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Abstract In this paper, we introduce the concepts of adjoint, n-adjoint of a hyperideals and
primal and n-primly hyperideals of a commutative multiplicative hyperrings. Many results con-
cerning prime, n-primly, primary and primal hyperideals of a commutative multiplicative hy-
perrings are given, illustrated by several examples. Also we characterise all prime, primary,
n-primly and primal Cu hyperideals of quotient hyperring.

1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8th Congress
of the Scandinavian Mathematicians. Marty introduced hypergroups as a generalization of
groups. He published some notes on hypergroups, using them in different contexts as alge-
braic functions, rational fractions, non-commutative groups and then many researchers have
been worked on this new field of modern algebra and developed it. It was later observed that
the theory of hyperstuctures has many applications in both pure and applied sciences, for ex-
ample, semi-hypergroups are the simplest algebraic hyperstructures that posses the properties
of closure and associativity. In algebraic hyperstructures, the product of two elements is not an
element but a set, while in classical algebraic structures, the binary operation of two elements
of a set is a gain an element of the set. Marty Krasner was the first researcher who gave the
idea of hyperstructure theory in 1983, [8]. Hyperstructures have various application in applied
and pure sciences such as Latices, Geometry, Cryptography, Automata and Artificial Intelli-
gence. In the sence of Matry, a hypergroup is a nonempty set H endowed by hyperstructure
? : H × H −→ P ∗(H), where P ∗(H) is the set of all nonempty subsets of H, which satisfy
associative law and product axioms. The hyperrings were introduced by Marty Krasner. Kras-
ner hyperrings are a generalization of classical rings in which the multiplicative operation is
a binary operation while the addition operation is a hyperoperation. The theory of hyperrings
has been developed by many researchers see [1], [11], [7], [16]. There are various types of
hyperrings and one of the important classes of hyperrings, called multiplicative hyperring, was
introduced in [7]. Primal ideals in a commutative ring with nonzero identity have been intro-
duced and studied by L.Fuchs in [10], and continued to primal ideals over strong co-ideal in
semirings, [14]. And continued to primary hyperideals of multiplicative hyperrings, [7]. This
paper is concerned with introducing the concepts of n-primly and primal hyperideals on com-
mutative multiplicative hyperrings. These concepts were introduced and studied in commutative
rings, see [2], [9], [6], [10], [13]. Also, we introduce some results on n-primly and primal hy-
perideals, and investigate the relations between n-primly, primal, prime, primary and irreducible
hyperideals. We also study the effect of good homomorphisms on these hyperideals and charac-
terize all prime, n-primly, primal and Cu-hyperideal of any quotient hyperring. We illustrate the
results by several examples.

1.1 Multiplicative hyperrings

In algebraic hyperstructures, the product of two elements is not an element but a set, while in
classical algebraic structures, the binary operation of two elements of a set is again an element
of the set. More exactly, a map ?:H ×H −→ P ∗(H) is called a hyperoperation, where P ∗(H)
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is the set of all nonempty subsets of H. If A,B ∈ P ∗(H) and x ∈ H, then we define

A ? B = ∪a∈A, b∈Ba ? b, A ? x = A ? {x}.

A semihypergroup (H, ?) is a nonempty set with the associative hyperoperation, i.e., that is
(a ? b) ? c = a ? (b ? c), for all a, b, c ∈ H. A semihypergroup H is called a hypergroup
if for every a ∈ H, a ? H = H = H ? a, which is quasihypergroup. Similar to hypergroups,
hyperrings are algebraic structures more general than rings, subsitutiting both or only of the
binary operations of addition and multiplication by hyperoperations, see in [15]. In this paper
we give some definitions and results of hyperstructures that we need to develop.

Definition 1.1. [7]A triple (R,+, ?) is called a multiplicative hyperring if,

(i) (R,+) is an abelian group;

(ii) (R, ?) is a semihypergroup;

(iii) ∀ a, b, c ∈ R: a ? (b+ c) ⊆ a ? b+ a ? c and (b+ c) ? a ⊆ b ? a+ c ? a;

(iv) ∀ a, b ∈ R : a ? (−b) = (−a) ? b = −(a ? b).

If in (iii) we have equalities instead of inclusions, then we say that the multiplicative hyperring
is a strongly distributive.

A multiplicative hyperring (R,+, ?) is said to be commutative if R is commutative with respect
to operation + and hyperoperation ?. Throughout this paper (R,+, ?) denotes a multiplicative
hyperring, and all hyperrings are assumed to be commutative with identity, see [7].

Example 1.2. [12] Let (R, +, ·) be a ring and I be an ideal of it. We define the following
hyperoperation on R. For all a, b ∈ R, a? b = a · b+ I. Then (R,+, ?) is a strongly distributive
hyperring. Indeed, first of all, (R, +) is an abelian group. Then, for all a, b, c ∈ R, we have
a?(b?c) = a?(b·c+I) =

⋃
h∈I a?(b·c+h) =

⋃
h∈I a·(b·c+h)+I = a·b·c+I and similarly, we

have (a?b)?c = a ·b ·c+I. Moreover, for all a, b, c ∈ R, we have a?(b+c) = a ·(b+c)+I =
a · b + a · c + I = a ? b + a ? c and similarly, we have (b + c) ? a = b ? a + c ? a. Finally, for
all a, b ∈ R, we have a ? (−b) = a · (−b) + I = (−a) · b + I = (−a) ? b and −(a ? b) =
(−a · b) + I = a · (−b) + I = a ? (−b).

Definition 1.3. [16] Let R be a multiplicative hyperring. We called a ∈ R is a regular if there
exists x ∈ R such that a ∈ a?x?a. So, we can define thatR is a regular multiplicative hyperring,
if all of elements in R are regular elements. The set of all regular elements in R is denoted by
V (R).

Example 1.4. [16] Let (R, +, ?) be the regular commutative ring with an unitary element. For
every subsetA ∈ P ∗(R), |A| ≥ 2, and 1 ∈ A, define a multiplicative hyperring (RA, +, ?),where
RA = R and for all x, y ∈ RA, x ? y = {xay|a ∈ A}. Then (RA, +, ?) is a regular multi-
plicative hyperring. Since, for all a ∈ R, there exists r ∈ R such that a = ara. Now, by setting
x = r we have, a ? x ? a = {asx|s ∈ A} ? a = {asxta|s, t ∈ A} = {axast|s, t ∈ A} =
{ast|s, t ∈ A}, since 1 ∈ A, we have a ∈ a ? x ? a. Hence (RA, +, ?) is a regular.

