Characterization of $*$ - semimultipliers in the prime rings

Mohammad Aslam Siddeeque and Ali Ahmed Abdullah
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16R60, 16Rxx; Secondary 16W25, 16W10, 16N60.
Keywords and phrases: Prime ring, derivation, involution, maximal symmetric ring of quotients, functional identity (F.I.), rings with polynomial identity (P.I.).

The authors would like to thank the referee for reading the manuscript carefully.

Abstract

Let R be an associative ring. A $*$ - semimultiplier is an additive map $F: R \rightarrow R$ such that $F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y)$ where g is some additive map and $F(g(x))=$ $g(F(x))$ for all $x \in R$. We make extensive use of functional identities defined in prime ring R of the forms $x E_{1}(y)+y E_{2}(x)=0$ or $x E_{1}(y)+y E_{2}(x) \in Z(R) \subseteq C$ where E_{1}, E_{2} are any arbitrary functions on the prime ring R and $Z(R), C$ are the center and the extended centroid of R respectively. We have proved that in a prime ring R under some additional conditions, a $*-$ semimultiplier $F: R \rightarrow R$ is a map given by $F(x)=\lambda x+\mu(x)$, where $\lambda \in C$ and $\mu: R \rightarrow C$. We have also shown that a prime ring admitting the $*$-semimultiplier satisfies S_{4}, the standard identity of degree 4 under some suitable conditions. Further, some other important results are also incorporated.

1 Introduction

In the entire paper, R will denote an associative prime ring with an involution $*$ and $Z(R)$ its center. We first recall a prime ring R that is whenever $a R b=(0)$, then either $a=0$ or $b=0$. An additive map $*: R \rightarrow R$ is called an involution, if $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in R$ and $\left(x^{*}\right)^{*}=x$ for all $x \in R$. A derivation is an additive map $d: R \rightarrow R$ satisfying $d(x y)=x d(y)+d(x) y$ for all $x, y \in R$. An additive map $G: R \rightarrow R$ satisfying $G(x y)=x d(y)+G(x) y$ for all $x, y \in R$ is called a generalized derivation associated with derivation d.

Bergen [8] first gave the definition of semiderivation that is an additive map $H: R \rightarrow R$ with an associated function $g: R \rightarrow R$ such that $H(x y)=g(x) H(y)+H(x) y=x H(y)+$ $H(x) g(y)$ for all $x, y \in R$ and $H(g(x))=g(H(x))$ for all $x \in R$. If g is an identity map then a semiderivation is just a derivation. A lot of work has been done in this direction. See ([13],[7], [8], [12]).

An additive map $T: R \rightarrow R$ is called a left (resp. right) centralizer map or left (resp. right) multiplier map if $T(x y)=T(x) y$ (resp. $T(x y)=x T(y))$, holds for all $x, y \in R$. A centralizer is an additive map which is both a right as well as a left centralizer. An ample of work has been done on left (resp. right) centralizers in prime and semiprime rings during the last few decades. See ([18] ,[17] [19]).

In a parallel fashion, an additive map $T: R \rightarrow R$ is said to be a left $*$-centralizer (resp. reverse left $*$-centralizer) if $T(x y)=T(x) y^{*}\left(\right.$ resp. $\left.T(x y)=T(y) x^{*}\right)$ holds for all $x, y \in R$ and the definition of a right $*$ - centralizer (resp. reverse right $*$-centralizer) should be self explanatory. An additive mapping $T: R \rightarrow R$ is called a $*$-centralizer if T is both a left and right $*$-centralizer. An additive map $T: R \rightarrow R$ is said to be a Jordan left $*$-centralizer if $T\left(x^{2}\right)=T(x) x^{*}$ is satisfied for all $x \in R$. We emphasize that for some fixed element $a \in R$, the mapping $x \rightarrow a x^{*}$ is a reverse left $*$-centralizer and $x \rightarrow x^{*} a$ is a reverse right $*$-centralizer on R. Finally, α-centralizer
also have been studied, where $\alpha: R \rightarrow R$ is an endomorphism of R. See [1].
Deriving motivation from centralizers like α-centralizers K.H. Kim [15], after a simple adaptation of definition of a semiderivation, gave the definition of a semimultiplier. An additive map $F: R \rightarrow R$ is called a semimultiplier with an associated additive surjective map $g: R \rightarrow R$ if $F(x y)=F(x) g(y)=g(x) F(y)$ for all $x, y \in R$ and $F(g(x))=g(F(x))$ for all $x \in R$. Further, an additive map $F: R \rightarrow R$ is called a -semimultiplier with associated surjective map $g: R \rightarrow$ R if $F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y)$ for all $x, y \in R$ and $F(g(x))=g(F(x))$ for all $x \in R$. K.H. Kim [16] gave the definition of $*$-semimultiplier and studied the commutativity of prime ring admitting a $*$-semimultiplier. We have introduced a generalized form of a $*$-semimultiplier by considering the associated map $g: R \rightarrow R$ to be an arbitrary function instead of surjective map. We now give an example for a $*$-semimultiplier given as below.

Example 1.1. Consider $\mathbb{Z}[i]$, the ring of Gaussian integer and $F: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i]$ which is defined as follows,

$$
F(a+i b)=\lambda(a+i b) \text { where } \lambda \text { is a fixed element of } \mathbb{Z} \text { and } a, b \in \mathbb{Z} .
$$

The associated surjective map $g: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i]$ is defined as follows $g(a+i b)=a-i b$ and involution map $*: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i]$ is given by $(a+i b)^{*}=a-i b$. Then F along with surjective map g and involution $*$ is a $*$-semimultiplier .

We have also obtained some results on $*$-semimultipliers by extending their codomains. In this case we have defined a $*$-semimultiplier as: a $*$-semimultiplier $F: R \rightarrow Q_{r}(R)$ (or $Q_{m l}(R)$) is a map associated with an additive map $g: R \rightarrow Q_{r}(R)$ (or $Q_{m l}(R)$) such that $g(R)=R$ and is given as follows $F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y)$ for all $x, y \in R$ and $F(g(x))=g(F(x))$ for all $x \in R$.

If $S \subseteq R$, then an addditive map $F: R \rightarrow R$ is called a centralizing map on S if $[F(x), x] \in$ $Z(R)$ for all $x \in S$ and a commuting on S if $[F(x), x]=0$ for all $x \in S$. We take $C(r)=\{x \in$ $R \mid x r=r x\}$ and call it as the centralizer of the element r . It is well known that $Z(R)=\cap C(r)$.

