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Abstract Let R be an associative ring. A ∗- semimultiplier is an additive map F : R → R
such that F (xy) = F (x)g(y∗) = g(x∗)F (y) where g is some additive map and F (g(x)) =
g(F (x)) for all x ∈ R . We make extensive use of functional identities defined in prime ring R
of the forms xE1(y) + yE2(x) = 0 or xE1(y) + yE2(x) ∈ Z(R) ⊆ C where E1, E2 are any
arbitrary functions on the prime ring R and Z(R), C are the center and the extended centroid of
R respectively. We have proved that in a prime ring R under some additional conditions, a ∗ -
semimultiplier F : R→ R is a map given by F (x) = λx+ µ(x) , where λ ∈ C and µ : R→ C.
We have also shown that a prime ring admitting the ∗-semimultiplier satisfies S4 , the standard
identity of degree 4 under some suitable conditions. Further, some other important results are
also incorporated.

1 Introduction

In the entire paper, R will denote an associative prime ring with an involution ∗ and Z(R)
its center. We first recall a prime ring R that is whenever aRb = (0), then either a = 0
or b = 0. An additive map ∗ : R → R is called an involution, if (xy)∗ = y∗x∗ for all
x, y ∈ R and (x∗)∗ = x for all x ∈ R. A derivation is an additive map d : R → R sat-
isfying d(xy) = xd(y) + d(x)y for all x, y ∈ R. An additive map G : R → R satisfying
G(xy) = xd(y) + G(x)y for all x, y ∈ R is called a generalized derivation associated with
derivation d.

Bergen [8] first gave the definition of semiderivation that is an additive map H : R → R
with an associated function g : R → R such that H(xy) = g(x)H(y) + H(x)y = xH(y) +
H(x)g(y) for all x, y ∈ R and H(g(x)) = g(H(x)) for all x ∈ R. If g is an identity map then a
semiderivation is just a derivation. A lot of work has been done in this direction. See ([13],[7],
[8], [12]).

An additive map T : R → R is called a left (resp. right) centralizer map or left (resp. right)
multiplier map if T (xy) = T (x)y (resp. T (xy) = xT (y)), holds for all x, y ∈ R. A centralizer
is an additive map which is both a right as well as a left centralizer. An ample of work has been
done on left (resp. right) centralizers in prime and semiprime rings during the last few decades.
See ([18] ,[17] [19] ).

In a parallel fashion, an additive map T : R→ R is said to be a left ∗-centralizer (resp. reverse
left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (xy) = T (y)x∗) holds for all x, y ∈ R and the
definition of a right ∗- centralizer (resp. reverse right ∗-centralizer) should be self explanatory.
An additive mapping T : R→ R is called a ∗-centralizer if T is both a left and right ∗-centralizer.
An additive map T : R → R is said to be a Jordan left ∗-centralizer if T (x2) = T (x)x∗ is satis-
fied for all x ∈ R. We emphasize that for some fixed element a ∈ R, the mapping x → ax∗ is a
reverse left ∗-centralizer and x→ x∗a is a reverse right ∗-centralizer on R. Finally, α-centralizer
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also have been studied, where α : R→ R is an endomorphism of R. See [1].

Deriving motivation from centralizers like α-centralizers K.H. Kim [15], after a simple adap-
tation of definition of a semiderivation, gave the definition of a semimultiplier. An additive map
F : R → R is called a semimultiplier with an associated additive surjective map g : R → R if
F (xy) = F (x)g(y) = g(x)F (y) for all x, y ∈ R and F (g(x)) = g(F (x)) for all x ∈ R. Further,
an additive map F : R→ R is called a ∗-semimultiplier with associated surjective map g : R→
R if F (xy) = F (x)g(y∗) = g(x∗)F (y) for all x, y ∈ R and F (g(x)) = g(F (x)) for all x ∈ R.
K.H. Kim [16] gave the definition of ∗-semimultiplier and studied the commutativity of prime
ring admitting a ∗-semimultiplier. We have introduced a generalized form of a ∗-semimultiplier
by considering the associated map g : R → R to be an arbitrary function instead of surjective
map. We now give an example for a ∗-semimultiplier given as below.