Definition 1.5. [4] Let R be a multiplicative hyperring. Then

(i) An element e ∈ R is said to be a left (resp. right) identity if a ∈ e?a (resp. a ∈ a?e) for a ∈
R. An element e is called an identity element if it is both left and right identity element.

(ii) An element e ∈ R is said to be a left (resp. right) scalar identity if {a} = e?a (resp. {a} =
a ? e) for a ∈ R. An element e is called an scalar identity element if it is both left and right
scalar identity element.

(iii) An element a is called a left (right) invertible (with respect to e), if there exists x ∈ R,
such that e ∈ x ? a (e ∈ a ? x) and a is called an invertible if it is both a left and right
invertible.

A multiplicative hyperring R is called a left (right) invertible if every element of R has a left
(right) invertible and R is called an invertible if it is both a left and a right invertible. Denote the
set of all invertible elements in R by U(R) (with respect to the identity e by Ue(R)), see [4].
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Theorem 1.6. [12] For a strongly distributive hyperring (R,+, ?), the following statements are
equivallent:

(i) there exists a ∈ R such that |0 ? a| = 1,

(ii) there exists a ∈ R such that |a ? 0| = 1,

(iii) |0 ? 0| = 1,

(iv) ∀a, b ∈ R such that |a ? b| = 1,

(v) (R,+, ?) is a ring.

Definition 1.7. [12] A hyperring (R,+, ?) is called unitary if it contains an element u, such that
a ? u = u ? a = {a} for all a ∈ R.

Definition 1.8. [12] A nonempty subset I of a multiplicative hyperring (R, +, ?) is said to be a
hyperideal of R if I − I ⊆ I and for all a, b ∈ I, and r ∈ R, r ? a ∪ a ? r ⊆ I .

Remark 1.9. [15] We say that a nonempty subset I is a hyperideal of a commutative multiplica-
tive hyperring R if a− b ∈ I and r ? a ⊆ I for any a, b ∈ I, and r ∈ R.

Definition 1.10. [12] Let (R, +, ?) be a multiplicative hyperring andH be a nonempty subset of
R. We say that H is a subhyperring of (R, +, ?) if (H, +, ?) is a multiplicative hyperring. In
other words, H is a subhyperring of (R, +, ?) if H −H ⊆ H and for all x, y ∈ H, x ? y ⊆ H.

Remark 1.11.
(i) The intersection of two subhyperrings of a multiplicative hyperring (R,+, ?) is a subhy-
perring of R. The intersection of two hyperideals of a multiplicative hyperring (R,+, ?) is a
hyperideal of R. Moreover, any intersection of subhyperrings of a multiplicative hyperring is
a subhyperring, while any intersection of hyperideals of a multiplicative hyperring is a hyper-
ideal, see [12].
(ii) Let (R,+, ·) be a multiplicative hyperring. The principal hyperideal of R generated by a is
given by < a >= {pa : p ∈ Z}+ {Σni=1xi+Σmj=1yj +Σlk=1zk : ∀i, j, k, ∃ri, sj , uk ∈ R, xi ∈
ri · a, yj ∈ a · sj , zk ∈ tk · a · uk}.
The zero hyperideal is the hyperideal generated by the additive identity 0, < 0 >= {Σni=1xi +
Σmj=1yj + Σlk=1zk : ∀i, j, k, ∃ri, sj , tk, uk ∈ R, xi ∈ ri · 0, yj ∈ 0 · sj , zk ∈ tk · 0 · uk}, see
[4].

Definition 1.12. [2] Let I be a proper hyperideal of a hyperring R. The hyperideal I is called
an irreducible hyperideal of R if I = J ∩ K, where J, K are hyperideals of R, implies I =
J or I = K.

Definition 1.13. [4] A hyperideal I (6= R) of a multiplicative hyperring R is a maximal hyper-
ideal in R if for any hyperideal J of R, I ⊂ J ⊆ R, then J = R.

Definition 1.14. [15] A proper hyperideal P of a hypering R is called a prime hyperideal of
R if for every pair of elements a, b ∈ R whenever a · b ⊆ P , then either a ∈ P or b ∈ P .

Definition 1.15. [7] LetQ be a proper hyperideal of a multiplicative hyperringR. The hyperideal
Q is called a primary hyperideal of R if for each a, b ∈ R whenever a ? b ⊆ Q, then either a ∈ Q
or bn ⊆ Q for some n ∈ N.

Example 1.16. [4] Every prime hyperideal of a commutative multiplicative hyperring is a pri-
mary hyperideal. The set E of all even integers, is not a prime hyperideal, but is a primary
hyperideal of a multiplicative hyperring ZA over the ring of integers Z, induced by the set A of
all positive even integers.

Definition 1.17. [15] Let C be the class of all finite hyperproducts of elements of a multiplicative
hyperring R.
i.e C = {r1 ? r2 ? r3 ? . . . rn, ri ∈ R, i = 1, 2, 3, . . . n, n is finite}. Let I be a hyperideal
of R. If for any AJ ⊆ C, where AJ is the class of all J hyperproducts of elements of R,
(∪nJ=1AJ) ∩ I 6= +∅ implies (∪nJ=1AJ) ⊆ I, then I is said to be C-union hyperideal of R and
denoted by Cu-hyperideal.
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Example 1.18. [15] Let (Z,+, ·) be the ring of integers. We define the hyperoperation x ? y =
{2xy, 4xy}, for all x, y ∈ Z, then (Z,+, ?) is a multiplicative hyperring. In R = (Z,+, ?),
since x ? y = {2xy, 4xy} for any x, y ∈ R. Then all finite products of elements are subsets of a
hyperideal 2Z = {2n, n ∈ Z}. Since for all finite productsAj . (∪jAj)∩I 6= ∅ and ∪jAj ⊆ 2Z,
then the hyperideal 2Z is a Cu-hyperideal of R.

Definition 1.19. [4] A multiplicative hyperring R is a Cu-Noetherian if every ascending chain of
Cu hyperideals I1 ⊆ I2 ⊆ I3 ⊆ · · · there exists n ∈ N such that Ii = In, for all i ≥ N .

