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Abstract. Anti-invariant submanifolds of N(x)-contact metric manifolds are studied. We
prove the condition for an anti-invariant submanifold of N(x)-contact metric manifold to be
Sasakian, flat or constant £-sectional and ¢-sectional curvature.

1 Introduction

Chen and Ogiue [6], Kon [10] studied anti-invariant submanifolds of Kaehlerian manifolds and
Yano [15], Yano and Kon [16] studied anti-invariant submanifolds of Sasakian manifolds. Later
Ishihara [9], Hasan Sahid ([11] and [12]), Sular et al [13] made an extensive study of anti-
invariant submanifolds of almost contact metric manifolds. In [4], it has been shown by Blair that
if in a contact metric manifold M, the Ricci operator @ and a (1, 1) tensor ¢» commute then M
is either Sasakian or flat or of constant £-sectional curvature and constant ¢-sectional curvature.
In this paper, we prove the conditions for commutativity of () and ¢ in an anti-invariant contact
submanifold of N (r)-contact metric manifold.

2 Preliminaries

Let M be an m dimensional almost contact metric manifold with almost contact metric struc-
ture (¢, ¢, n,g) consisting of a tensor field ¢ of type (1,1), a vector field £, a 1-form 7 and a
Riemannian metric g on M satisfying [2]:

¢2:_I+n®£u 77(5):17 (;5&-:07 77¢201
forany X,Y € T'(T'M).

Let ® denote the 2-form in M given by ®(X,Y) = g(X, ¢Y). The s-nullity distribution on a
contact metric manifold M for a real number & is a distribution [14]

@2.1)

N(k):p— Ny(k) = {Z € T,M : R(X,Y)Z = s(g(Y, 2)X — g(X, 2)Y)}  (2.2)

forany X,Y € T, M, where R denotes the Riemannian curvature tensor of M and 7T}, M denotes
the tangent vector space of M at any point p € M.
If the characteristic vector field £ of a contact metric manifold belongs to the x-nullity distribu-
tion, then

R(X,Y)E = r(n(Y)X —n(X)Y). (2.3)

A contact metric manifold with £ € N (k) is called a N (x)-contact metric manifold. In an N (k)
contact metric manifold the following relations hold:

(Vxp)Y = g(X +hX,Y)E—n(Y)(X + hX), (2.4)

he =0, 2.5)
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W= (k= 1)¢?, (2.6)

Vx§=—0X — ¢hX, 2.7

(Vyh)X — (Vxh)Y =2(k — 1)g(Y, ¢X)€ + (1 — 6)(n(Y)$X — n(X)Y)

(2.8)
+n(Y)phX —n(X)phY,

for all X,Y € I'(T'M), where h is a symmetric tensor and V is the Levi-Civita connection on
the manifold M.

In 1983, Chuman [7] defined D-conformal curvature tensor B as a tensor field on an n-dimensional
(n > 4) Riemannian manifold (M, g) by

B(X,Y)Z = R(X,Y)Z + ﬁ[S(X, Z)Y = 5(Y,Z)X + g(X, 2)QY

—9(Y,Z)QX + S(Y, Z)n(X)¢ — S(X, Z)n(Y )&+ n(Y)n(2)QX

—n(X)n(2)QY] - n;[g(X, 2)Y —g(Y, 2)X] (2.9)

—n(Y)n(2)X],

r+2(n—1

where K = — = ), @ is the Ricci operator, S is the Ricci tensor and r is the scalar curvature

of M.
Let N be an (2n+1)- dimensional immersed submanifold of M. Then the Gauss and Weingarten
formulas are respectively given by

VxY =VxY +0(X,Y) (2.10)

and
VxV =—-Ay X + V%V (2.11)

forany X,Y € I(TN)and V € T(TN*'), where o, V, V+ and A denote respectively the second
fundamental form, Levi-civita connection, the normal connection and the shape operator on the
submanifold N. The second fundamental form and shape operator are related by

g(AVX7Y) :g(U(X7Y>7V)a (2.12)

where ¢ denotes the induced metric on NV as well as the Riemannian metric g on M.
The covariant derivative of ¢ is given by

(Vxo)Y,Z2) =Vx0(Y,Z) —a(VxY,Z) —o(Y,VxZ), (2.13)
forany X,Y,Z € T(TN)and V € [(TN%1).
Let Ry (X,Y)Z and Ry (X,Y)Z denote the Riemannian curvature tensors of the submanifold

N and the ambient manifold M respectively. Then we have

Ry (X,Y)Z =Rn(X,Y)Z+ (Vxo)(Y.Z) — (Vyo)(X,Z) + Aox,2)Y — Aoy, )X

(2.14)
for X,Y,Z € I'(TN) [5].
If X,Y € I(TN) and U,V € I(TN+') then we have

—9(e(Y,U),0(X,V))
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and
9(Ru(X,Y)U,V) = g(Rx (X, Y)U,V) — g([Av, Av] X, Y). (2.16)