We write $Q_{m r}(R)$ (resp. $Q_{m l}(R)$), $Q_{r}(R)$ and $Q_{m s}(R)$ for maximal right ring of quotients of R (resp. maximal left ring of quotients of R), two sided ring of quotients of R and for symmetric right ring of quotients of R respectively. By [4] it is known that $R \subseteq Q_{m s}(R) \subseteq Q_{r}(R) \subseteq$ $Q_{m r}(R)$ where all the overrings $Q_{m s}(R), Q_{r}(R)$ and $Q_{m r}(R)$ are prime rings with the same center C. Prompted by primeness of R, C is a field called the extended centroid of R. For further references browse [4]. In view of [[4], Proposition 2.2.1], we state some properties of $Q_{r}(R)$ as follows:
(i) $R \subseteq Q_{r}(R)$;
(ii) For every $q \in Q_{r}(R)$ there exists a nonzero ideal I of R such that $q I \subseteq R$;
(iii) If $q \in Q_{r}(R)$ and I is a nonzero ideal of R such that $q I=0$, then $q=0$;
(iv) If I is an ideal of R and $f: I \longrightarrow R$ is a right R-module map, then there exists $q \in Q_{r}(R)$ such that $f(x)=q x$ for all $x \in I$.
These are the characterizing properties of $Q_{r}(R)$.
For $p, q \in R$, let $[p, q]=p q-q p$ be the commutator. When R satisfies S_{4} it means, R satisfies the standard polynomial identity of degree four. Further references can be taken from [14]. For $t \in R$, we define $\operatorname{deg}(t)$ to be the minimal algebraic degree over C if t is algebraic over C and $\operatorname{deg}(t)=\infty$, otherwise. For a subset T of R, we define $\operatorname{deg}(T)=\sup \{\operatorname{deg}(t) \mid t \in T\}$. We refer the reader to [11] for details.

We will make an extensive use of functional identities (F.I.) of special types in an attempt to completely characterize a $*$-semimultiplier in the setting of prime ring with involution $*$. The F.I. in use are of the form $x E_{1}(y)+y E_{2}(x)=0$ or $x E_{1}(y)+y E_{2}(x) \in Z(R) \subseteq C$. For further
references see [11].
Precisely, we have shown that a $*$-semimultiplier under some suitable conditions will be of the form $F(x)=\lambda x+\mu(x)$ where $\lambda \in C$ and $\mu: R \rightarrow C$ is an additive map. We have also paved a way for a prime ring admitting a $*$-semimultiplier, to satisfy S_{4}, the standard polynomial identity of degree four.

We have obtained important results pertaining to a $*$-semimultipliers, taking motivation from the results proved in the context of derivations. For instance, what will happen if range of a *-semimultiplier is in the center of ring $Z(R)$ after motivation from [[9], in Lemma 4.2]. Some results which were studied in [[3], Theorem 2.2] in the sense of generalized derivations have been also studied in the scenario of $*$-semimultipliers in Theorem 3.5. In the last section we have worked on the situation when two or more than two $*$-semimultipliers are connected via the special type of identities of M. Bresar in [[9] Lemma 2.2-2.3 and Theorem 2.1] and what happens if square of a $*$-semimultiplier is reduced to zero? From the condition used in [[2], Theorem 2.1 and 2.2] we characterized a $*$-semimultiplier which satisfy the F.I. from [6],[5] and [11]. We will make frequent use of following identities associated with commutators and anticommutators without mentioning specifically each time .
That is,

$$
\begin{aligned}
x o(y z) & =(x o y) z-y[x, z] \\
x o(y z) & =y(x o z)+[x, y] z \\
{[x y, z] } & =[x, z] y+x[y, z] \\
{[x, y z] } & =[x, y] z+y[x, z]
\end{aligned}
$$

Lemma 1.2. [[10], lemma 2.1] Suppose that non zero elements $a_{i}, b_{i} \in Q_{r}(R), i=1,2, \ldots m$, satisfy $\sum_{i=1}^{m} a_{i} x b_{i}=0$, for all $x \in R$, then a_{i} as well as b_{i} 's are C-dependent.

Lemma 1.3. In a prime ring R if a and ac are in center of R and if c is not in center then $a=0$.
Lemma 1.4. Let R be a prime ring and $a, b \in R$ such that $a x b=b x a$ for all $x \in R$. If $a \neq 0$ then $b=\lambda$ a where $\lambda \in C$, the extended centroid of R.

Theorem 1.5. [[10], Theorem 4.18] Let I be an ideal of a prime ring R which is non- commutative. Let $f_{1}, f_{2}, f_{3}, f_{4}: I \rightarrow R$ be the additive maps and set $\pi(x, y)=f_{1}(x) y+x f_{2}(y)+f_{3}(y) x+$ $y f_{4}(x)$. If $\pi(x, y) \in Z(R)$ for all $x, y \in R$ and characteristic of $R \neq 2,3$, then R satisfies S_{4}, the standard polynomial identity of degree four.

Theorem 1.6. [[9], Theorem 3.2] Let R be a non-commutative prime ring and if an additive map F of R is commuting map, then there exists $\lambda \in C$ and an additive map $\xi: R \rightarrow C$ such that $F(x)=\lambda x+\xi(x)$, for all $x \in R$.

2 Main Results

Theorem 2.1. Let R be a non-commutative prime ring with involution $*$ and $\operatorname{char}(R) \neq 2,3$ and F be a-semimultiplier such that $F: R \rightarrow R$ and $g: R \rightarrow R$ be an associated onto map. If $F\left(x^{2}\right) \in Z(R)$ for all $x \in R$, then R satisfies S_{4} the standard polynomial identity of degree four.

Proof. Since F is additive map and $F\left(x^{2}\right) \in Z(R)$. On linearizing F, we get $F(x y+y x) \in$ $Z(R)$, for all $x, y \in R$. Thus

$$
F(x) g\left(y^{*}\right)+g\left(y^{*}\right) F(x) \in Z(R), \text { for all } x, y \in R
$$

Let $g\left(y^{*}\right)=w$. As g is onto, then we have

$$
\begin{equation*}
F(x) w+w F(x) \in Z(R), \text { for all } x, w \in R . \tag{2.1}
\end{equation*}
$$

Interchange x and w in relation (2.1), we have

$$
\begin{equation*}
F(w) x+x F(w) \in Z(R) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we have

$$
\begin{gathered}
F(x) w+w F(x)+F(w) x+x F(w) \in Z(R) \text { for all } x, y \in R . \\
\text { Let } \mu(x, w)=F(x) w+w F(x)+F(w) x+x F(w) .
\end{gathered}
$$

By Theorem 1.5 we have, R satisfies S_{4}.

Theorem 2.2. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier such that $F: R \rightarrow Q_{r}(R)$ and $g: R \rightarrow Q_{r}(R)$ be an associated additive map such that $g(R)=R$. If $F\left(x^{2}\right) \in Z(R)$ for all $x \in R$, then $F=0$.

