Submanifolds of $N(\kappa)$ -contact metric manifolds

H. G. Nagaraja and Dipansha Kumari

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Keywords and phrases: Anti-invariant submanifolds, D-conformal curvature tensor.

Abstract. Anti-invariant submanifolds of $N(\kappa)$ -contact metric manifolds are studied. We prove the condition for an anti-invariant submanifold of $N(\kappa)$ -contact metric manifold to be Sasakian, flat or constant ξ -sectional and ϕ -sectional curvature.

1 Introduction

Chen and Ogiue [6], Kon [10] studied anti-invariant submanifolds of Kaehlerian manifolds and Yano [15], Yano and Kon [16] studied anti-invariant submanifolds of Sasakian manifolds. Later Ishihara [9], Hasan Sahid ([11] and [12]), Sular et al [13] made an extensive study of anti-invariant submanifolds of almost contact metric manifolds. In [4], it has been shown by Blair that if in a contact metric manifold M, the Ricci operator Q and a (1,1) tensor ϕ commute then M is either Sasakian or flat or of constant ξ -sectional curvature and constant ϕ -sectional curvature. In this paper, we prove the conditions for commutativity of Q and ϕ in an anti-invariant contact submanifold of $N(\kappa)$ -contact metric manifold.

2 Preliminaries

Let M be an m dimensional almost contact metric manifold with almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type (1, 1), a vector field ξ , a 1-form η and a Riemannian metric g on M satisfying [2]:

$$\phi^{2} = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \cdot \phi = 0,
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$
(2.1)

for any $X, Y \in \Gamma(TM)$.

Let Φ denote the 2-form in M given by $\Phi(X,Y) = g(X,\phi Y)$. The κ -nullity distribution on a contact metric manifold M for a real number κ is a distribution [14]

$$N(\kappa): p \longrightarrow N_p(\kappa) = \{Z \in T_pM : R(X,Y)Z = \kappa(g(Y,Z)X - g(X,Z)Y)\}$$
 (2.2)

for any $X, Y \in T_pM$, where R denotes the Riemannian curvature tensor of M and T_pM denotes the tangent vector space of M at any point $p \in M$.

If the characteristic vector field ξ of a contact metric manifold belongs to the κ -nullity distribution, then

$$R(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y). \tag{2.3}$$

A contact metric manifold with $\xi \in N(\kappa)$ is called a $N(\kappa)$ -contact metric manifold. In an $N(\kappa)$ contact metric manifold the following relations hold:

$$(\nabla_X \phi)Y = g(X + hX, Y)\xi - \eta(Y)(X + hX), \tag{2.4}$$

$$h\xi = 0, (2.5)$$

$$h^2 = (\kappa - 1)\phi^2,\tag{2.6}$$

$$\nabla_X \xi = -\phi X - \phi h X,\tag{2.7}$$

$$(\nabla_Y h)X - (\nabla_X h)Y = 2(\kappa - 1)g(Y, \phi X)\xi + (1 - \kappa)(\eta(Y)\phi X - \eta(X)\phi Y) + \eta(Y)\phi hX - \eta(X)\phi hY,$$
(2.8)

for all $X, Y \in \Gamma(TM)$, where h is a symmetric tensor and ∇ is the Levi-Civita connection on the manifold M.

In 1983, Chuman [7] defined D-conformal curvature tensor B as a tensor field on an n-dimensional (n > 4) Riemannian manifold (M, g) by

$$B(X,Y)Z = R(X,Y)Z + \frac{1}{n-3} [S(X,Z)Y - S(Y,Z)X + g(X,Z)QY - g(Y,Z)QX + S(Y,Z)\eta(X)\xi - S(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)QX - \eta(X)\eta(Z)QY] - \frac{K-2}{n-3} [g(X,Z)Y - g(Y,Z)X] + \frac{K}{n-3} [g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X],$$
(2.9)

where $K = \frac{r+2(n-1)}{n-2}$, Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M.