Here we recall few results which we will use in section 3.
Lemma A. [8] Let M*™*1(¢,&,n,g) with m > 2 be a N(k)-contact metric manifold. Then the
following relation holds:

R(X,Y)¢Z = oR(X,Y)Z = {(1 = &) (n(X)g(¢Y, Z) = n(Y)g(¢X, Z))
+n(X)g(ohY, Z) — n(Y)g(ohX, Z)}¢
— g(Y + 1Y, Z)(¢X + 6hX)
+9(X + hX,Z) (Y + ¢hY) o1
— g(¢Y + ¢hY, Z)(X + hX)
+9(6X + ohX, Z)(Y + hY)
= (21 = &) (n(X)oY —n(Y)dX)
+n(X)phY —n(Y)phX}.

Theorem A. [3]Let M2"*! be a contact metric manifold and suppose that R(X,Y)¢ = 0 for all
vector fields X and Y. Then M?"*! is locally the product of a flat (n + 1)-dimensional manifold
and an n-dimensional manifold of positive constant curvature 4.

Theorem B.[4] Let M3 be a contact metric manifold on which Q¢ = ¢Q. Then M? is either
Sasakian, flat or of constant {-sectional curvature » < 1 and constant ¢-sectional curvature —r.

3 Anti-invariant submanifold of IV (x)-contact metric manifold

Let N be an (2n + 1) dimensional anti-invariant submanifold of m dimensional N (x)-contact
metric manifold M. Then we have ¢(TN) C T(TN*1) for X € T(TN) [1].

First of all, we shall prove the following result.

Theorem 3.1. There does not exist a totally umbilical anti-invariant submanifold of an N (k)-
contact metric manifold.

Proof. The equation (2.7) in (2.10), for Y = £ gives
—¢X — ¢ohX = Vx€& +0o(X, ). (3.1)
Equating the tangential and normal components in (3.1), we obtain
Vx€=0 3.2)

and
(X, &) = ¢pX — phX. (3.3)

For an anti-invariant submanifold NV of N (x)-contact metric manifold M a straightforward com-
putation gives the following:

VxoY = ¢(VxY) - n(Y)hX, (3.5)
Vi€ =—¢X — phX (3.6)

and
AeX =0. 3.7

Next suppose that N is totally umbilical submanifold of M. Then we have

o(X,Y)=g(X,Y)H. (3.8)
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From (3.3), we get
(&€ =0. (3.9)

Using (3.9) in (3.8), we get
H=0.

This contradiction proves the Theorem. O

Theorem 3.2. An anti-invariant submanifold N of an N (k)-contact metric manifold M is locally
isometric to E™+D(0) x S™(4) forn > 1.

Proof. Setting Z = £ in (2.14), we have
Ry (X,Y){ = Ry(X,Y)E+ (Vxo)(Y,€) — (Vyo)(X,§) + Agx,e)Y — Aoy X, (3.10)
Using (2.11), (2.13) and (3.2) in (3.10), we get
Ru(X,Y)E = Ry(X,Y)E = o(VxY, &) +0(Vy X, €) — Vyo(X,€) + Vxo(Y,6). (3.11)
Employing (2.3), (2.10), (2.5), (2.6) and (3.2) in (3.11), we obtain
Ry(X,Y)¢=0. (3.12)
By Theorem A and (3.11), Theorem is proved. O

We now prove the main result of the paper:

Theorem 3.3. Let N be a 3-dimensional anti-invariant submanifold of N(k)-contact metric
manifold M. If the normal curvature tensor vanishes then N is either Sasakian, flat or of con-
stant -sectional curvature v < 1 and constant ¢-sectional curvature —r.

Proof. Using (2.16), we write
9(Ru(X,Y)9Z, oW) = g(Ry (X, Y)9Z, oW) — g([Asz, Agw]X,Y), (3.13)

forany X|Y,Z,W € T(TN).
Using (3.4) in (3.13), a simple computation gives
9(Rm(X,Y)9Z, oW) = g(Ry (X, Y)$Z, oW) — {g(X, W)g(8Y, $2)
—9(X, Z)g(oY, oW ) — (g(Y, Z)n(W) (3.14)
—g(Y,W)n(Z))n(X)}.