Definition 1.20. [4] Let I be a hyperideal of a multiplicative hyperring (R, +, ?). The intersec-
tion of all prime hyperideals of R containing I , is called the prime radical of I, being denoted
by Rad(I),

√
I ⊆ Rad(I) where

√
I = {x, xn ⊆ I, for some n ∈ N}.

The equality holds when I is a Cu-hyperideal of R. If the multiplicative hyperring R does not
have any prime hyperideal containing I , we define Rad(I) = R.

Example 1.21. By Example 1.18, we will prove that
√

8Z = Z. Note that 12 = {2, 4} 6⊆ 8Z,
13 = {4, 8, 16} 6⊆ 8Z, but 14 = {8, 16, 32, 64} ⊆ 8Z. So 1 ∈

√
8Z.

Recall that we can define quotient multiplicative hyperrings similar to quotient rings in classical
algebra.

Definition 1.22. [15] Let (R, +, ·) be a multiplicative hyperring and I be a hyperideal of R. We
consider the usual addition of cosets and multiplication defined as:

(a+ I) ? (b+ I) = {c+ I|c ∈ a · b},

on the setR/I = {a+I| a ∈ R} of all cosets of I. Then (R/I,+, ?) is a multiplicative hyperring.

Definition 1.23. [5] A homomorphism (resp. good homomorphism) between two multiplicative
hyperrings (R1,+, ◦) and (R2,+, ◦2) is a map f : R1 → R1 such that for all x, y ∈ R, we
have f(x+y) = f(x)+2 f(y) and f(x◦y) ⊆ f(x)◦2 f(y) (f(x◦y) = f(x)◦2 f(y) respectively).

Definition 1.24. [12] f : R −→ S is an isomorphism if it is homomorphism, and its inverse f−1

is homomorphism, too.

Let f : R1 −→ R2 be a good homomorphism of multiplicative hyperrings. The kernel of f is
the inverse image of < 0 >, the hyperideal generated by the zero in R2, and it is denoted by
Ker(f). Since the inverse images of hyperideals are hyperideals, it follows that the kernel is a
hyperideal. Similarly as in ring theory, we have f(< 0 >) ⊆< 0 >, which means that
< 0 >⊆ Kerf, [12].

Theorem 1.25. [7] Let f : R −→ S be a good homorphism and I, J be hyperideals of R and
S, respectively. Then the followings are satisfied:

(i) If I is a Cu hyperideal containing Ker(f) and f is an epimorphism, then f(I) is a Cu
hyperideal of S.

(ii) If J is a Cu hyperideal of S, then f−1(J) is a Cu hyperideal of R.

2 n-adjoint sets of multiplicative hyperring

Definition 2.1. Let n be a positive integer. Let I be a hyperideal of R. The set of all elements
that are not n-primary to I is called the n-adjoint set for I and is denoted by n− adj(I). That is,

n− adj(I) = {a ∈ R : an ? b ⊆ I for some b ∈ R−
√
I}.

Remark 2.2. In a commutative multiplicative hyperring R with scalar identity e with hyperop-
eration ?. If I is a hyperideal of R, then

n− adj(I) 6= R, ∀n > 0, n ∈ N.
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Proof. If n− adj(I) = R, then e ∈ n− adj(I). Thus ∃b ∈ R −
√
I such that {b} = (e)n ? b ⊆

I, which is a contradiction.

Remark 2.3. Let I =< p > be a prime hyperideal of ZA for some A ∈ P ∗(Z) with |A| ≥ 2,
p is prime integer, then it is clear that I is prime ideal in Z, however the converse is not true as
shown in the following example.

Example 2.4. In the multiplicative hyperring of the integer ZA with A = {6, 9}, the principal
hyperideal< 3 >= {3n, n ∈ Z} is not a prime hyperideal of ZA. In fact, 1?1 = {6, 9} ⊆< 3 >,
but 1 6∈< 3 >.

However, in some cases the converse of Remark 2.3 is true as shown in the following example.

Example 2.5. In the multiplicative hyperring of the integer ZA with A = {2, 3}, every
principal hyperideal generated by a prime integer p is a prime hyperideal of ZA.
Proof.
(i) Let p = 2. If a ? b ⊆ I =< 2 >, then 2 | ab. Thus 2 | a or 2 | b. Hence either
a ∈< 2 > or b ∈< 2 > .
(ii) Let p = 3. If a ? b ⊆ I =< 3 >, then 3 | ab. Thus 3 | a or 3 | b. Hence
either a ∈< 3 > or b ∈< 3 > .
(iii) Let p be any prime number such that p 6∈ {2, 3}. If a ? b ⊆ I =< p >, then
p | 2ab and p | 3ab. Thus, p | ab (since p is prime number different than 2 and
3). Therefore, p | a or p | b. Hence either a ∈< p > or b ∈
< p > . In fact, as a generalization of the previous example it is easy to prove the following
remark.

Remark 2.6. If I =< p > is a principal hyperideal of Z generated by the prime integer p and A
is a set of prime integers with |A| ≥ 2, then I is a prime hyperideal of ZA

Example 2.7. Let (Z, +, ·) be the ring of integers. For all x, y ∈ Z. We define the hyperoper-
ation x ? y = {2xy, 3xy}. Then R = (Z, +, ?) is a multiplicative hyperring.
n− adj(2Z) = 2Z for every positive integer n ≥ 1.
1− adj(4Z) = 4Z.
n− adj(4Z) = 2Z for every positive integer n ≥ 2.
1− adj(8Z) = 8Z.
2− adj(8Z) = 4Z.
n− adj(8Z) = 2Z for every positive integer n ≥ 3.
1− adj(9Z) = 9Z.
n− adj(9Z) = 3Z for every positive integer n ≥ 2.
n− adj(6Z) = 2Z ∪ 3Z for every positive integer n.
1− adj(12Z) = 4Z ∪ 3Z.
n− adj(12Z) = 2Z ∪ 3Z for every positive integer n ≥ 2.