Let N be an (2n+1)- dimensional immersed submanifold of M. Then the Gauss and Weingarten formulas are respectively given by

$$\nabla_X Y = \tilde{\nabla}_X Y + \sigma(X, Y) \tag{2.10}$$

and

$$\nabla_X V = -A_V X + \tilde{\nabla}_Y^{\perp} V \tag{2.11}$$

for any $X,Y\in\Gamma(TN)$ and $V\in\Gamma(TN^{\perp})$, where $\sigma,\tilde{\nabla},\tilde{\nabla}^{\perp}$ and A denote respectively the second fundamental form, Levi-civita connection, the normal connection and the shape operator on the submanifold N. The second fundamental form and shape operator are related by

$$g(A_V X, Y) = g(\sigma(X, Y), V), \tag{2.12}$$

where g denotes the induced metric on N as well as the Riemannian metric g on M. The covariant derivative of σ is given by

$$(\nabla_X \sigma)(Y, Z) = \tilde{\nabla}_X^{\perp} \sigma(Y, Z) - \sigma(\tilde{\nabla}_X Y, Z) - \sigma(Y, \tilde{\nabla}_X Z), \tag{2.13}$$

for any $X, Y, Z \in \Gamma(TN)$ and $V \in \Gamma(TN^{\perp})$.

Let $R_N(X,Y)Z$ and $R_M(X,Y)Z$ denote the Riemannian curvature tensors of the submanifold N and the ambient manifold M respectively. Then we have

$$R_M(X,Y)Z = R_N(X,Y)Z + (\nabla_X \sigma)(Y,Z) - (\nabla_Y \sigma)(X,Z) + A_{\sigma(X,Z)}Y - A_{\sigma(Y,Z)}X$$
(2.14)

for $X, Y, Z \in \Gamma(TN)$ [5].

If $X, Y \in \Gamma(TN)$ and $U, V \in \Gamma(TN^{\perp})$ then we have

$$g(R_M(X,Y)U,V) = g(R_N(X,Y)U,V) + g(\sigma(X,U),\sigma(Y,V))$$

$$-g(\sigma(Y,U),\sigma(X,V))$$
(2.15)

and

$$g(R_M(X,Y)U,V) = g(R_N^{\perp}(X,Y)U,V) - g([A_U, A_V]X,Y).$$
(2.16)

Here we recall few results which we will use in section 3.

Lemma A. [8] Let $M^{2m+1}(\phi, \xi, \eta, g)$ with $m \ge 2$ be a $N(\kappa)$ -contact metric manifold. Then the following relation holds:

$$R(X,Y)\phi Z - \phi R(X,Y)Z = \{(1-\kappa)(\eta(X)g(\phi Y,Z) - \eta(Y)g(\phi X,Z)) + \eta(X)g(\phi hY,Z) - \eta(Y)g(\phi hX,Z)\}\xi - g(Y + hY,Z)(\phi X + \phi hX) + g(X + hX,Z)(\phi Y + \phi hY) - g(\phi Y + \phi hY,Z)(X + hX) + g(\phi X + \phi hX,Z)(Y + hY) - \eta(Z)\{(1-\kappa)(\eta(X)\phi Y - \eta(Y)\phi X) + \eta(X)\phi hY - \eta(Y)\phi hX\}.$$
(2.17)

Theorem A. [3]Let M^{2n+1} be a contact metric manifold and suppose that $R(X,Y)\xi=0$ for all vector fields X and Y. Then M^{2n+1} is locally the product of a flat (n+1)-dimensional manifold and an n-dimensional manifold of positive constant curvature 4.

Theorem B.[4] Let M^3 be a contact metric manifold on which $Q\phi = \phi Q$. Then M^3 is either Sasakian, flat or of constant ξ -sectional curvature r < 1 and constant ϕ -sectional curvature -r.

3 Anti-invariant submanifold of $N(\kappa)$ -contact metric manifold

Let N be an (2n+1) dimensional anti-invariant submanifold of m dimensional $N(\kappa)$ -contact metric manifold M. Then we have $\phi(TN) \subset \Gamma(TN^{\perp})$ for $X \in \Gamma(TN)$ [1].