Proof. Since $F\left(x^{2}\right) \in Z(R) \subseteq Q_{r}(R)$. Now for given $F(x)$ and the relation (2.1), let $\xi(w)=F(x) w+w F(x) \in Z(R)$.

$$
\xi(w r)-\xi(w) r=F(x) w r+w r F(x)-F(x) w r-w F(x) r, \text { for every } w, r \in R .
$$

Since we see that $[\xi(w r)-\xi(w) r, r]=0$, for every $w, r \in R$. This implies that,

$$
\xi(w r)-\xi(w) r=w[r, F(x)] \in C(r)
$$

That is,

$$
[w[r, F(x)], r]=0
$$

This implies that,

$$
r w[r, F(x)]=w[r, F(x)] r .
$$

By Lemma 1.2, either r is C-dependent with 1 which amounts to say $R \subseteq Z(R)$ which is contradictory to our assumption. Thus we have,

$$
[r, F(x)]=0, \text { that is } F(x) \in C \text { for given } x \in R .
$$

We can repeat this process for each $x \in R$, to conclude that $F(x) \in C$, holds for all $x \in R$.
Replace x by $x t$ where $t \in R$ in the relation $F(x) \in C$ we have,

$$
F(x t)=F(x) g\left(t^{*}\right) \in C \text { for all } x, t \in R .
$$

Thus,

$$
F(x) R \subseteq C, \quad \text { since } \quad g(R)=R .
$$

By Lemma 1.3 and since R is non-commutative, $F(x)=0$ for all $x \in R$. Hence $F=0$.

Theorem 2.3. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier and $g: R \rightarrow R$ be an associated additive surjective map. If $F([x, y])= \pm y x$, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that $F(x)=\lambda x+\mu(x)$.

Proof. From assumption,

$$
F([x, y])= \pm y x \text { for all } x, y \in R
$$

Here use $y x$ instead of y where $x \in R$, we get

$$
F([x, y] x)= \pm y x^{2} \text { for all } x, y \in R
$$

By definition of $*$-semimultiplier,

$$
F([x, y]) g\left(x^{*}\right)= \pm y x^{2} \text { for all } x, y \in R .
$$

By hypothesis, we have

$$
\pm y x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R .
$$

This implies that

$$
y x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R .
$$

Replace y by $y c$ where $c \in R$ in above relation, we get

$$
y c x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } c, x, y \in R
$$

That is,

$$
y R\left\{x\left(g\left(x^{*}\right)-x\right)\right\}=(0) \text { for all } x, y \in R
$$

By primeness of R, we get

$$
\begin{equation*}
x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x \in R . \tag{2.4}
\end{equation*}
$$

Since g is an additive map and $*$ is an involution, therefore on linearizing relation (2.4) we have

$$
\begin{equation*}
x\left(g\left(z^{*}\right)-z\right)+z\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, z \in R . \tag{2.5}
\end{equation*}
$$

Since relation (2.5) is a functional identity. Rewriting relation (2.5) as

$$
x E(z)+z H(x)=0, \text { for all } x, z \in R,
$$

where $E(z)=g\left(z^{*}\right)-z$ and $H(x)=g\left(x^{*}\right)-x$. Using [[5], Theorem 2.5], we have $E(z)=0$, for all $z \in R$. Thus in all, $g\left(x^{*}\right)=x$, for all $x \in R$. So we get the following result,

$$
\begin{equation*}
F(x y)=F(x) y=x F(y), \text { for all } x, y \in R \tag{2.6}
\end{equation*}
$$

Put $x=y$, in (2.6), we get

$$
[F(x), x]=0, \text { for all } x \in R .
$$

That is, F is commuting.
By Theorem 1.6, there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that

$$
F(x)=\lambda x+\mu(x) \text { for all } x \in R
$$

Theorem 2.4. Let R be a non-commutative prime ring with involution $*$ and F be a *-semimultip lier associated with an additive surjective map $g: R \rightarrow R$. If $F([x, y])= \pm \alpha y x$, where $0 \neq \alpha$ a fixed element of R, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is given by $F(x)=$ $\lambda x+\mu(x)$.

Proof. From assumption,

$$
F([x, y])= \pm \alpha y x \text { for all } x, y \in R .
$$

Here use $y x$ instead of y where $x \in R$, we get

$$
F([x, y] x)= \pm \alpha y x^{2} \text { for all } x, y \in R
$$

By the definition of $*$-semimultiplier,

$$
F([x, y]) g\left(x^{*}\right)= \pm \alpha y x^{2} \text { for all } x, y \in R
$$

By assumption, we have

$$
\pm \alpha y x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R
$$

This implies that,

$$
\alpha y x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R .
$$

Since $\alpha \neq 0$, by primeness of R, we get

$$
x\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x \in R,
$$

which is relation (2.4). Thus we get the desired result.

Theorem 2.5. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier associated with an additive surjective map $g: R \rightarrow R$. If $F([x, y])= \pm x y$, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is given by $F(x)=\lambda x+\mu(x)$.

Proof. From assumption,

$$
F([x, y])= \pm x y \text { for all } x, y \in R
$$

Here use $x y$ instead of x where $y \in R$, we get

$$
F([x y, y])= \pm x y^{2} \text { for all } x, y \in R
$$

This implies that,

$$
F([x, y] y)= \pm x y^{2}
$$

By definition of $*$-semimultiplier,

$$
\begin{gathered}
F([x, y]) g\left(y^{*}\right)= \pm x y^{2} \\
\pm x y\left(g\left(y^{*}\right)-y\right)=0 \text { for all } x, y \in R .
\end{gathered}
$$

This implies that,

$$
x y\left(g\left(y^{*}\right)-y\right)=0 \text { for all } x, y \in R
$$

Replace x by $x q$ where $q \in R$ in above relation, we get

$$
x q y\left(g\left(y^{*}\right)-y\right)=0, \text { for all } q, x, y \in R .
$$

This implies that,

$$
x R\left\{y\left(g\left(y^{*}\right)-y\right)\right\}=(0), \text { for all } x, y \in R
$$

By primeness of R, we get

$$
\begin{equation*}
y\left(g\left(y^{*}\right)-y\right)=0 \text { for all } y \in R, \text { which is relation (2.4). } \tag{2.7}
\end{equation*}
$$

Thus above relation initiates the desired result.

Theorem 2.6. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier associated with an additive surjective map $g: R \rightarrow R$. If $F([x, y])= \pm \alpha x y$, where $0 \neq \alpha$ a fixed element of R, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is given by $F(x)=$ $\lambda x+\mu(x)$.