Example 1.1. Consider Z[i], the ring of Gaussian integer and F : Z[i] → Z[i] which is defined
as follows,

F (a+ ib) = λ(a+ ib) where λ is a fixed element of Z and a, b ∈ Z.

The associated surjective map g : Z[i] → Z[i] is defined as follows g(a + ib) = a − ib and
involution map ∗ : Z[i]→ Z[i] is given by (a+ ib)∗ = a− ib. Then F along with surjective map
g and involution ∗ is a ∗-semimultiplier .

We have also obtained some results on ∗-semimultipliers by extending their codomains. In
this case we have defined a ∗-semimultiplier as: a ∗-semimultiplier F : R→ Qr(R) (or Qml(R))
is a map associated with an additive map g : R→ Qr(R) (or Qml(R)) such that g(R) = R and
is given as follows F (xy) = F (x)g(y∗) = g(x∗)F (y) for all x, y ∈ R and F (g(x)) = g(F (x))
for all x ∈ R.

If S ⊆ R, then an addditive map F : R → R is called a centralizing map on S if [F (x), x] ∈
Z(R) for all x ∈ S and a commuting on S if [F (x), x] = 0 for all x ∈ S. We take C(r) = {x ∈
R| xr = rx} and call it as the centralizer of the element r. It is well known that Z(R) = ∩C(r).

We writeQmr(R) (resp. Qml(R)), Qr(R) andQms(R) for maximal right ring of quotients of
R (resp. maximal left ring of quotients of R), two sided ring of quotients of R and for symmetric
right ring of quotients of R respectively. By [4] it is known that R ⊆ Qms(R) ⊆ Qr(R) ⊆
Qmr(R) where all the overrings Qms(R), Qr(R) and Qmr(R) are prime rings with the same
center C. Prompted by primeness of R, C is a field called the extended centroid of R. For
further references browse [4]. In view of [[4], Proposition 2.2.1], we state some properties of
Qr(R) as follows:

(i) R ⊆ Qr(R);

(ii) For every q ∈ Qr(R) there exists a nonzero ideal I of R such that qI ⊆ R;

(iii) If q ∈ Qr(R) and I is a nonzero ideal of R such that qI = 0, then q = 0;

(iv) If I is an ideal of R and f : I −→ R is a right R-module map, then there exists q ∈ Qr(R)
such that f(x) = qx for all x ∈ I.

These are the characterizing properties of Qr(R).

For p, q ∈ R, let [p, q] = pq − qp be the commutator . When R satisfies S4 it means, R
satisfies the standard polynomial identity of degree four. Further references can be taken from
[14]. For t ∈ R, we define deg(t) to be the minimal algebraic degree over C if t is algebraic over
C and deg(t) = ∞, otherwise. For a subset T of R, we define deg(T ) = sup{deg(t) | t ∈ T}.
We refer the reader to [11] for details.

We will make an extensive use of functional identities (F.I.) of special types in an attempt to
completely characterize a ∗-semimultiplier in the setting of prime ring with involution ∗. The
F.I. in use are of the form xE1(y) + yE2(x) = 0 or xE1(y) + yE2(x) ∈ Z(R) ⊆ C . For further
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references see [11].

Precisely, we have shown that a ∗-semimultiplier under some suitable conditions will be of
the form F (x) = λx + µ(x) where λ ∈ C and µ : R → C is an additive map. We have also
paved a way for a prime ring admitting a ∗-semimultiplier, to satisfy S4, the standard polynomial
identity of degree four.

We have obtained important results pertaining to a ∗-semimultipliers, taking motivation from
the results proved in the context of derivations. For instance, what will happen if range of a
∗-semimultiplier is in the center of ring Z(R) after motivation from [[9], in Lemma 4.2]. Some
results which were studied in [[3], Theorem 2.2] in the sense of generalized derivations have
been also studied in the scenario of ∗-semimultipliers in Theorem 3.5. In the last section we
have worked on the situation when two or more than two ∗-semimultipliers are connected via
the special type of identities of M. Bresar in [[9] Lemma 2.2-2.3 and Theorem 2.1] and what
happens if square of a ∗-semimultiplier is reduced to zero? From the condition used in [[2],
Theorem 2.1 and 2.2] we characterized a ∗-semimultiplier which satisfy the F.I. from [6],[5] and
[11]. We will make frequent use of following identities associated with commutators and anti-
commutators without mentioning specifically each time .
That is,

xo(yz) = (xoy)z − y[x, z],

xo(yz) = y(xoz) + [x, y]z,

[xy, z] = [x, z]y + x[y, z],

[x, yz] = [x, y]z + y[x, z].