First of all, we shall prove the following result.

Theorem 3.1. There does not exist a totally umbilical anti-invariant submanifold of an $N(\kappa)$ -contact metric manifold.

Proof. The equation (2.7) in (2.10), for $Y = \xi$ gives

$$-\phi X - \phi h X = \tilde{\nabla}_X \xi + \sigma(X, \xi). \tag{3.1}$$

Equating the tangential and normal components in (3.1), we obtain

$$\tilde{\nabla}_X \xi = 0 \tag{3.2}$$

and

$$\sigma(X,\xi) = \phi X - \phi h X. \tag{3.3}$$

For an anti-invariant submanifold N of $N(\kappa)$ -contact metric manifold M a straightforward computation gives the following:

$$A_{\phi Y}X = -g(X,Y)\xi + \eta(Y)X, \tag{3.4}$$

$$\tilde{\nabla}_X^{\perp} \phi Y = \phi(\nabla_X Y) - \eta(Y) h X, \tag{3.5}$$

$$\tilde{\nabla}_X^{\perp} \xi = -\phi X - \phi h X \tag{3.6}$$

and

$$A_{\xi}X = 0. \tag{3.7}$$

Next suppose that N is totally umbilical submanifold of M. Then we have

$$\sigma(X,Y) = g(X,Y)H. \tag{3.8}$$

From (3.3), we get

$$\sigma(\xi, \xi) = 0. \tag{3.9}$$

П

Using (3.9) in (3.8), we get

$$H=0$$
.

This contradiction proves the Theorem.

Theorem 3.2. An anti-invariant submanifold N of an $N(\kappa)$ -contact metric manifold M is locally isometric to $E^{(n+1)}(0) \times S^n(4)$ for n > 1.

Proof. Setting $Z = \xi$ in (2.14), we have

$$R_M(X,Y)\xi = R_N(X,Y)\xi + (\nabla_X\sigma)(Y,\xi) - (\nabla_Y\sigma)(X,\xi) + A_{\sigma(X,\xi)}Y - A_{\sigma(Y,\xi)}X. \quad (3.10)$$

Using (2.11), (2.13) and (3.2) in (3.10), we get

$$R_M(X,Y)\xi = R_N(X,Y)\xi - \sigma(\tilde{\nabla}_X Y, \xi) + \sigma(\tilde{\nabla}_Y X, \xi) - \nabla_Y \sigma(X, \xi) + \nabla_X \sigma(Y, \xi). \tag{3.11}$$

Employing (2.3), (2.10), (2.5), (2.6) and (3.2) in (3.11), we obtain

$$R_N(X,Y)\xi = 0.$$
 (3.12)

By Theorem A and (3.11), Theorem is proved.

We now prove the main result of the paper:

Theorem 3.3. Let N be a 3-dimensional anti-invariant submanifold of $N(\kappa)$ -contact metric manifold M. If the normal curvature tensor vanishes then N is either Sasakian, flat or of constant ξ -sectional curvature r < 1 and constant ϕ -sectional curvature -r.

Proof. Using (2.16), we write

$$g(R_M(X,Y)\phi Z,\phi W) = g(R_N^{\perp}(X,Y)\phi Z,\phi W) - g([A_{\phi Z},A_{\phi W}]X,Y),$$
 (3.13)

for any $X, Y, Z, W \in \Gamma(TN)$.

Using (3.4) in (3.13), a simple computation gives

$$g(R_{M}(X,Y)\phi Z,\phi W) = g(R_{N}^{\perp}(X,Y)\phi Z,\phi W) - \{g(X,W)g(\phi Y,\phi Z) - g(X,Z)g(\phi Y,\phi W) - (g(Y,Z)\eta(W) - g(Y,W)\eta(Z))\eta(X)\}.$$
(3.14)