Example 2.8. In Example 1.18.
n− adj(2Z) = { } for every positive integer n ≥ 1. Since

√
2Z = Z.

n− adj(4Z) = 2Z. for every positive integer n ≥ 1. Since
√

4Z = 2Z.
1− adj(8Z) = 4Z.
2− adj(8Z) = 2Z.
n− adj(8Z) = 2Z for every positive integer n ≥ 2.

Theorem 2.9. Let I be a hyperideal of R with
√
I 6= R, then

I ⊆ 1− adj(I) ⊆ 2− adj(I) ⊆ 3− adj(I) ⊆ ... ⊆ n− adj(I).

Proof. Let a ∈ I, then a ? 1 ⊆ I with 1 ∈ R−
√
I. So a ∈ 1− adj(I). Now, If a ∈ 1− adj(I),

then ∃ b ∈ R−
√
I such that a ? b ⊆ I. Hence a2 ? b ⊆ I, because I is a hyperideal. Similarly,

for any m if a ∈ m− adj(I), then am ? b ⊆ I, for some b ∈ R−
√
I implies am+1 ? b ⊆ I.

Corollary 2.10. If I is a prime hyperideal of R, then

I ⊆ 1− adj(I) ⊆ 2− adj(I) ⊆ ... ⊆ n− adj(I).
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Proof. Since I is a prime hyperideal of R, then I is a proper, also
√
I is a proper. Note that

if 1 ∈
√
I, then 1n ⊆ I for some n ∈ Z+. Since I is a prime, then 1 ∈ I,which is a contradiction.

Remark 2.11. Let n be a positive integer.

(i) 2Z in Example 2.7, is a prime hyperideal of R. But 2Z in Example 2.8, is not a prime
hyperideal of R. Also from Examples 2.7, 2.8, we can see that n−adj(I) is not necessarily
a hyperideal of R. Note that n− adj(6Z) = 2Z ∪ 3Z is not a hyperideal of R.

(ii) For the proper hyperideals I of R, in Example 2.7, we have I ⊆ 1− adj(I) ⊆ 2− adj(I) ⊆
3− adj(I) ⊆ ... ⊆ n− adj(I). But For a proper hyperideal I = 2Z of R, in Example 2.8,
we have I 6⊆ n− adj(I). Since

√
2Z = Z is not a proper hyperideal of R.

Definition 2.12. Let I be a hyperideal of R. The adjoint set of I , which is denoted as

adj(I) = {a ∈ R : a ? b ⊆ I for some b ∈ R− I}.

i.e. adj(I) is the set of all elements that are not prime to I.

Example 2.13. Let (Z, +) be an abelian group and 2Z be a subgroup of Z. ∀ x, y ∈ Z, we de-
fine x ◦ y = 2Z. Then R = (Z, +, ◦) is a multiplicative hyperring.
In fact, adj(2Z) = Z, because 1 ∈ Z and ∃1 ∈ R− 2Z, satisfies 1 ◦ 1 ⊆ 2Z, which implies that
1 ∈ adj(2Z) and hence adj(2Z) = Z.

Example 2.14. Let Z4 be abelian group and ? be the hyperoperation on Z4 defined by: x ·
y =< x, y >= xZ4 + yZ4 (the subgroup of (Z4,+) generated by x and y for all x, y ∈
Z4.) Then (Z4,+, ?) is a multiplicative hyperring. The addition and the hypermultiplication as
in the following tables:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

? 0 1 2 3
0 {0} Z4 {0, 2} Z4

1 Z4 Z4 Z4 Z4

2 {0, 2} Z4 {0, 2} Z4

3 Z4 Z4 Z4 Z4

The only hyperideal is Z4 with γ(Z4) = { }.

Theorem 2.15. For any hyperideal I of R, 1− adj(I) ⊆ adj(I).
Proof. Let a ∈ 1− adj(I), then ∃b ∈ R−

√
I such that a ? b ⊆ I. Hence b ∈ R− I. Therefore,

a ∈ adj(I).

Theorem 2.16. If I is a prime hyperideal of R, then

1− adj(I) = adj(I).

Proof. Let a ∈ adj(I), then ∃b ∈ R−I such that a?b ⊆ I. Since I is prime hyperideal, then bm ⊆
R− I, for any positive integer m. Hence b ∈ R−

√
I. Therefore, a ∈ 1− adj(I). By Theorem

2.15, the equality holds.
By Corollary 2.10 and Theorem 2.16, we have the following corollary.

Corollary 2.17. If I is a prime hyperideal of R, then

1− adj(I) = adj(I)⊆ 2− adj(I) ⊆ 3− adj(I) ⊆ ... ⊆ n− adj(I).

Thus adj(I) ⊆ n− adj(I), for every positive integer n.

Theorem 2.18. Let n be a positive integer. Let I be a proper hyperideal of R, with
√
I 6=

R. Then

I ⊆ n
√
I ⊆ n− adj(I), where n

√
I = {a ∈ R, an ⊆ I}.

Proof. Let n be any positive integer. It is clear that I ⊆ n
√
I. Now, let r ∈ n

√
I, then rn ⊆

I. Thus rn ? 1 ⊆ I. Since 1 ∈ R−
√
I, then r ∈ n− adj(I), and the proof is complete.
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3 n-primly hyperideals of multiplicative hyperring

We noticed in the previous section that the n-adjoint sets of a hyperideal I of R are not nec-
essarily hyperideals of R. In this section, we will study the hyperideals whose n-adjoint sets
are hyperideals. We call these Kinds of hyperideals n-primly hyperideals as in the following
definition.

Definition 3.1. Let n be a positive integer. A hyperideal I of a commutative multiplicative
hyperring R with

√
I 6= R is called n-primly hyperideal of R if

n− adj(I) is a closed under addition.

Remark 3.2. From previous definition, we get n−adj(I) is a hyperideal ofR. Since n−adj(I) is
closed under addition, it is enough to show that for every r ∈ R and every a ∈ n−adj(I), r?a ⊆
n − adj(I). Let r ∈ R and a ∈ n − adj(I), then ∃b ∈ R −

√
I such that an ? b ⊆ I. Thus

rn ? an ? b ⊆ I, which implies that (r ? a)n ? b ⊆ I. Therefore, r ? a ⊆ n− adj(I).

Example 3.3. From Example 2.7, we have 4Z, 8Z and 9Z are n-primly hyperideals of R, while
6Z and 12Z are not n-primly hyperideals of R, for every positive integer n.