Lemma 1.2. [[10], lemma 2.1] Suppose that non zero elements ai, bi ∈ Qr(R), i = 1, 2, ...m,
satisfy

∑m
i=1 aixbi = 0, for all x ∈ R, then ai as well as bi’s are C−dependent.

Lemma 1.3. In a prime ring R if a and ac are in center of R and if c is not in center then a = 0 .

Lemma 1.4. Let R be a prime ring and a, b ∈ R such that axb = bxa for all x ∈ R. If a 6= 0
then b = λa where λ ∈ C , the extended centroid of R.

Theorem 1.5. [[10], Theorem 4.18] Let I be an ideal of a prime ring R which is non- commuta-
tive. Let f1, f2, f3, f4 : I → R be the additive maps and set π(x, y) = f1(x)y+xf2(y)+f3(y)x+
yf4(x). If π(x, y) ∈ Z(R) for all x, y ∈ R and characteristic of R 6= 2, 3, then R satisfies S4,
the standard polynomial identity of degree four.

Theorem 1.6. [[9], Theorem 3.2] LetR be a non-commutative prime ring and if an additive map
F of R is commuting map, then there exists λ ∈ C and an additive map ξ : R → C such that
F (x) = λx+ ξ(x), for all x ∈ R .

2 Main Results

Theorem 2.1. Let R be a non-commutative prime ring with involution ∗ and char(R) 6= 2, 3 and
F be a ∗-semimultiplier such that F : R → R and g : R → R be an associated onto map. If
F (x2) ∈ Z(R) for all x ∈ R, then R satisfies S4 the standard polynomial identity of degree four.

Proof. Since F is additive map and F (x2) ∈ Z(R). On linearizing F , we get F (xy + yx) ∈
Z(R), for all x, y ∈ R. Thus

F (x)g(y∗) + g(y∗)F (x) ∈ Z(R), for all x, y ∈ R.

Let g(y∗) = w. As g is onto, then we have

F (x)w + wF (x) ∈ Z(R), for all x, w ∈ R. (2.1)

Interchange x and w in relation (2.1), we have

F (w)x+ xF (w) ∈ Z(R). (2.2)
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From (2.1) and (2.2), we have

F (x)w + wF (x) + F (w)x+ xF (w) ∈ Z(R) for all x, y ∈ R. (2.3)

Let µ(x,w) = F (x)w + wF (x) + F (w)x+ xF (w).

By Theorem 1.5 we have, R satisfies S4.

Theorem 2.2. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier such that F : R → Qr(R) and g : R → Qr(R) be an associated additive map such that
g(R) = R. If F (x2) ∈ Z(R) for all x ∈ R, then F = 0.

Proof. Since F (x2) ∈ Z(R) ⊆ Qr(R). Now for given F (x) and the relation (2.1),
let ξ(w) = F (x)w + wF (x) ∈ Z(R).

ξ(wr)− ξ(w)r = F (x)wr + wrF (x)− F (x)wr − wF (x)r, for every w, r ∈ R.

Since we see that [ξ(wr)− ξ(w)r, r] = 0, for every w, r ∈ R. This implies that,

ξ(wr)− ξ(w)r = w[r, F (x)] ∈ C(r).

That is,
[w[r, F (x)], r] = 0.

This implies that,
rw[r, F (x)] = w[r, F (x)]r.

By Lemma 1.2, either r is C−dependent with 1 which amounts to say R ⊆ Z(R) which is
contradictory to our assumption. Thus we have,

[r, F (x)] = 0, that is F (x) ∈ C for given x ∈ R.

We can repeat this process for each x ∈ R, to conclude that F (x) ∈ C, holds for all x ∈ R.
Replace x by xt where t ∈ R in the relation F (x) ∈ C we have,

F (xt) = F (x)g(t∗) ∈ C for all x, t ∈ R.