Since N is an anti-invariant submanifold of M, (2.17) reduces to

$$R_{M}(X,Y)\phi Z = \phi R_{M}(X,Y)Z - g(Y,Z)(\phi X + \phi h X) + g(X,Z)(\phi Y + \phi h Y) - \eta(Z)\{(1-\kappa)(\eta(X)\phi Y - \eta(Y)\phi X) + \eta(X)\phi h Y - \eta(Y)\phi h X\},$$
(3.15)

for any $X, Y, Z \in \Gamma(TN)$. From (3.14) and (3.15), we get

$$g(R_{N}^{\perp}(X,Y)\phi Z,\phi W) = g(\phi R_{M}(X,Y)Z,\phi W) - g(Y,Z)g(\phi X + \phi h X,\phi W) + g(X,Z)g(\phi Y + \phi h Y,\phi W) - \eta(Z)\{(1-\kappa)(\eta(X) g(\phi Y,\phi W) - \eta(Y)g(\phi X,\phi W)) + \eta(X)g(\phi h Y,\phi W) - \eta(Y)g(\phi h X,\phi W)\} + g(X,W)g(\phi Y,\phi Z) - g(X,Z)g(\phi Y,\phi W) - (g(Y,Z)\eta(W) - g(Y,W)\eta(Z))\eta(X).$$
(3.16)

Using (2.15), (3.16) reduces to

$$g(R_{N}^{\perp}(X,Y)\phi Z,\phi W) = g(R_{N}(X,Y)Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(Y,Z),\sigma(X,W)) - \eta(R_{M}(X,Y)Z)\xi - g(Y,Z)g(\phi X + \phi h X,\phi W) + g(X,Z)g(\phi Y + \phi h Y,\phi W) - \eta(Z)\{(1-\kappa)(\eta(X) g(\phi Y,\phi W) - \eta(Y)g(\phi X,\phi W)) + \eta(X)g(\phi h Y,\phi W) - \eta(Y)g(\phi h X,\phi W)\} + g(X,W)g(\phi Y,\phi Z) - g(X,Z)g(\phi Y,\phi W) - (g(Y,Z)\eta(W) - g(Y,W)\eta(Z))\eta(X).$$
(3.17)

Using (2.1) and (2.2) in (3.17), we obtain

$$g(R_{N}^{\perp}(X,Y)\phi Z,\phi W) = g(R_{N}(X,Y)Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(Y,Z),\sigma(X,W)) + \kappa\{-g(Y,Z)\eta(X)\eta(W) + g(X,Z)\eta(Y)\eta(W) - g(X,W)\eta(Y)\eta(Z) + g(Y,W)\eta(X)\eta(Z)\}.$$
(3.18)

Now we calculate $g(\sigma(X,Z),\sigma(Y,W))$ and $g(\sigma(Y,Z),\sigma(X,W))$. We can write

$$g(\sigma(X,Z),\sigma(Y,W)) = g(A_{\sigma(X,Z)}Y,W). \tag{3.19}$$

From (2.11), we have

$$\nabla_Y \sigma(X, Z) = -A_{\sigma(X, Z)} Y - \tilde{\nabla}_Y^{\perp} \sigma(X, Z). \tag{3.20}$$

Applying ϕ on both sides of (3.20), we get

$$\nabla_Y \phi \sigma(X, Z) - (\nabla_Y \phi) \sigma(X, Z) = -\phi A_{\sigma(X, Z)} Y + \phi \tilde{\nabla}_Y^{\perp} \sigma(X, Z). \tag{3.21}$$

Using (2.4) and (2.11) in (3.21), we obtain

$$-A_{\phi\sigma(X,Z)}Y + \tilde{\nabla}_{Y}^{\perp}\phi\sigma(X,Z) = -\phi A_{\sigma(X,Z)}Y + \phi \tilde{\nabla}_{Y}^{\perp}\sigma(X,Z). \tag{3.22}$$

Again applying ϕ on both sides of (3.22) and equating the tangential parts, we obtain

$$A_{\sigma(X,Z)}Y - \eta(A_{\sigma(X,Z)}Y)\xi = 0. \tag{3.23}$$

Using (2.12) in (3.23), we obtain

$$A_{\sigma(X,Z)}Y = 0. (3.24)$$

In view of (3.19) and (3.24), (3.18) reduces to

$$-\phi R_N^{\perp}(X,Y)\phi Z = R_N(X,Y)Z - \kappa \{g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\}.$$
(3.25)