Proof. From assumption,

$$
F([x, y])= \pm \alpha x y, \text { for all } x, y \in R
$$

Here use $x y$ instead of x where $y \in R$, we get

$$
F([x y, y])= \pm \alpha x y^{2}, \text { for all } x, y \in R
$$

From above we get the following relation,

$$
F([x, y] y)= \pm \alpha x y^{2}, \text { for all } x, y \in R
$$

By the definition of $*$-semimultiplier,

$$
F([x, y]) g\left(y^{*}\right)= \pm \alpha x y^{2}, \text { for all } x, y \in R
$$

This implies that,

$$
\pm \alpha x y g\left(y^{*}\right)= \pm \alpha x y^{2}, \text { for all } x, y \in R
$$

That is,

$$
\pm \alpha x y\left(g\left(y^{*}\right)-y\right)=0, \text { for all } x, y \in R
$$

Above relation can be written as,

$$
\alpha x y\left(g\left(y^{*}\right)-y\right)=0, \text { for all } x, y \in R .
$$

This implies that,

$$
\alpha R\left\{y\left(g\left(y^{*}\right)-y\right)\right\}=(0), \text { for all } y \in R .
$$

By primeness of R and since $\alpha \neq 0$, we get,

$$
\begin{equation*}
y\left(g\left(y^{*}\right)-y\right)=0 \text { for all } y \in R, \text { which is relation (2.4). } \tag{2.8}
\end{equation*}
$$

Thus we get the desired result.

Theorem 2.7. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier associated with an additive surjective map $g: R \rightarrow R$. If $F([x, y])= \pm[x, y]$ then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is given by $F(x)=\lambda x+\mu(x)$.

Proof. By assumption,

$$
F([x, y])= \pm[x, y], \text { for all } x, y \in R .
$$

Use $y x$ instead of y where $x \in R$ in above relation, we get

$$
F([x, y x])= \pm[x, y x] \text { for all } x, y \in R .
$$

This implies that,

$$
F([x, y] x)= \pm[x, y] x \text { for all } x, y \in R .
$$

Utilize the definition of $*$ - semimultiplier, we get the following relation,

$$
F([x, y]) g\left(x^{*}\right)= \pm[x, y] x \text { for all } x, y \in R .
$$

From assumption,

$$
\pm[x, y] g\left(x^{*}\right)= \pm[x, y] x \text { for all } x, y \in R .
$$

We finally gain the following relation,

$$
\begin{equation*}
[x, y]\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R . \tag{2.9}
\end{equation*}
$$

Use $y z$ instead of y where $y \in R$ in (2.9) to get,

$$
[x, y z]\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R
$$

This implies that,

$$
([x, y] z+y[x, z])\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R .
$$

This results in following relation,

$$
\begin{equation*}
[x, y] z\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R . \tag{2.10}
\end{equation*}
$$

From above relation (2.10) we have following observation, if $A=\{x \in R \mid[x, y]=0$ for all $y \in$ $R\}$ and $B=\left\{x \in R \mid g\left(x^{*}\right)=x\right\}$. Then A and B are additive subgroups of R whose union is R, but R being an additive group it cannot be the union of its two proper subgroups. Thus, either $A=R$ or $B=R$. Let $A=R$ then R is commutative, which leads to a contradiction. Therefore we assume $B=R$. Hence $g\left(x^{*}\right)=x$ for all $x \in R$. From the definition of a $*$-semimultiplier, F is a two sided centralizer that is ,

$$
\begin{equation*}
F(x y)=F(x) y=x F(y) \tag{2.11}
\end{equation*}
$$

Put $x=y$ in (2.11) we conclude that F is commuting that is $[F(x), x]=0$ for all $x \in R$.
By Theorem 1.6 there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that,

$$
F(x)=\lambda x+\mu(x) \text { for all } x \in R
$$

Theorem 2.8. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier associated with an additive surjective map $g: R \rightarrow R$. If $F([x, y])= \pm \alpha[x, y]$, where $0 \neq \alpha$ a fixed central element of R, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is given by $F(x)=\lambda x+\mu(x)$.

Proof. By assumption,

$$
F([x, y])= \pm \alpha[x, y], \text { for all } x, y \in R
$$

Use $y x$ instead of y where $x \in R$ in above relation, we get

$$
F([x, y x])= \pm \alpha[x, y x], \text { for all } x, y \in R .
$$

This implies that,

$$
F([x, y] x)= \pm \alpha[x, y] x, \text { for all } x, y \in R .
$$

From the definition of $*$-semimultiplier, we have

$$
F([x, y]) g\left(x^{*}\right)= \pm \alpha[x, y] x, \text { for all } x, y \in R
$$

From given assumption,

$$
\pm \alpha[x, y] g\left(x^{*}\right)= \pm \alpha[x, y] x, \text { for all } x, y \in R .
$$

Finally, we establish the following relation,

$$
\pm \alpha[x, y]\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y \in R
$$

Above relation can be rewritten as following relation,

$$
\begin{equation*}
\alpha[x, y]\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y \in R \tag{2.12}
\end{equation*}
$$

Use $y z$ instead of y where $z \in R$ in (2.12) to get,

$$
\alpha[x, y z]\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y, z \in R
$$

This implies that,

$$
\alpha([x, y] z+y[x, z])\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y, z \in R
$$

In above relation since $0 \neq \alpha \in Z(R)$, therefore above relation together with relation (2.12), gives the following result,

$$
\begin{equation*}
\alpha[x, y] z\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R \tag{2.13}
\end{equation*}
$$

From above relation (2.13), we have the following observation if $A=\{x \in R \mid \alpha[x, y]=0\}$ and $B=\left\{x \in R \mid g\left(x^{*}\right)=x\right\}$. Then A and B are additive subgroups of R whose union is R, but R being an additive group it cannot be the union of its two proper subgroups. Thus, either $A=R$ or $B=R$. Let $A=R$. This implies that $\alpha[x, y]=0$, for all $x, y \in R$. Now replace y by $z y$ where $z \in R$, then $\alpha z[x, y]=0$. Since R is not commutative, there exists $x_{0}, y_{0} \in R$ such that $\left[x_{0}, y_{0}\right] \neq 0$. As R is prime so we conclude that $\alpha=0$ which leads to a contradiction. Therefore we now assume that $B=R$. Hence $g\left(x^{*}\right)=x$ for all $x \in R$ which gives relation (2.11) and hence the required result follows.

Theorem 2.9. Let R be a non-commutative prime ring with involution $*$. Let F be $a *$-semimultip lier on R associated with a function $g: R \rightarrow R$ such that $F([x, y])= \pm(x o y)$, then F is a map given by $F(x)=\lambda x+\mu(x)$, where $\lambda \in C$ and $\mu: R \rightarrow C$.