Theorem 3.4. Let n be a positive integer. If I is an n-primly hyperideal of R, then n− adj(I) is
a primary hyperideal of R.
Proof. Since 1 6∈ n − adj(I), and I is n-primly hyperideal of R, then n − adj(I) is a proper
hyperideal of R. Let a ? b ⊆ n − adj(I) with a 6∈ n − adj(I), then ∃ c ∈ R −

√
I such that

(a ? b)n ? c ⊆ I . Thus an ? (bn ? c) ⊆ I. Since a 6∈ n − adj(I), then bn ? c ⊆
√
I, so

(bn ? c)m = bnm ? cm ⊆ I for some positive integer m. Since c 6∈
√
I , then cm 6∈

√
I . Thus

(bm)n ? cm ⊆ I implies bm ⊆ n− adj(I). Therefore, n− adj(I) is a primary hyperideal of R.

4 On Primal Hyperideal Of Multiplicative Hyperring

In this section, we introduce primal hyperideal of a hyperring R and give some properties and
examples. A hyperideal I of a hyperring R is called primal if the set of all elements of R that are
not prime to I form hyperideal of R.
Here an element r ∈ R is called prime to I if r ◦ s ⊆ I ⇒ s ∈ I ,that is, the residual

(I : r) = {s ∈ R, r ◦ s ⊆ I} = I.

Note that I ⊆ (I : r), for any hyperideal I. Thus r is prime to I if (I : r) ⊆ I.

Lemma 4.1. In the commutative multiplicative hyperring of integers ZA. Let I be a proper
hyperideal of ZA, let γ(I) be the set of elements of ZA that are not prime to I , let p be a prime
number. Then the following hold:

(i) I ⊆ γ(I) = {r ∈ R, r ? s ⊆ I, for some s ∈ R− I}.

(ii) If γ(I) =< p > is a principal hyperideal of ZA generated by a positive integer p and A 6⊆<
p >, then γ(I) is a prime hyperideal of R.

(iii) If γ(I) =< a > is a principal hyperideal of ZA and A ⊆< a >6= Z, then γ(I) is a non
prime Cu hyperideal of ZA.

Proof. (i) Let r ∈ I . We can assume that r 6= 0 (since 0 ∈ γ(I)). As 0 6= r = 1?r ⊆ I with 1 6∈ I ,
we must have r is not prime hyperideal to I , then r ∈ γ(I)), then I ⊆ γ(I).
(ii) Let p be a prime integer and A 6⊆< p >. Then there exists c ∈ A\ < p > . Now suppose
that a ? b ⊆< p > and a 6∈< p >, then {acb : c ∈ A} ⊆< p > and hence b ∈< p >, since
< p > is prime ideal in Z, c 6∈< p > and a 6∈< p > . Thus < p > is a prime hyperideal of the
multiplicative hyperring ZA.
(iii) Let A ⊆< a >, so for any ri ∈ Z, i = 1, 2, 3, ..., n, n ∈ N , we have r1 ? r2 ? ... ? rn =
{r1c1r2c2...rn−1cn−1rn : ci ∈ A, i = 1, 2, 3, ..., n, n ∈ N} ⊆< a >. Hence, γ(I)=< a > is a
Cu hyperideal of ZA. Since < a > 6= Z, then 1 6∈< a >, 1 ? 1 ⊆< a > . Thus < a > is not a
prime hyperideal of ZA.
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Remark 4.2. If I is a primal hyperideal of ZA and A 6⊆ γ(I) =< p >, where p is a prime
number, then by Lemma 4.1 (ii), γ(I) is a prime hyperideal called the adjoint prime hyperideal
γ(I) of I . In this case we also say that I is a primal hyperideal with γ(I) is a prime hyperideal.

Theorem 4.3. Let (Z, +, ·) be the ring of integers. Let R = (Z, +, ?) is a multiplicative
hyperring, where ? is defined for all x, y ∈ Z as:
x ? y = {pxy, qxy}, with p and q are two fixed different prime. Then

(i) ∀ n ≥ 1, I = pnZ, J = qnZ are primal hyperideals of R with γ(pnZ) = pZ, γ(qnZ) = qZ.

(ii) J = pqZ, is not a primal hyperideal of R with γ(pqZ) = pZ ∪ qZ.
Proof. (i) Let a ∈ γ(pZ), then ∃ b ∈ R− pZ with a ? b = {pab, qab} ⊆ pZ. So p divides any el-
ements in a ? b implies that p | ab. Thus p | a. So a ∈ pZ. Now, let a ∈ pZ, then b = q satisfies
a ? b = {pab, qab} ⊆ pZ. Hence, ∃ b = q ∈ R− pZ with a ? b ⊆ pZ. So a ∈ γ(pZ), and hence
γ(pZ) = pZ. Suppose a ∈ γ(p2Z), then ∃ b = p ∈ R− p2Z with a ? b = {p2a, qap} ⊆ p2Z. So
p2 divides any elements in a?b implies that p | a. Thus a ∈ pZ. Suppose a ∈ pZ, then b = p sat-
isfies a?b = {pab, qab} ⊆ p2Z Hence ∃ b = p ∈ R−p2Z with a?b ⊆ p2Z. Thus a ∈ γ(p2Z) and
hence γ(p2Z) = pZ. Let a ∈ γ(p3Z), then ∃ b = p2 ∈ R − p3Z with a ? b = {p2a, qap2} ⊆
p3Z. So p3 divides any elements in a ? b implies that p | a. Thus a ∈ pZ. Now, let a ∈ pZ, then
b = p2 satisfies a ? b = {p2a, qap2} ⊆ p3Z. Hence ∃ b = p2 ∈ R− p3Z with a ? b ⊆ p3Z. Thus
a ∈ γ(p3Z), and hence γ(p3Z) = pZ, where pZ is a hyperideal of R. Similarly, ∀ n > 3, the
hyperideals I = pnZ and J = qnZ are primal hyperideals of R with γ(pnZ) = pZ, γ(qnZ) =
qZ, where pZ and qZ are hyperideals of R.
(ii) Let a ∈ pZ, then b = q satisfy that a ? b = {p2q, pq2} ⊆ pqZ. Thus ∃ b = q ∈ R − pqZ
such that a ? b = {p2q, pq2} ⊆ pqZ implies that a ∈ γ(pqZ), and hence pZ ⊆ γ(pqZ). Now, let
a ∈ qZ, then b = p satisfy that a ? b = {p2q, pq2} ⊆ pqZ. Then ∃ b = p ∈ R − pqZ such
that a ? b = {p2q, pq2} ⊆ pqZ. Therefore, a ∈ γ(pqZ), and hence qZ ⊆ γ(pqZ). Therefore,
pZ ∪ qZ ⊆ γ(pqZ). Let a ∈ γ(pqZ). Then ∃ b ∈ R − pqZ such that a ? b ⊆ pqZ. Thus pq di-
vides any elements in a ? b. But pq - b, implies that pq | a. Hence we have p | a or q | a. Thus
a ∈ pZ ∪ qZ and hence γ(pqZ) = pZ ∪ qZ is not a hyperideal of R. So J = pqZ is not a primal
hyperideal of R.

