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Abstract We derive a new expression for binomial sums with skew-harmonic numbers. Our
derivation is based on elementary analysis of the Euler transform of these sums. The main result
may be regarded as a companion formula for binomial sums with harmonic numbers that we
proved recently. We provide some examples to demonstrate the attractiveness of our approach.
In particular, we state some new identities involving skew-harmonic numbers, and Fibonacci and
Lucas numbers.

1 Motivation

Harmonic numbers (Hn)n≥0 are defined by H0 = 0 and for all n ≥ 1

Hn =
n∑

k=1

1
k
.

In contrast, alternating or skew-harmonic numbers ([2, 3, 16]) (H−n )n≥0 are given by H−0 = 0
and for all n ≥ 1

H−n =
n∑

k=1

(−1)k+1 1
k
.

Skew-harmonic numbers are partial sums of the expansion of ln(2):

ln(2) =
∞∑
k=1

(−1)k+1 1
k
,

which itself is the special case x = 1 of the Newton-Mercator series

ln(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
, −1 < x ≤ 1.

There is also a relation between skew-harmonic numbers and the digamma function ψ(x) =
d
dx ln Γ(x) (see [2]):

ψ
(n+ 1

2

)
− ψ

(n
2

)
= 2(−1)n−1(ln(2)−H−n−1).

Harmonic numbers and generalized harmonic numbers are interesting research objects. They
have been studied by Euler and many other mathematicians. A historical account is given in the
first part of the article [16]. They appear in many beautiful combinatorial identities. The very
recent research on the topic has produced a considerable amount of new results concerning finite
and infinite series with (generalized) harmonic numbers (see [1], [4]-[10] and [13]-[20]). Some
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identities for the skew-harmonic numbers are listed in [2] and [3], among others.

In 2009, Boyadzhiev [1] studied binomial sums with harmonic numbers using the Euler trans-
form. He proved the following identity valid for n ≥ 1

n∑
k=1

(
n

k

)
akbn−kHk = (a+ b)nHn −

(
b(a+ b)n−1 +

b2

2
(a+ b)n−2 + · · ·+ bn

n

)
, (1.1)

where a and b are arbitrary complex numbers. Frontczak [10] modified the arguments of Boy-
adzhiev slightly and derived an alternative expression for these sums as

n∑
k=1

(
n

k

)
akbn−kHk =

(
(a+ b)n − bn

)
Hn − a

n−1∑
k=0

(a+ b)kbn−1−kHn−1−k. (1.2)

The formula (1.2) allows to derive the following identity

Hn =
n∑

k=1

(1
k

2n−k − 2k−1Hn−k

)
, (1.3)

which can be used as a new defining equation for harmonic numbers.

In this article, we continue the work from [10]. We derive a new expression for binomial
sums with skew-harmonic numbers by analyzing the Euler transform of these sums. The main
result may be regarded as an analogue formula for the above identity (1.2). We also provide
some examples to demonstrate the attractiveness of our approach. In particular, we state some
new identities involving skew-harmonic numbers, and Fibonacci and Lucas numbers.

2 The Main Result.

Let A(z) be the ordinary generating function for the skew-harmonic numbers. It is known that
([16])

A(z) =
∞∑
n=0

H−n z
n =

ln(1 + z)

1− z
,

where the series converges for |z| < 1. For a, b ∈ C let further Sn(a, b) be defined as

Sn(a, b) =
n∑

k=0

(
n

k

)
akbn−kH−k . (2.1)

Then we have the following theorem.

Theorem 2.1. For all n ≥ 1 it holds that

Sn(a, b) = (a− b)nH−n + bnHn + 2b
n−1∑
k=0

(a+ b)k(a− b)n−1−kH−n−1−k

+a
n−1∑
k=0

(a+ b)kbn−1−kHn−1−k. (2.2)

Proof. Let S(z) be the ordinary generating function for the sum Sn(a, b). Then, by Euler’s
transform

S(z) =
∞∑
n=0

Sn(a, b)z
n

=
1

1− bz
A
( az

1− bz

)
=

ln(1 + (a− b)z)
1− (a+ b)z

− ln(1− bz)
1− (a+ b)z

.
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Now, we have that

ln(1− bz)
1− (a+ b)z

=
az

1− (a+ b)z

ln(1− bz)
1− bz

+
ln(1− bz)

1− bz
,

and

ln(1 + (a− b)z)
1− (a+ b)z

=
ln(1 + (a− b)z)

1− (a− b)z
+

2bz
1− (a+ b)z

ln(1 + (a− b)z)
1− (a− b)z

.

Hence,

S(z) =
ln(1 + (a− b)z)

1− (a− b)z
+

2bz
1− (a+ b)z

ln(1 + (a− b)z)
1− (a− b)z

+
(
− ln(1− bz)

1− bz

)
+

az

1− (a+ b)z

(
− ln(1− bz)

1− bz

)
=

∞∑
n=0

(a− b)nH−n zn +
∞∑
n=0

bnHnz
n

+2bz
( ∞∑

n=0

(a+ b)nzn
)( ∞∑

n=0

(a− b)nH−n zn
)

+az
( ∞∑

n=0

(a+ b)nzn
)( ∞∑

n=0

bnHnz
n
)
.