Proof. By assumption,

$$
F([x, y])= \pm(x o y) \text { for all } x, y \in R
$$

Use $y x$ instead of y where $x \in R$ in above relation, we get

$$
F([x, y x])= \pm(x o(y x)) \text { for all } x, y \in R
$$

From above we get the following relation,

$$
F([x, y] x)= \pm(x o y) x \text { for all } x, y \in R
$$

From the definition of $*$-semimultiplier, we have

$$
F([x, y]) g\left(x^{*}\right)= \pm(x o y) x \text { for all } x, y \in R
$$

By given hypothesis,

$$
\pm(x o y) g\left(x^{*}\right)= \pm(x o y) x \text { for all } x, y \in R
$$

This implies that,

$$
\pm(x o y)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R
$$

Above relation can be written as,

$$
\begin{equation*}
(x o y)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R \tag{2.14}
\end{equation*}
$$

Use $y z$ instead of y where $z \in R$ in (2.14) to get

$$
(x o(y z))\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R .
$$

This implies that

$$
(y(x o z)+[x, y] z)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R .
$$

This implies that

$$
\begin{equation*}
[x, y] z\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R \tag{2.15}
\end{equation*}
$$

which leads to (2.10) and hence we get the required result.

Theorem 2.10. Let R be a non-commutative prime ring with involution $*$ and F be $a *$-semimultip lier on R associated with a function $g: R \rightarrow R$. If $F([x, y])= \pm \alpha($ xoy $)$, where $\alpha \neq 0$ fixed central element of R, then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that F is a map given by $F(x)=\lambda x+\mu(x)$.

Proof. By assumption,

$$
F([x, y])= \pm \alpha(x o y), \text { for all } x, y \in R
$$

Use $y x$ instead of y where $x \in R$ in above relation we get,

$$
F([x, y x])= \pm \alpha(x o(y x)) \text { for all } x, y \in R
$$

This implies that,

$$
F([x, y] x)= \pm \alpha(x o y) x \text { for all } x, y \in R .
$$

From the definition of $*$-semimultiplier, we have

$$
F([x, y]) g\left(x^{*}\right)= \pm \alpha(x o y) x \text { for all } x, y \in R
$$

This implies that,

$$
\pm \alpha(x o y) g\left(x^{*}\right)= \pm \alpha(x o y) x \text { for all } x, y \in R
$$

Thus we arrive at following relation,

$$
\pm \alpha(x o y)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R
$$

Above relation can be rewritten as,

$$
\begin{equation*}
\alpha(x o y)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y \in R . \tag{2.16}
\end{equation*}
$$

Use $y z$ instead of y where $z \in R$ in above relation, we get

$$
\alpha(x o(y z))\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R .
$$

This implies that,

$$
\alpha(y(x o z)+[x, y] z)\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R
$$

In above relation since $0 \neq \alpha \in Z(R)$, therefore above relation together with relation (2.16), gives the following result,

$$
\alpha[x, y] z\left(g\left(x^{*}\right)-x\right)=0 \text { for all } x, y, z \in R
$$

From above relation we are in the receipt of (2.13) which gives the required result.

Theorem 2.11. Let R be a non-commutative prime ring with involution $*$ and I be a non-zero ideal and F be a-semimultiplier associated with a function $g: R \rightarrow R$. If $F(x) F(y)= \pm x y$ for all $x, y \in I$ then there exists $\lambda \in C$ and $\mu: I \rightarrow C$ such that $F(x)=\lambda x+\mu(x)$ for all $x \in I$.

Proof. By assumption,

$$
F(x) F(y)= \pm x y \text { for all } x, y \in I
$$

Use $y z$ instead of y where $z \in R$,

$$
F(x) F(y z)= \pm x(y z) \text { for all } x, y, z \in I
$$

This implies that,

$$
F(x) F(y) g\left(z^{*}\right)= \pm(x y) z \text { for all } x, y, z \in I
$$

From the assumption,

$$
\pm x y g\left(z^{*}\right)= \pm(x y) z \text { for all } x, y, z \in I
$$

Above relation gives the follwing result,

$$
\pm x y\left(g\left(z^{*}\right)-z\right)=0 \text { for all } x, y, z \in I
$$

Use $y q$ instead of q where $q \in R$ in above relation, we get

$$
\pm x y q\left(g\left(z^{*}\right)-z\right)=0 \text { for all } x, y, z, q \in I
$$

The above relation can be rewritten as,

$$
x y R\left(g\left(z^{*}\right)-z\right)=0 \text { for all } x, y, z, q \in I
$$

By primeness of R,

$$
x y=0 \text { for all } x, y \in I
$$

This implies that,

$$
x \in I \cap l(I)=\{0\} .
$$

A contradiction since $I \neq\{0\}$. Hence we find that,

$$
g\left(z^{*}\right)=z, \text { for all } z \in I
$$

Utilizing the definition of $*$-semimultiplier and above relation, we have

$$
F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y), \text { for all } x, y \in I
$$

This implies that,

$$
F(x y)=F(x) y=x F(y), \text { for all } x, y \in I
$$

Put $x=y$ in above relation we get,

$$
[F(x), x]=0, \text { for all } x \in I
$$

By [[10], Theorem 4.2], there exists $\lambda \in C$ and $\mu: I \rightarrow C$ such that,

$$
F(x)=\lambda x+\mu(x), \text { for all } x \in I
$$

Theorem 2.12. Let I be a non-zero right ideal of a non-commutative prime ring R with involution $*$. Further let $F: R \rightarrow R$ be a *-semimultiplier and g be an associated surjective map such that $F(x) \in Z(R)$ for all $x \in I$. Then $F=0$ or g vanishes on I.

Proof. Let $v \in I$ and $u \in R$. Then by assumption we have

$$
F(v), F(v u) \in Z(R), v u \in I \Rightarrow[F(v u), u]=0, \text { for all } v \in I, \text { for all } u \in R
$$

Utilizing the definition of $*$-semimultiplier, we have

$$
\left[F(v) g\left(u^{*}\right), u\right]=0, \text { for all } v \in I, \text { for all } u \in R
$$

which implies that

$$
\begin{equation*}
[F(v), u] g\left(u^{*}\right)+F(v)\left[g\left(u^{*}\right), u\right]=0, \text { for all } v \in I, \text { for all } u \in R \tag{2.17}
\end{equation*}
$$

Since $F: I \rightarrow Z(R)$, therefore from (2.17), we have

$$
\begin{equation*}
F(v)\left[g\left(u^{*}\right), u\right]=0, \text { for all } v \in I, \text { for all } u \in R \tag{2.18}
\end{equation*}
$$

From (2.18), we have

$$
\begin{gathered}
F(v)[w, u]=0, \text { for all } v \in I, \text { for all } u, w \in R . \\
F(v) p[w, u]=0 \text { for all } v \in I, \text { for all } u, w, p \in R .
\end{gathered}
$$

From the primeness and non-commutativity of R, we conclude that

$$
F(v)=0, \text { for all } v \in I
$$

Replace v by $v e$, where $e \in R$ in above relation, we have

$$
F(v e)=0 \text { for all } v \in I, \text { for all } e \in R
$$

That is,

$$
g\left(v^{*}\right) F(e)=0 \text { for all } v \in I, \text { for all } e \in R .
$$