Thus,
F (x)R ⊆ C, since g(R) = R.

By Lemma 1.3 and since R is non-commutative, F (x) = 0 for all x ∈ R. Hence F = 0.

Theorem 2.3. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier and g : R → R be an associated additive surjective map. If F ([x, y]) = ±yx, then there
exists λ ∈ C and µ : R→ C such that F (x) = λx+ µ(x) .

Proof. From assumption,
F ([x, y]) = ±yx for all x, y ∈ R.

Here use yx instead of y where x ∈ R, we get

F ([x, y]x) = ±yx2 for all x, y ∈ R.

By definition of ∗-semimultiplier,

F ([x, y])g(x∗) = ±yx2 for all x, y ∈ R.

By hypothesis, we have
±yx(g(x∗)− x) = 0 for all x, y ∈ R.

This implies that
yx(g(x∗)− x) = 0 for all x, y ∈ R.
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Replace y by yc where c ∈ R in above relation, we get

ycx(g(x∗)− x) = 0 for all c, x, y ∈ R.

That is,
yR{x(g(x∗)− x)} = (0) for all x, y ∈ R.

By primeness of R, we get

x(g(x∗)− x) = 0 for all x ∈ R. (2.4)

Since g is an additive map and ∗ is an involution, therefore on linearizing relation (2.4) we have

x(g(z∗)− z) + z(g(x∗)− x) = 0 for all x, z ∈ R. (2.5)

Since relation (2.5) is a functional identity. Rewriting relation (2.5) as

xE(z) + zH(x) = 0, for all x, z ∈ R,

where E(z) = g(z∗)− z and H(x) = g(x∗)− x . Using [[5], Theorem 2.5], we have E(z) = 0,
for all z ∈ R. Thus in all, g(x∗) = x, for all x ∈ R. So we get the following result,

F (xy) = F (x)y = xF (y), for all x, y ∈ R. (2.6)

Put x = y, in (2.6), we get
[F (x), x] = 0, for all x ∈ R.

That is, F is commuting.
By Theorem 1.6, there exists λ ∈ C and µ : R→ C such that

F (x) = λx+ µ(x) for all x ∈ R.

Theorem 2.4. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier associated with an additive surjective map g : R → R. If F ([x, y]) = ±αyx, where 0 6= α
a fixed element of R, then there exists λ ∈ C and µ : R → C such that F is given by F (x) =
λx+ µ(x).

Proof. From assumption,

F ([x, y]) = ±αyx for all x, y ∈ R.

Here use yx instead of y where x ∈ R, we get

F ([x, y]x) = ±αyx2 for all x, y ∈ R.

By the definition of ∗-semimultiplier,

F ([x, y])g(x∗) = ±αyx2 for all x, y ∈ R.

By assumption, we have

±αyx(g(x∗)− x) = 0 for all x, y ∈ R.

This implies that,
αyx(g(x∗)− x) = 0 for all x, y ∈ R.

Since α 6= 0, by primeness of R, we get

x(g(x∗)− x) = 0 for all x ∈ R,

which is relation (2.4). Thus we get the desired result.
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Theorem 2.5. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier associated with an additive surjective map g : R→ R. If F ([x, y]) = ±xy, then there exists
λ ∈ C and µ : R→ C such that F is given by F (x) = λx+ µ(x).

Proof. From assumption,
F ([x, y]) = ±xy for all x, y ∈ R.

Here use xy instead of x where y ∈ R, we get

F ([xy, y]) = ±xy2 for all x, y ∈ R.

This implies that,
F ([x, y]y) = ±xy2.

By definition of ∗-semimultiplier,

F ([x, y])g(y∗) = ±xy2.

±xy(g(y∗)− y) = 0 for all x, y ∈ R.

This implies that,
xy(g(y∗)− y) = 0 for all x, y ∈ R.

Replace x by xq where q ∈ R in above relation, we get

xqy(g(y∗)− y) = 0, for all q, x, y ∈ R.