Example 4.4. Consider the hyperring (Z, +, ?) in Example 2.7. The hyperideal 16Z is a primal
hyperideal of R, with γ(16Z) = 2Z, which is a hyperideal of R, by Theorem 4.3 (i). But, the
hyperideal 6Z is not a primal hyperideal ofR,with γ(10Z) = 2Z∪3Z,which is not a hyperideal
of R, by Theorem 4.3 (ii).

Theorem 4.5. If Q is a primary hyperideal of R, then Q is a primal hyperideal of R.
Proof. To show that Q is a primal hyperideal of R, it is enough to show that γ(Q) =

√
Q. Let

a ∈
√
Q, then there exists n > 0, such that an ⊆ Q.

Let n be the smallest positive integer such that an ⊆ Q. By induction, if n = 1, then a ∈
Q ⊆ γ(Q), because Q is a proper i.e., 1 6∈ Q with a ? 1 ⊆ Q. If n > 1, then an−1 ? a ⊆
Q with an−1 6⊆ Q, we get that a ∈ γ(Q). Thus,

√
Q ⊆ γ(Q).

Conversely, let a ∈ γ(Q), then there exists c ∈ R − Q with a ? c ⊆ Q, thus Q is primary gives
an ⊆ Q, for some n ∈ N. which implies that a ∈

√
Q. Therefore, γ(Q) =

√
Q and so γ(Q) is a

hyperideal of R.

Since by definition every prime hyperideal of R is primary, then we can conclude the following
result.

Corollary 4.6. If I is a prime hyperideal of R, then I is a primal hyperideal of R.

The converse of Corollary 4.6, need not be true.

Example 4.7. Consider the hyperring (Z, +, ?) in Example 2.7. 8Z is a primary hyperideal
of R, let a ? b ⊆ 8Z, for any a, b ∈ R, then 8 | ab. Therefore 2 | a or 4 | b. Hence a2 ⊆
8Z or b2 ⊆ 8Z. Which implies by Theorems 4.5 and 4.3 (i), 8Z is a primal hyperideal of
R, with γ(8Z) = 2Z,which is a hyperideal ofR. But 8Z is not a prime hyperideal ofR, because
2 ? 4 = {16, 24} ⊆ 8Z, but neither 2 ∈ 8Z nor 4 ∈ 8Z.

Example 4.8. Suppose the set of all congruence classes of integers modulo 4, i.eZ4 = {0, 1, 2, 3}
and its multiplicative subgroup of units G = {1, 3} and construct R as Z4/G, i.e.
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R = {rG, r ∈ Z4} = {r, r ∈ Z4}

There is: 0 = {0}, 1 = {1, 3} = 3, 2 = {2}.
Now on R define the hyperaddition ⊕ and multiplication ◦ by

r ⊕ s = {t, t
⋂
(r + s) 6= ∅}

r ? s = rs.

When computing e.g

1 + 1 = {1, 3}+ {1, 3} = {2, 0} = 2, 0.
1 + 2 = {1, 3}+ {2} = {1, 3} = 1.
2 + 2 = {2}+ {2} = 0.
For simplicity in the table, we will omit the set prackets.

Table 1: The hyperaddition ⊕ and the hypermultiplication ? as in the following tables:

⊕ 0 1 2

0 0 1 2

1 1 0, 2 1

2 2 1 0

? 0 1 2

0 0 0 0

1 0 1 2

2 0 2 0

The hyperideals: I0 = {0}, I1 = {0, 2}, where I1 is a maximal, an irreducible and a prime
hyperideal. By Corollary 4.6, I1 is a primal hyperideal. On the other hand, I0 is not a prime
hyperideal. Because 2 ? 2 = 0. But 2 6∈ I0. Also I0 is primary hyperideal in a hyperring R, let
r ? s ⊆ I0, for any r, s ∈ R, then we have the following cases (noting that R is a commutative)

(i) r = 0 and s ∈ {0, 1, 2} implies r
2 ⊆ I0, i.e.n = 2.

(ii) r = s = 2 implies 2
2
⊆ I0, i.e.n = 2.

Note that, I0 = {0} is primal hyperideal of R. Since γ(I0) =
√
I0 = {0, 2}, which is the

hyperideal I1.

Theorem 4.9. [4] If Q is a primary Cu hyperideal of a multiplicative hyperring (R,+, ?), then√
Q is a Cu prime hyperideal of R.

Since by Corollary 4.6, every prime hyperideal of R is a primal we can conclude by Theorem
4.9, the following results.

Corollary 4.10. Suppose that Q is a primary Cu hyperideal of R. Then
√
Q is a primal Cu

hyperideal of R.
Proof. By Theorem 4.9,

√
Q is a prime Cu hyperideal of R, then by Corollary 4.6,

√
Q is a

primal Cu hyperideal of R.

Theorem 4.11. Let I be an irreducible hyperideal of R, then I is a primal hyperideal of R.
Proof. Assume that I is irreducible hyperideal of R, we need to show that γ(I) is a hyperideal
of R. Let a, b ∈ γ(I), then I ⊂ (I : a) and I ⊂ (I : b), I is irreducible hyperideal of R gives,
I ⊂ (I : a) ∩ (I : b) ⊆ (I : a+ b), hence a+ b 6∈ I , then a+ b ∈ γ(I). Finally, if r ∈ R, then
I ⊂ (I : a) ⊆ (I : r ? a) show that r ? a is not prime to I which implies that r ? a ⊆ γ(I), and
the proof is complete.