We now replace e by $e t$ where $t \in R$ to get the following relation,

$$
g\left(v^{*}\right) g\left(e^{*}\right) F(t)=0 \text { for all } v \in I, \text { for all } e \in R
$$

Since g is surjective,

$$
g\left(v^{*}\right) R F(t)=(0), \text { for all } v \in I, \text { for all } t \in R
$$

By primeness of R , we have either

$$
F(t)=0 \text { for all } t \in R
$$

Thence we conclude,

$$
F=0 .
$$

or,

$$
g\left(v^{*}\right)=0, \text { for all } v \in I
$$

Theorem 2.13. Let R be a non-commutative prime ring with involution $*$ and $\operatorname{deg}(R)>2$. Further let I be a non-zero ideal, where $F: R \rightarrow Q_{m l}(R)$ be a *-semimultiplier associated with an additive surjective map $g: R \rightarrow Q_{m l}(R)$. If $F(x) F(y)= \pm y x \alpha$ for all $x, y \in I$ and α be a fixed element of R, then there exists $\lambda \in C$ and $\mu: I \rightarrow C$ such that $F(x)=\lambda x+\mu(x)$, for all $x \in I$ or $F=0$.

Proof. By assumption,

$$
F(x) F(y)= \pm y x \alpha, \text { for all } x, y \in I
$$

Use $y x$ instead of x where $y \in R$ in above relation,

$$
F(y x) F(y)= \pm y(y x) \alpha, \text { for all } x, y \in I
$$

Utilize the definition of a $*$-semimultiplier in above relation we obtain the following results,

$$
g\left(y^{*}\right) F(x) F(y)= \pm y(y x) \alpha, \text { for all } x, y \in I
$$

From given assumption,

$$
\pm g\left(y^{*}\right)(y x) \alpha= \pm y(y x) \alpha, \text { for all } x, y \in I
$$

This implies that,

$$
\left(g\left(y^{*}\right)-y\right) y x \alpha=0, \text { for all } x, y \in I
$$

From above we get the following relation,

$$
\left(g\left(y^{*}\right)-y\right) y R x \alpha=(0), \text { for all } x, y \in I
$$

Thus by primeness of R, either

$$
x \alpha=0, \text { for all } x \in I,
$$

or

$$
\left(g\left(y^{*}\right)-y\right) y=0, \text { for all } y \in I
$$

By implementing primeness of R in $x \alpha=0$, we find that $\alpha=0$. Thus,

$$
F(x) F(y)=0, \text { for all } x, y \in I
$$

which has simple consequence as,

$$
F(x) o F(y)=0, \text { for all } x, y \in I
$$

Use $y t$ in place of y where $t \in R$ in above relation,

$$
F(x) o F(y t)=0, \text { for all } x, y \in I \text { and for all } t \in R
$$

This implies that,

$$
F(x) o\left(F(y) g\left(t^{*}\right)\right)=0, \text { for all } x, y \in I \text { and for all } t \in R
$$

Making use of the definition of a $*$-semimultiplier, we obtain the following relation,

$$
\begin{gathered}
(F(x) o F(y)) g\left(t^{*}\right)-F(y)\left[F(x), g\left(t^{*}\right)\right]=0, \quad \text { for all } x, y \in I \text { and for all } t \in R . \\
F(y)\left[F(x), g\left(t^{*}\right)\right]=0, \text { for all } x, y \in I \text { and for all } t \in R .
\end{gathered}
$$

From above relation, we have

$$
F(y)[F(x), w]=0, \text { for all } x, y \in I \text { and for all } w \in R .
$$

Use $w p$ instead of w where $p \in R$ in above relation, we obtain that

$$
F(y) w[F(x), p]=0, \text { for all } x, y \in I \text { and for all } w, p \in R
$$

Since R is prime either $F(y)=0$, for all $y \in I$ or $F(x) \in Z(R)$, for all $x \in I$.
In the both case $F=0$, following argument from Theorem 2.12.
Further if we have,

$$
\left(g\left(y^{*}\right)-y\right) y=0, \text { for all } y \in I
$$

Using $x+z$ in place of y where $x, z \in I$ we get a functional identity on the ideal I of ring R of the form,

$$
E_{1}(z) x+E_{2}(x) z=0, \text { for all } x, z \in I
$$

where

$$
E_{1}(z)=g\left(z^{*}\right)-z, \text { for all } z \in I
$$

and

$$
E_{2}(x)=g\left(x^{*}\right)-x \text { for all } x \in I
$$

Since $\operatorname{deg}(R)>2$, we have from [[6] Theorem 2.2]

$$
g\left(z^{*}\right)=z \text { for all } z \in I
$$

Hence from the definition of $*$-semimultiplier, we have

$$
F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y) \text { for all } x, y \in I
$$

We obtain that,

$$
F(x y)=F(x) y=x F(y) \text { for all } x, y \in I
$$

Thus, we get the following,

$$
[F(x), x]=0 \text { for all } x \in I
$$

Above relation prompts the desired result following [[10],Theorem 4.2].

3 *-SEMIMULTIPLIERS CONNECTED VIA SOME SPECIAL TYPE OF IDENTITIES

Theorem 3.1. Let R be a non-commutative prime ring with involution *. Let F and G be two *semimultipliers on R and f and g be the associated surjective maps respectively. If $F(x) G(y)=$ $G(x) F(y)$, for all $x, y \in R$ and $F \neq 0$, then there exists $\lambda \in C$ such that $G(x)=\lambda F(x)$ for all $x \in R$.

Proof. We are given that,

$$
\begin{equation*}
F(x) G(y)=G(x) F(y), \text { for all } x, y \in R \tag{3.1}
\end{equation*}
$$

Use $y z$ instead of y where $z \in R$ in (3.1), we have

$$
F(x) G(y z)=G(x) F(y z), \text { for all } x, y, z \in R .
$$

Utilizing the definition of $*$-semimultipliers, we have

$$
F(x) g\left(y^{*}\right) G(z)=G(x) f\left(y^{*}\right) F(z), \text { for all } x, y, z \in R
$$

Since g and f are surjective maps, we have

$$
\begin{equation*}
F(x) w G(z)=G(x) q F(z), \text { for all } x, w, q, z \in R \tag{3.2}
\end{equation*}
$$

Use w instead of q in (3.2), we have

$$
\begin{equation*}
F(x) w G(z)=G(x) w F(z), \text { for all } x, w, z \in R \tag{3.3}
\end{equation*}
$$