Since N is an anti-invariant submanifold of M, (2.17) reduces to

Ru(X,Y)9Z = ¢Ry (X, Y)Z — g(Y, Z)(¢pX + ohX)
+ 9(X, 2) (@Y + ¢hY) — n(Z){(1 — &) (n(X)oY (3.15)
—n(Y)pX) +n(X)phY —n(Y)phX},

forany XY, Z € I'(T'N). From (3.14) and (3.15), we get

9(RN(X,Y)9Z, oW) = g(¢Rm (X, Y) Z,oW) — g(Y, Z)g(¢X + ¢hX, W)
+9(X, Z)g(¢Y + ohY, W) — n(Z){(1 — £)(n(X)
9(6Y, oW) — n(Y)g(¢X, oW)) + 1(X)g(dhY, W)
= n(Y)g(¢hX, oW)} + (X, W)g(8Y, ¢Z)
—9(X, 2)g(8Y, oW) — (9(Y, Z)n(W)
—g(Y,W)n(Z))n(X).

(3.16)
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Using (2.15), (3.16) reduces to
9(Ry(X,Y)9Z, W) = g(RN(X.Y)Z,W) + g(0(X, Z),a(Y,W))
—g9(o(Y,Z),0(X,W)) = n(Ru(X,Y)Z)¢
—9(Y, Z)g(6X + ¢oh X, oW)
+9(X, 2)g(dY + ¢hY, oW) — n(Z){(1 — ) (n(X)
9(¢Y, oW) = n(Y)g(¢X, dW)) + n(X)g(shY, ¢W)
—n(Y)g(ohX, oW)} + g(X, W)g(eY, ¢Z)
—9(X,Z2)g(¢Y, W) — (9(Y, Z)n(W)
— g(Y,W)n(Z))n(X).
Using (2.1) and (2.2) in (3.17), we obtain
9(BN(X,Y)0Z,¢W) = g(Rn(X,Y)Z,W) + g(0(X, Z),0(Y,W))
—g(o(Y,Z),0(X,W)) + r{—g(Y, Z)n(X)n(W)
+9(X, Z)n(Y )n(W) — g(X, W)n(Y')n(Z)
+ 9(Y, W)n(X)n(Z)}.

Now we calculate g(o(X, Z),o(Y,W)) and g(o(Y, Z), 0 (X, W)).
We can write
g(O'(X, Z)7 U(Y7 W)) = g(AU(X,Z)Ya W)

From (2.11), we have
Vyo(X,Z) = —Ayx.2Y — Vyo(X, Z).
Applying ¢ on both sides of (3.20), we get
Vy¢o (X, Z) = (Vy$)o(X, Z) = —pAs(x 7)Y + ¢Vyo(X, Z).
Using (2.4) and (2.11) in (3.21), we obtain
—Agox,2)Y + V3 00(X,Z) = —pA,x.2)Y + ¢Vyo(X, Z).

Again applying ¢ on both sides of (3.22) and equating the tangential parts, we obtain

Agix,2)Y = 1(As(x,2)Y)E = 0.

Using (2.12) in (3.23), we obtain
AO'(X,Z)Y = O

In view of (3.19) and (3.24), (3.18) reduces to
~¢RN(X,Y)0Z = Ry (X,Y)Z — w{g(Y, Z)n(X)€ — g(X, Z)n(Y )¢
+n(Y)n(2)X —n(X)n(Z)Y}.

From (3.25) it follows that the normal curvature of IV vanishes if and only if

RN (X,Y)Z = w{g(Y, Z)n(X)€ — g(X, Z)n(Y)E +n(Y)n(Z)X —n(X)n(Z)Y}.

Using (3.26), we obtain
Sn(X,Y) = s{g(X,Y) + (2n — D)n(X)n(Y)}
and
QX = kX +r(2n — n(X)E.
From (3.28), it follows that
Qd = 9Q.

From Theorem B and equation (3.29), the Theorem is proved.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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(3.27)

(3.28)

(3.29)
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Theorem 3.4. An anti-invariant submanifold of N(—1)-contact metric manifold with vanishing
normal curvature tensor is D-conformally flat.

Proof. From (2.9), for n > 2, we write

B(X,Y)Z = Ry(X,Y)Z + [Sn(X, 2)Y — Sn(Y,Z)X + g(X, Z2)QY

1
2(n—1)
—9(Y,2)QX + Sn(Y, Z)n(X)¢ — Sn(X, Z)n(Y)E +n(Y)n(Z2)QX

2

—n(Xm(z)QY] - -
K

+ m[g()@ Z)n(Y)E —g(Y, Z)n(X)§ +n(X)n(2)Y

—n(Y)n(2)X],

4n(k+1)

[9(X,2)Y — g(Y, Z)X] (3.30)

where r = 4kn and K = — —=.
Substituting (3.26) and (3.27) in (3.30), we obtain

K41
B(X,Y)Z = —m[g()(a 2)Y —g(Y, Z)X]
2n(k + 1) (3.31)
m[g(){a Z)n(Y)E —g(Y, Z)n(X)€
+n(X)n(2)Y —n(Y)n(2)X],
completing the proof. O
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