The converse of Theorem 4.11, need not be true.

Example 4.12. Consider the ring (Z6, ⊕, �), that for all a, b ∈ Z6, a⊕ b and a� b are remain-
der of a+b

6 and a.b
6 where ” + ” and "." are ordinary addition and multiplication for all a, b ∈

Z6. For all a, b ∈ Z6, we define the hyperoperation
a ? b = {0, ab, 2ab, 3ab, 4ab, 5ab}. Then R = (Z6, ⊕, ?) is a commutative multiplicative
hyperring. The addition and the hypermultiplication as in the following tables:
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⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

? 0 1 2 3 4 5
0 {0} {0} {0} {0} {0} {0}
1 {0} Z6 {0, 2, 4} {0, 3} {0, 2, 4} Z6

2 {0} {0, 2, 4} {0, 2, 4} {0} {0, 2, 4} {0, 2, 4}
3 {0} {0, 3} {0} {0, 3} {0} {0, 3}
4 {0} {0, 2, 4} {0, 2, 4} {0} {0, 2, 4} {0, 2, 4}
5 {0} Z6 {0, 2, 4} {3, 0} {2, 4, 0} Z6

The all hyperideals: I0 = {0}, I1 = {0, 2, 4}, I2 = {0, 3}. I1, I2 are maximal, prime, pri-
mary, irreducible and primal hyperideals. Note that, I0 is neither prime nor primary hyper-
ideal, because 2 ? 3 = {0} ⊆ I0, but 2 6∈ I0 and 3 6∈ I0. Also I0 is not a primary hyperideal of
R, since 2 ? 3 = {0} ⊆ I0, 2 6∈ I0, and ∀ n > 0 we have 3

n
= {0, 3} 6⊆ I0, and also 2 ? 3 =

{0} ⊆ I0, 3 6∈ I0, and ∀ n > 0 we have 2
n
= {0, 2, 4} 6⊆ I0. Moreover, I0 is primal hyperideal

of R with γ(I0) = {0, 2, 4} is a hyperideal of R, but it is reducible hyperideal of R.

Every hyperideal is contained in a prime hyperideal, hence a primal hyperideal. Now, we can
conclude the following result.

Theorem 4.13. Let R be a multiplicative hyperring. Then every hyperideal I of R is an inter-
section of all primal hyperideals of R, which contains I.
Proof. Let I be a hyperideal of R, and {Pα}α∈Γ be collection of all primal hyperideals of R,
which contains I. We show that I = ∩α∈Γ{Pα}. Clearly I ⊆ ∩α∈Γ{Pα}. For reverse of inclu-
sion, let x 6∈ I. Set

Σ = {J:J hyperideal, I ⊆ J, x 6∈ J}. Then I ∈ Σ, so Σ 6= φ.

It is clear that (Σ,⊆) is a poset. By Zorn Lemma, Σ has a maximal element. Let K be a maximal
element of Σ, we claim that Σ is irreducible. If K = K1 ∩ K2 where K1 ⊂ K and K2 ⊂ K,
maximality of K implies that x ∈ K1 and x ∈ K2. Therefore x ∈ K, a contradiction. This
shows that K is irreducible, and so K is primal by Theorem 4.11. Hence x 6∈ K implies that
x 6∈ ∩α∈ΓPα. Therefore ∩α∈ΓPα ⊆ I and so ∩α∈ΓPα = I.

Theorem 4.14. Let R be a Noetherian multiplicative hyperring. Then every proper hyperideal
is an intersection of finitly many primal hyperideals of R.
Proof. Let Σ denotes the sets of all proper hyperideal of R, such that I is not a finite intersection
of primal hyperideals, we claim that Σ = φ. For if not, Σ has a maximal element K. But K is
not primal. Thus K is not irreducible by Theorem 4.11 and so K = K1 ∩ K2, where K1 and
K2 are finite intersction of primal hyperideals of R, and so is K, a contradiction. Hence every
hyperideal is an intersection of finitly many primal hyperideals of R.

Definition 4.15. Let I be a hyperideal of a hyperring R and P be prime hyperideal of R that
contains I. The isolated P -component of I, U(I, P ) is the intersection of all hyperideals which
contains I and are such that every element not in P is prime to them. That is, U(I, P ) = ∩J,
where J is a hyperideal with property that I ⊆ J and ∀ x 6∈ P, x is prime to J

Theorem 4.16. If I is a primal hyperideal of R with adjoint prime hyperideal P, then I =
U(I, P ).
Proof. Clearly, I ⊆ U(I, P ). Since U(I, P ) is the intersection of all hyperideals J with I ⊆ J
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and x 6∈ P, then x is prime to J and I is itself such a hyperideal, U(I, P ) ⊆ I. Hence I =
U(I, P ).

Theorem 4.17. Let R be a Noetherian multiplicative hyperring. Then every hyperideal is the
intersection of its upper isolated components U(I1, P1), U(I2, P2),
U(I3, P3), ..., U(In, Pn), where P1, P2, P3, ..., Pn are the adjoint prime hyperideals of all primal
hyperideals I1, I2, I3, ..., In, n is finite that contains I.
Proof. By Theorem 4.13, I = I1 ∩ I2 ∩ I3 ∩ ... ∩ In, where Ii is a primal hyperideal with Pi is
adjoint prime hyperideal, so by Theorem 4.16, Ii = U(Ii, Pi). Thus I = ∩ni=1Ii = ∩ni=1U(Ii, Pi).

The following example shows that the intersection of finite primal hyperideal need not primal
hyperideal.

Example 4.18. If we continue with Example 2.7 and use its notation, then the subsets I =
2Z, J = 3Z are prime hyperideals of R, then by Corollary 4.6, each I, J is a primal hyperideal
of R. But I ∩ J = 6Z is not a primal hyperideal of R, see Example 4.4.

5 Primal hyperideals for multiplicative hyperring good homomorphism

Recall that if Q is a hyperideal of hyperring S and f : R −→ S is a good homomorphism, then
f−1(Q) is always a hyperideal of hyperring R. However, if I is a hyperideal of the hyperring R
and f : R −→ S be a good homomorphism, then f(I) need not to be a hyperideal of S.

