Ek

nE
k
n+j = Fj−1[(E

k
n+1)

2 − Ek
nE

k
n+2] (3.3)

and for m = n+ j, we have

Ek
n+jE

k
n+1 − Ek

nE
k
n+j+1 = Fj [(E

k
n+1)

2 − Ek
nE

k
n+2] (3.4)

Now, for m = n+ (j + 1), using (3.3) and (3.4),we have

Ek
n+j+1E

k
n+1 − Ek

nE
k
n+j+2 = Ek

n+jE
k
n+1 +Ek

n+j−1E
k
n+1 − Ek

nE
k
n+j+1 − Ek

nE
k
n+j

= (Ek
n+j−1E

k
n+1 − Ek

nE
k
n+j)− (Ek

n+jE
k
n+1 − Ek

nE
k
n+j+1)

= Fj−1[(E
k
n+1)

2 − Ek
nE

k
n+2] + Fj [(E

k
n+1)

2 − Ek
nE

k
n+2]

= (Fj−1 + Fj)[(E
k
n+1)

2 − Ek
nE

k
n+2]

= Fj+1[(E
k
n+1)

2 − Ek
nE

k
n+2]

= Fj+1∇k
n.

Thus, the result (3.2) holds for j + 1. Hence, by the principle of induction (3.2) holds for all
j ≥ 1.
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