From (3.25) it follows that the normal curvature of N vanishes if and only if

$$R_N(X,Y)Z = \kappa \{ g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \}.$$
 (3.26)

Using (3.26), we obtain

$$S_N(X,Y) = \kappa \{ q(X,Y) + (2n-1)\eta(X)\eta(Y) \}$$
(3.27)

and

$$QX = \kappa X + \kappa (2n - 1)\eta(X)\xi. \tag{3.28}$$

From (3.28), it follows that

$$Q\phi = \phi Q. \tag{3.29}$$

From Theorem B and equation (3.29), the Theorem is proved.

Theorem 3.4. An anti-invariant submanifold of N(-1)-contact metric manifold with vanishing normal curvature tensor is D-conformally flat.

Proof. From (2.9), for $n \ge 2$, we write

$$B(X,Y)Z = R_{N}(X,Y)Z + \frac{1}{2(n-1)}[S_{N}(X,Z)Y - S_{N}(Y,Z)X + g(X,Z)QY - g(Y,Z)QX + S_{N}(Y,Z)\eta(X)\xi - S_{N}(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)QX - \eta(X)\eta(Z)QY] - \frac{K-2}{n-3}[g(X,Z)Y - g(Y,Z)X]$$

$$+ \frac{K}{n-3}[g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X],$$
(3.30)

where $r=4\kappa n$ and $K=\frac{4n(\kappa+1)}{2n-1}$. Substituting (3.26) and (3.27) in (3.30), we obtain

$$B(X,Y)Z = -\frac{\kappa + 1}{(n-1)(2n-1)} [g(X,Z)Y - g(Y,Z)X]$$

$$+ \frac{2n(\kappa + 1)}{(n-1)(2n-1)} [g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi$$

$$+ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X],$$
(3.31)

 \Box

completing the proof.

References

- [1] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, Universitatea Al. I. Cuza din Iasi. Analele Stiintifice. Sectiunea 1a: Matematica, 27(1), 163 170 (1981).
- [2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, (1976).
- [3] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J, 29, 319 324 (1977).
- [4] D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\phi=\phi Q$, Kodai Math. J., 13(3), 391 401 (1990).
- [5] B. Y. Chen, Geometry of submanifolds, Pure and Applied Mathematics, Marcel Dekker, Inc., New York. 22 (1973).
- [6] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193, 257-266 (1974).
- [7] G. Chuman, On the D-conformal curvature tensor, Tensor, N.S., 46, 125 134 (1983).
- [8] U. C. De and A. A. Shaikh, Complex Manifolds and Contact Manifolds, Alpha Science International Ltd,(2009)
- [9] I. Ishihara, Anti-invariant submanifolds of a Sasakian space form, Kodai Math. J., 2, 171-186 (1979).
- [10] M. Kon, Totally real submanifolds in a Kaehlerian manifold, J. Differential Geometry. 11, 251-257 (1976).
- [11] M. H. Shahid, Anti-invariant submanifolds of a Kenmotsu manifold, Kuwait J. Sci. Engrg., 23(2), 145 151 (1996).
- [12] M. H. Shahid, Some results on anti-invariant submanifolds of a trans-Sasakian manifold, Bull. Malays. Math. Sci. Soc., 27(2), 117 127 (2004).
- [13] S. Sular, C. Ozgur and C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Journal of Mathematics and Statistics. 39(4), 535-543 (2010).
- [14] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math.J., 40, 441-448 (1988).
- [15] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential Geometry, 12(2), 153 170 (1977).
- [16] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms. I. Tohoku Math. J., 29(1), 9-23 (1977).

Author information

H. G. Nagaraja and Dipansha Kumari, Department of Mathematics, Bangalore University, Jnana Bharathi, Bengaluru-560056, INDIA.

E-mail: hgnraj@yahoo.com, dipanshakumari@gmail.com

Received: March 22, 2020 Accepted: May 16, 2020