Theorem 5.1. Let R and S be multiplicative hyperrings. If f : R −→ S is a good homo-
morphism and I, J be proper hyperideals of R and S, respectively. Then the followings are
satisfied:

(i) If I is a primal hyperideal containingKer(f) and f is an epimorphism, then f(I) is a primal
hyperideal of S.

(ii) If J is a primal hyperideal of S, then f−1(J) is a primal hyperideal of R.

Proof. (i) It easy to see that f(I) is a hyperideal of S. It is enough to show that f(γ(I)) =
γ(f(I)) is a hyperideal of S. Let y1, y2 ∈ f(γ(I)), s ∈ S and since f is onto, then there exist
x1, x2 ∈ γ(I), r ∈ R such that f(x1) = y1, f(x2) = y2 and f(r) = s. Since I is primal
hyperideal of R. Then γ(I) is a hyperideal of R, then x1 − x2 ∈ γ(I), r ? x1 ⊆ γ(I). So that

y1− y2 = f(x1)− f(x2) = f(x1−x2) ∈ f(γ(I)), s ? y1 = f(r) ? f(x1) = f(r ?x1) ⊆ f(γ(I)).

So f(γ(I)) is a hyperideal of S. Finally, let a ∈ γ(f(I)), then ∃ b ∈ R− f(I) such that a ? b ⊆
f(I). Now I ⊆ γ(I), then f(I) ⊆ f(γ(I)) and also f(I) ⊆ γ(f(I)), and so ∃ b ∈ R − f(γ(I))
such that a ? b ⊆ f(γ(I)), which implies that a ∈ f(γ(I)). Conversly, let y ∈ f(γ(I)), implies
y = f(r) ∈ S for some r ∈ γ(I). Then r ∈ R and ∃c ∈ R − I such that r ? c ⊆ I. Hence
f(r?c) = f(r)?f(c) ⊆ f(I) for some f(c) ∈ S−f(I). Hence, y = f(r) ∈ γ(f(I)). Therefore
I is primal hyperideal of S.
(ii) It easy to see that f−1(J) is a hyperideal of R. It enough to show that f−1(γ(J)) =
γ(f−1(J)) is a hyperideal of R. Let a1, a2 ∈ f−1(γ(J)), r ∈ R, then f(a1), f(a2) ∈
γ(J), f(r) ∈ S. Since J is a primal hyperideal of S. Then γ(J) is a hyperideal of S. So
that f(a1) − f(a2) = f(a1 − a2) ∈ γ(J), and also f(r) ? f(a1) = f(r ? a1) ⊆ γ(J). There-
fore, a1 − a2 ∈ f−1(γ(J)), and also r ? a1 ⊆ f−1(γ(J)). Hence f−1(γ(J)) is a hyperideal of
R. Finally, let a ∈ γ(f−1(J)), then ∃ b ∈ R−(f−1(J)) such that a?b ⊆ f−1(J). Now J ⊂ γ(J),
then f−1(J) ⊆ f−1(γ(J)) and also f−1(J) ⊆ γ(f−1(J)), then ∃ b ∈ R − f−1(γ(J)) such
that a ? b ⊆ f−1(γ(J)), which implies that a ∈ f−1(γ(J)). Conversly, let x ∈ f−1(γ(J)), im-
plies x = f−1(s) ∈ R for some s ∈ γ(J). Then, s ∈ S and ∃b ∈ S−J such that s?b ⊆ J. Hence
f−1(s?b) ⊆ f−1(s)?f−1(b) ⊆ f−1(J) for some f−1(s) ∈ R−f−1(J), by definition 1.24. Hence
x = f−1(s) ∈ γ(f−1(J)). Therefore, f−1(γ(J)) = γ(f−1(J)). Hence f−1(J) is a primal hy-
perideal of R.

One can show that all hyperideal of R/I is of the form J/I where J is a hyperideal of
R containing I, since the natural homomorphism φ : R −→ R/I, φ(r) = r + I is a good
epimorphism, [7]. The next theorem investigate the relation between the primal hyperideal of R
and R/I, for some hyperideal I of R containing J.
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Theorem 5.2. Let I, J be proper hyperideals of R, with J ⊆ I, I is a primal hyperideal of R iff
I/J is a primal hyperideal of R/J.
Proof. To prove this result, we must show that γ(I/J) = γ(I)/J .
Let a+J ∈ γ(I/J), then there exist b+J ∈ R−(I/J) such that (a+J)?(b+J) = (a?b)+J ⊆
I/J . So there exist b ∈ R − I such that a ? b ⊆ I, which implies that a ∈ γ(I). Therefore
a+ J ∈ γ(I)/J. Conversely, let a+ J ∈ γ(I)/J, then a ∈ γ(I), then there exist b ∈ R− I such
a ? b ⊆ I. Therefore, there exist b+ J ∈ R− (I/J) such that (a+ J) ? (b+ J) = (a ? b) + J ⊆
I/J and so a+ J ∈ γ(I/J).

Corollary 5.3. Let R and S be multiplicative hyperrings. If f : R −→ S be a good homorphism
and I, J be hyperideals of R and S, respectively. Then the followings are satisfied:

(i) If I is a primary hyperideal containing Ker(f) and f is an epimorphism, then f(I) is a
primal hyperideal of S.

(ii) If J is a primary hyperideal of S, then f−1(J) is a primal hyperideal of R.

Proof. (i) and (ii) Follows from Theorem 4.5, 5.1.

Corollary 5.4. Let I ⊆ Q be hyperideals of R, then

(i) If Q is a primary hyperideal of R. Then Q/I is a primal hyperideal of R/I.

(ii) If Q is a Cu primary hyperideal of R containing I. Then
√
Q/I is a Cu primal hyperideal

of R/I.

Proof. (i) Follows from Theorem 4.5, 5.2.
(ii) Follows from Corollary 4.10, Theorem 5.2.

6 Conclusion

In this paper, we introduce the concepts of adjoint, n-adjoint, n-primly and primal hyperideals
over commutative multiplicative hyperrings.
Many results concerning these concepts are proved. Also, we discuss primal hyperideals on
hyperring homomorphism under special conditions. We also study primal hyperideals over
quotient hyperrings. Many interested examples are given. We recommend that this study can
be done on non commutative hyperrings.
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