Using Cauchy’s product rule for power series and comparing the coefficients of zn completes
the proof.

We proceed with some examples. For (a, b) = (a, a) we get the identity

n∑
k=0

(
n

k

)
H−k = Hn +

n−1∑
k=0

2kHn−1−k. (2.3)

Combining ([10])

n∑
k=0

(
n

k

)
Hk = (2n − 1)Hn −

n−1∑
k=0

2kHn−1−k,

with ([1])

n∑
k=0

(
n

k

)
Hk = 2n

(
Hn −

n∑
k=1

1
k2k

)
,

we can easily derive the following identity valid for all n ≥ 1:

n∑
k=1

(
n

k

)
H−k = 2n

n∑
k=1

1
k2k

. (2.4)

Although not appearing in the references, it is most likely that identity (2.4) is known. A charm-
ing proof using induction can be given as follows: Since the identity is trivially true for n = 1,
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the inductive step is

n+1∑
k=1

(
n+ 1
k

)
H−k =

n∑
k=1

(
n+ 1
k

)
H−k +H−n+1

=
n∑

k=1

((n
k

)
+

(
n

k − 1

))
H−k +H−n+1

=
n∑

k=1

(
n

k

)
H−k +

n−1∑
k=0

(
n

k

)
H−k+1 +H−n+1

=
n∑

k=1

(
n

k

)
H−k +

n−1∑
k=0

(
n

k

)(
H−k + (−1)k+2 1

k + 1

)
+H−n+1

= 2
n∑

k=1

(
n

k

)
H−k +

n∑
k=0

(
n

k

)
(−1)k

1
k + 1

= 2n+1
n∑

k=1

1
k2k

+
1

n+ 1

= 2n+1
n+1∑
k=1

1
k2k

.

Note that at the end of the proof we have used the relation

n∑
k=0

(
n

k

)
(−1)k

1
k + 1

=

∫ 1

0
(1− x)ndx.

Finally, as an interesting by-product, we point out that

lim
n→∞

1
2n

n∑
k=1

(
n

k

)
H−k = lim

n→∞

n∑
k=1

1
k2k

= ln(2). (2.5)

For (a, b) = (−1, 1) we deduce that

n∑
k=0

(
n

k

)
(−1)kH−k = (−1)n2n(H−n −H−n−1) +Hn −Hn−1 =

1
n
(1− 2n), (2.6)

which means that 1
n(1−2n) is the binomial transform of (−1)nH−n . The inverse transform gives

immediately
n∑

k=1

(
n

k

)
(−1)k

1
k
(1− 2k) = H−n . (2.7)

The last two identities are known. They appear as equations (9.20) and (9.21) with a different
proof in the textbook [3]. For (a, b) = (2, 1) the theorem gives

n∑
k=0

(
n

k

)
2kH−k = H−n +Hn + 2

n−1∑
k=0

3k(H−n−1−k +Hn−1−k).

Using the connection H−n = Hn − Hbn
2 c with bxc being the floor function at x (see [15] for

instance), we obtain

n∑
k=0

(
n

k

)
2kH−k = 2Hn −Hbn

2 c + 2
n−1∑
k=0

3k
(

2Hn−1−k −Hbn−1−k
2 c

)
. (2.8)
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Another expression for the sum can be derived using

H−n +Hn = 2
bn−1

2 c∑
j=0

1
2j + 1

= 2hbn+1
2 c,

where we have adopted the notation from [16]

hn =
n∑

j=1

1
2j − 1

. (2.9)

This allows to express the sum as

n∑
k=0

(
n

k

)
2kH−k = 2hbn+1

2 c + 4
n−1∑
k=0

3khbn−k
2 c. (2.10)

Our final example is an identity involving hyperbolic functions. With (a, b) = (ex, e−x) it
follows that for all x 6= 0:

n∑
k=0

(
n

k

)
e2kxH−k = Hn + enx2n sinhn(x)H−n +

n−1∑
k=0

2k coshk(x)e(k+2)xHn−1−k

+e(n−1)x2n sinhn−1(x)
n−1∑
k=0

cothk(x)H−n−1−k.

3 Connections with Fibonacci numbers.

From Theorem 2.1 it is also possible to deduce some identities involving skew-harmonic num-
bers and Fibonacci (Lucas) numbers (see [11] and [12] for more information).