Replace z by x in above relation, we have

$$
F(x) w G(x)=G(x) w F(x), \text { for all } x, w \in R
$$

Hence if $F(x) \neq 0$ for some $x \in R$, then from Lemma 1.4 there exists $\lambda(x) \in C$ such that

$$
G(x)=\lambda(x) F(x), \text { for some } x \in R
$$

We now tend to show that this $\lambda(x)$ is independent of x and for which we proceed as follows. If $F(x) \neq 0$ and $F(z) \neq 0$ then it follows from (3.3) that,

$$
F(x) w \lambda(z) F(z)=\lambda(x) F(x) w F(z), \text { for all } w \in R
$$

Thus we have established the following result,

$$
(\lambda(z)-\lambda(x)) F(x) w F(z)=0, \text { for all } w \in R
$$

Since R is prime we have,

$$
(\lambda(z)-\lambda(x))=0
$$

This implies that,

$$
\lambda(x)=\lambda(z), \text { that is the value } \lambda(x) \text { is independent of } x
$$

Thus we have proved that there exists $\lambda \in C$, such that

$$
G(x)=\lambda F(x), \text { holds for all } x \in R
$$

Theorem 3.2. Let R be a non-commutative prime ring with involution *. Let D, F, G and H be the $*$-semimultipliers on R and d, f, g and h be the associated surjective maps respectively. If $D(x) G(y)=H(x) F(y)$ for all $x, y \in R$ and $F \neq 0, D \neq 0$, then there exists $\lambda \in C$ such that $G(x)=\lambda F(x)$ and $H(x)=\lambda D(x)$ for all $x \in R$.

Proof. We are given that,

$$
\begin{equation*}
D(x) G(y)=H(x) F(y) \text { for all } x, y \in R \tag{3.4}
\end{equation*}
$$

Use $y z$ instead of y where $z \in R$ in (3.4), we have

$$
D(x) G(y z)=H(x) F(y z) \text { for all } x, y, z \in R
$$

Utilizing the definition of $*$-semimultiplier and since associated maps d, g, h and f are surjective, we have

$$
\begin{equation*}
D(x) g\left(y^{*}\right) G(z)=H(x) f\left(y^{*}\right) F(z) \text { for all } x, y, z \in R . \tag{3.5}
\end{equation*}
$$

Put $g\left(y^{*}\right)=w$ and $f\left(y^{*}\right)=q$ in (3.5) we have,

$$
\begin{equation*}
D(x) w G(z)=H(x) q F(z) \text { for all } x, w, z \in R \tag{3.6}
\end{equation*}
$$

Use w instead of q in (3.6), we have

$$
\begin{equation*}
D(x) w G(z)=H(x) w F(z) \text { for all } x, w, z \in R \tag{3.7}
\end{equation*}
$$

Use $w F(p)$ instead of w where $p \in R$ in (3.7),

$$
D(x) w F(p) G(z)=H(x) w F(p) F(z) \text { for all } x, w, z, p \in R
$$

From (3.7), we have

$$
D(x) w F(p) G(z)=D(x) w G(p) F(z) \text { for all } x, w, p, z \in R
$$

From above relation, we have

$$
D(x) w(F(p) G(z)-G(p) F(z))=0 \text { for all } x, w, p, z \in R
$$

By primeness of R and since $D \neq 0$, we have

$$
F(p) G(z)-G(p) F(z)=0 \text { for all } p, z \in R
$$

From Theorem 3.1, we have

$$
G(x)=\lambda F(x), \text { for some } \lambda \in C \text { and for all } x \in R .
$$

Using above relation in (3.7), we have

$$
D(x) w \lambda F(z)=H(x) w F(z) \text { for all } x, w, z \in R
$$

We have the following relation,

$$
D(x) w \lambda F(z)=H(x) w F(z) \text { for all } x, w, z \in R
$$

This implies that,

$$
(D(x) \lambda-H(x)) w F(z)=0 \text { for all } x, w, z \in R
$$

Owing to primeness of ring R and since $F \neq 0$, we have

$$
H(x)=\lambda D(x) \text { for all } x \in R
$$

Theorem 3.3. Let R be a non-commutative prime ring with involution $*$ where F is $a *$-semimultip lier on R and g is the associated onto maps. If $(F(x))^{2}=0$ for all $x \in R$, then $F=0$.

Proof. Since,

$$
\begin{gather*}
(F(x))^{2}=0 \text { for all } x \in R \tag{3.8}\\
F(x) o F(y)=0 \text { for all } x, y \in R . \tag{3.9}
\end{gather*}
$$

Use $y t$ instead of y where $y \in R$ in above relation (3.9) and the definition of $*$-semimultiplier, we obtain that,

$$
F(x) o F(y t)=0 \text { for all } x, y, t \in R
$$

This implies that,

$$
F(x) o\left(F(y) g\left(t^{*}\right)\right)=0 \text { for all } x, y, t \in R
$$

Utilizing the definition of a $*$-semimultiplier, we obtain that

$$
\begin{gather*}
(F(x) o F(y)) g\left(t^{*}\right)-F(y)\left[F(x), g\left(t^{*}\right)\right]=0 \text { for all } x, y, t \in R \\
F(y)\left[F(x), g\left(t^{*}\right)\right]=0 \text { for all } x, y, t \in R \tag{3.10}
\end{gather*}
$$

In (3.10), since g is surjective map, we have the following result

$$
\begin{equation*}
F(y)[F(x), w]=0 \text { for all } x, y, w \in R \tag{3.11}
\end{equation*}
$$

Use $w p$ instead of w where $p \in R$ in (3.11), we obtain that,

$$
F(y) w[F(x), p]=0 \text { for all } x, y, w, p \in R
$$

Since R is prime either $F(y)=0$ or $F(x) \in Z(R)$. In the latter case $F=0$, following argument from Theorem 2.12 .

Theorem 3.4. Let R be a non-commutative prime ring with involution $*$ where D, G and H are $*$-semimultipliers on R and d, g and h be the associated surjective maps respectively. If $D(x)=a G(x)+H(x) b$, for all $x \in R$, where $a \notin Z(R), \quad b \notin Z(R)$, then $D=G=H=0$.