Proposition 3.1. Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then, for all
n ≥ 1, we have the relations

n∑
k=0

(
n

k

)
FkH

−
k = (−1)n+1FnH

−
n +

n−1∑
k=0

(F2k+1Hn−1−k + 2F3k+1−nH
−
n−1−k), (3.1)

and

n∑
k=0

(
n

k

)
LkH

−
k = 2Hn + (−1)nLnH

−
n +

n−1∑
k=0

(L2k+1Hn−1−k + 2L3k+1−nH
−
n−1−k). (3.2)

Proof. Evaluate (2.2) at (a, b) = (α, 1) and (a, b) = (β, 1), respectively. This gives

Sn(α, 1) = (−1)nβnH−n +Hn + 2
n−1∑
k=0

α3k+1−nH−n−1−k +
n−1∑
k=0

α2k+1Hn−1−k

and

Sn(β, 1) = (−1)nαnH−n +Hn + 2
n−1∑
k=0

β3k+1−nH−n−1−k +
n−1∑
k=0

β2k+1Hn−1−k,

where we have used the additional relations α2 = α + 1 and β2 = β + 1. Now, calculate
Sn(α, 1)± Sn(β, 1) and use the Binet forms for Fn and Ln, respectively.

Comparing the above equations with their harmonic number analogues from [10]

n∑
k=0

(
n

k

)
FkHk = F2nHn −

n−1∑
k=0

F2k+1Hn−1−k, (3.3)
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and
n∑

k=0

(
n

k

)
LkHk = (L2n − 2)Hn −

n−1∑
k=0

L2k+1Hn−1−k, (3.4)

then, with hn being defined in (2.9), we can obtain

n∑
k=0

(
n

k

)
Fkhb k+1

2 c =
1
2

(
F2nHn − (−1)nFnH

−
n

)
+

n−1∑
k=0

F3k+1−nH
−
n−1−k, (3.5)

as well as
n∑

k=0

(
n

k

)
Lkhb k+1

2 c =
1
2

(
L2nHn + (−1)nLnH

−
n

)
+

n−1∑
k=0

L3k+1−nH
−
n−1−k. (3.6)

Proposition 3.2. For all n ≥ 1, the following relations hold:
n∑

k=0

(
n

k

)
(−1)n−kFkH

−
k = F2nH

−
n − 2F2n−2H

−
n−1 − (−1)nHn−1

−2
n−1∑
k=1

F2n−2−3kH
−
n−1−k − (−1)n

n−1∑
k=1

Fk−1Hn−1−k, (3.7)

and
n∑

k=0

(
n

k

)
(−1)n−kLkH

−
k = L2nH

−
n + 2(−1)nHn − 2L2n−2H

−
n−1 − (−1)nHn−1

−2
n−1∑
k=1

L2n−2−3kH
−
n−1−k + (−1)n

n−1∑
k=1

Lk−1Hn−1−k. (3.8)

Proof. Evaluate (2.2) at (a, b) = (α,−1) and (a, b) = (β,−1), respectively. Combine the results
as in the previous proof.

Binomial sums with even indexed Fibonacci (Lucas) numbers can be expressed as follows:

Proposition 3.3. For all n ≥ 1, the following expressions are valid:

n∑
k=0

(
n

k

)
F2kH

−
k = FnH

−
n +

bn−1
2 c∑

k=0

5k
(

2Fn−1H
−
n−1−2k + F2k+2Hn−1−2k

)

+

bn−2
2 c∑

k=0

5k
(

2Ln−1H
−
n−2−2k + L2k+3Hn−2−2k

)
, (3.9)

and

n∑
k=0

(
n

k

)
L2kH

−
k = LnH

−
n + 2Hn +

bn−1
2 c∑

k=0

5k
(

2Ln−1H
−
n−1−2k + L2k+2Hn−1−2k

)

+

bn−2
2 c∑

k=0

5k+1
(

2Fn−1H
−
n−2−2k + F2k+3Hn−2−2k

)
. (3.10)

Proof. Evaluating (2.2) at (a, b) = (α2, 1) yields

n∑
k=0

(
n

k

)
α2kH−k = αnH−n +Hn + 2αn−1

n−1∑
k=0

5k/2H−n−1−k

+
n−1∑
k=0

5k/2αk+2Hn−1−k,
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where we have used that a− b = α and a+ b =
√

5α. Similarly, with (a, b) = (β2, 1),

n∑
k=0

(
n

k

)
β2kH−k = βnH−n +Hn + 2βn−1

n−1∑
k=0

(−1)k5k/2H−n−1−k

+
n−1∑
k=0

(−1)k5k/2βk+2Hn−1−k.

Now, we can combine the two sums according to the Binet forms and

αk+2 − (−1)kβk+2 =

{√
5Fk+2, k even;

Lk+2 k odd.

It is possible to state more identities of this kind. We have found similar expressions for the
sums

n∑
k=0

(
n

k

)
(−1)n−kF2kH

−
k ,

n∑
k=0

(
n

k

)
(−1)n−kL2kH

−
k ,

n∑
k=0

(
n

k

)
(−1)kF2n−3kH

−
k ,

n∑
k=0

(
n

k

)
(−1)kL2n−3kH

−
k ,

and others. All of them are left for a personal study. Connections of skew-harmonic numbers to
other important number sequences, such as Mersenne or Pell numbers, are also easily deducible
from Theorem 2.1.
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