Proof. We are given that,

$$
\begin{equation*}
D(x)=a G(x)+H(x) b, \text { for all } x \in R, \text { where } a \notin Z(R), \quad b \notin Z(R) \tag{3.12}
\end{equation*}
$$

Use $x y$ instead of x where $y \in R$ in (3.12), we have,

$$
D(x y)=a G(x y)+H(x y) b, \text { for all } x, y \in R
$$

Utilizing the definition of $*$-semimultiplier and since associated maps d, g and h are surjective, we have

$$
\begin{aligned}
d\left(x^{*}\right) D(y) & =a g\left(x^{*}\right) G(y)+h\left(x^{*}\right) H(y) b, \text { for all } x, y \in R . \\
w D(y) & =a c G(y)+t H(y) b, \text { for all } w, y, c, t \in R .
\end{aligned}
$$

From (3.12), above relation becomes,

$$
w a G(y)+w H(y) b=a c G(y)+t H(y) b, \text { for all } c, y, w, t \in R
$$

Use w instead of c in above relation, we have

$$
w a G(y)+w H(y) b=a w G(y)+t H(y) b, \text { for all } t, y, w \in R
$$

This implies that,

$$
[w, a] G(y)+(w-t) H(y) b=0, \text { for all } w, y, t \in R
$$

Use w instead of t in above relation, we have

$$
[w, a] G(y)=0, \text { for all } w, y \in R
$$

Use we instead of w where $e \in R$ in above relation, we get

$$
[w, a] e G(y)=0, \text { for all } w, y, e \in R
$$

Using the fact that R is prime and $a \notin Z(R)$, we get,

$$
G(y)=0, \text { for all } y \in R
$$

That is,

$$
G=0 .
$$

Now using above relation in (3.12), we obtain that

$$
D(x)=H(x) b, \text { for all } x \in R
$$

Again replacing x with $x y$ where $y \in R$ in above relation, we have

$$
\begin{aligned}
D(x y) & =H(x y) b, \text { for all } x, y \in R \\
D(x) d\left(y^{*}\right) & =H(x) h\left(y^{*}\right) b, \text { for all } x, y \in R .
\end{aligned}
$$

Since d and h are surjective functions, we get

$$
\begin{aligned}
& D(x) w=H(x) q b, \text { for all } x, w, q \in R \\
& H(x) b w=H(x) q b, \text { for all } x, w, q \in R
\end{aligned}
$$

Use w instead of q in above relation, we get

$$
H(x)[b, w]=0, \text { for all } x, w \in R
$$

Replace w by $w r$, where $r \in R$ we have,

$$
H(x) w[b, r]=0, \text { for all } x, w, r \in R
$$

By primeness of R and since $b \notin Z(R)$ we have, from above relation

$$
H(x)=0, \text { for all } x \in R . \text { That is } H=0
$$

Thus we infer the following,

$$
H(x)=0=G(x), \text { for all } x \in R
$$

From (3.12), we have $D(x)=0$, for all $x \in R$. That is $D=0$.

Theorem 3.5. Let I be a non-zero ideal of a non-commutative prime ring R with involution *. Further let F be a *-semimultiplier associated with a surjective map $g: R \rightarrow R$. If $F\left(x^{2}\right)= \pm x^{2}$, for all $x \in R$ then there exists $\lambda \in C$ and $\mu: R \rightarrow C$ such that $F(x)=$ $\lambda x+\mu(x)$, for all $x \in R$.

Proof. Suppose, $F\left(x^{2}\right)= \pm x^{2}$, for all $x \in R$.
Use $x+y$ instead of x where $y \in R$ in above relation we obtain that,

$$
\begin{equation*}
F(x o y)= \pm(x o y), \text { for all } x, y \in R \tag{3.13}
\end{equation*}
$$

Use $y x$ instead of y, in (3.13) we see,

$$
F(x o(y x))= \pm(x o(y x)), \text { for all } x, y \in R
$$

From the definition of $*$-semimultiplier,

$$
F(x o y) g\left(x^{*}\right)= \pm(x o y) x, \text { for all } x y \in R
$$

From given assumption,

$$
\pm(x o y) g\left(x^{*}\right)= \pm(x o y) x, \text { for all } x, y \in R .
$$

This implies that,

$$
\begin{equation*}
\pm(x o y)\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y \in R \tag{3.14}
\end{equation*}
$$

Use $y q$ instead of y where $q \in R$ in above relation (3.14) we find that,

$$
\begin{gather*}
\pm(y(x o q)+[x, y] q)\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y \in R . \\
{[x, y] q\left(g\left(x^{*}\right)-x\right)=0, \text { for all } x, y \in R .} \tag{3.15}
\end{gather*}
$$

From above relation we are in the receipt of (2.10) and hence we establish our result.

Theorem 3.6. Let R be a non-commutative prime ring and $0 \neq F$ be $a *$-semimultiplier and g be an associated surjective map. If $[a, F(x)]=0$, for all $x \in R$ for some fixed element $a \in R$, then $a \in Z(R)$.

Proof. Above result follows immediately by simple replacement of x by $x y$ where $y \in R$ in $[a, F(x)]=0$ and utilizing primeness.

References

[1] E. Albas, On τ-centralizers of semiprime rings, Sib. Math. J., 48(2), 191-196, (2007).
[2] M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Dem. Math., 41(4), 763771, (2008).
[3] M. Ashraf, S. Ali, M.R. Mozumdar, N. Rehman, On semiprime rings with generalized derivations, Bol. Soc., Paran. de. Mat., 28(2), 25-32, (2010).
[4] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York, (1996).
[5] K.I. Beidar, W.S. Martindale III, On functional identities in prime rings with involution, J. Algebra, 203(2), 491-532, (1998).
[6] K. I. Beidar, S.C. Chang, M.A. Chebotar and Y. Fong, On functional identities in left ideals of prime rings, Comm. Algebra, 28(6), 3041-3058, (2000).
[7] H. E. Bell, and W. S. Martindale III, Semiderivations and commutativity in prime rings, Canad. Math. Bull., 31(4), 500-508, (1988).
[8] J. Bergen, Derivations in prime rings, Canad. Math. Bull., 26(3), 267-270, (1983).
[9] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156, 385-394, (1993).
[10] M. Brešar, On generalized biderivations and related maps, J. Algebra, 172, 764-786, (1995).
[11] M. Brešar, M.A. Chebotar and W.S. Martindale III, Functional identities, Frontiers in Mathematics, Birkhauser-Verlag, Basel, (2007).
[12] J.C. Chang, On semiderivations of prime rings, Chin. J. Math., 12(4), 255-262, (1984).
[13] C. L. Chuang, On the structure of semiderivations in prime rings, Proc. Amer. Math. Soc., 108(4), 867869, (1990).
[14] N. Jacobson, P. I. Algebras : An Introduction, Lecture Notes in Mathematics (Springer-Verlag, Berlin), 441, (1975).
[15] K. H. Kim, A note on *-semimultiplier in prime rings with involution, Elect. J. Math. Anal. App., 8(1), 192-198, (2020).
[16] K. H. Kim, A note on semimultiplier in prime rings, Elect. J. Math. Anal. App., 6(1), 204-212, (2018).
[17] J. Vukman, An identity related to centralizer in semiprime rings, Comment. Math. Univ. Caro., 40, 447456, (1999).
[18] J. Vukman, Centralizer on semiprime rings, Comment. Math. Univ. Caro., 42, 237-245, (2001).
[19] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Caro., 32, 609-614, (1991).

Author information

Mohammad Aslam Siddeeque and Ali Ahmed Abdullah, Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.
E-mail: aslamsiddeeque@gmail.com, aliamugh7573@gmail.com
Received: October 22, 2020
Accepted: March 16, 2021