This implies that,
xR{y(g(y∗)− y)} = (0), for all x, y ∈ R

By primeness of R, we get

y(g(y∗)− y) = 0 for all y ∈ R , which is relation (2.4). (2.7)

Thus above relation initiates the desired result.

Theorem 2.6. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier associated with an additive surjective map g : R → R. If F ([x, y]) = ±αxy, where 0 6= α
a fixed element of R , then there exists λ ∈ C and µ : R → C such that F is given by F (x) =
λx+ µ(x).

Proof. From assumption,

F ([x, y]) = ±αxy, for all x, y ∈ R.

Here use xy instead of x where y ∈ R , we get

F ([xy, y]) = ±αxy2, for all x, y ∈ R.

From above we get the following relation,

F ([x, y]y) = ±αxy2, for all x, y ∈ R.

By the definition of ∗-semimultiplier ,

F ([x, y])g(y∗) = ±αxy2, for all x, y ∈ R.

This implies that,
±αxyg(y∗) = ±αxy2, for all x, y ∈ R.

That is,
±αxy(g(y∗)− y) = 0, for all x, y ∈ R.
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Above relation can be written as,

αxy(g(y∗)− y) = 0, for all x, y ∈ R.

This implies that,
αR{y(g(y∗)− y)} = (0), for all y ∈ R.

By primeness of R and since α 6= 0, we get,

y(g(y∗)− y) = 0 for all y ∈ R, which is relation (2.4). (2.8)

Thus we get the desired result.

Theorem 2.7. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier associated with an additive surjective map g : R→ R. If F ([x, y]) = ±[x, y] then there exists
λ ∈ C and µ : R→ C such that F is given by F (x) = λx+ µ(x).

Proof. By assumption,
F ([x, y]) = ±[x, y], for all x, y ∈ R.

Use yx instead of y where x ∈ R in above relation, we get

F ([x, yx]) = ±[x, yx] for all x, y ∈ R.

This implies that,
F ([x, y]x) = ±[x, y]x for all x, y ∈ R.

Utilize the definition of ∗- semimultiplier, we get the following relation,

F ([x, y])g(x∗) = ±[x, y]x for all x, y ∈ R.

From assumption,
±[x, y]g(x∗) = ±[x, y]x for all x, y ∈ R.

We finally gain the following relation,

[x, y](g(x∗)− x) = 0 for all x, y ∈ R. (2.9)

Use yz instead of y where y ∈ R in (2.9) to get,

[x, yz](g(x∗)− x) = 0 for all x, y, z ∈ R.

This implies that,

([x, y]z + y[x, z])(g(x∗)− x) = 0 for all x, y, z ∈ R.

This results in following relation,

[x, y]z(g(x∗)− x) = 0 for all x, y, z ∈ R. (2.10)

From above relation (2.10) we have following observation, if A = {x ∈ R| [x, y] = 0 for all y ∈
R} and B = {x ∈ R| g(x∗) = x}. Then A and B are additive subgroups of R whose union is R,
but R being an additive group it cannot be the union of its two proper subgroups. Thus, either
A = R or B = R. Let A = R then R is commutative, which leads to a contradiction. Therefore
we assume B = R. Hence g(x∗) = x for all x ∈ R. From the definition of a ∗-semimultiplier, F
is a two sided centralizer that is ,

F (xy) = F (x)y = xF (y). (2.11)

Put x = y in (2.11) we conclude that F is commuting that is [F (x), x] = 0 for all x ∈ R.
By Theorem 1.6 there exists λ ∈ C and µ : R→ C such that,

F (x) = λx+ µ(x) for all x ∈ R.
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Theorem 2.8. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier associated with an additive surjective map g : R→ R. If F ([x, y]) = ±α[x, y], where 0 6= α
a fixed central element of R, then there exists λ ∈ C and µ : R → C such that F is given by
F (x) = λx+ µ(x).

Proof. By assumption,
F ([x, y]) = ±α[x, y], for all x, y ∈ R.

Use yx instead of y where x ∈ R in above relation, we get

F ([x, yx]) = ±α[x, yx], for all x, y ∈ R.

This implies that,
F ([x, y]x) = ±α[x, y]x, for all x, y ∈ R.

From the definition of ∗-semimultiplier, we have

F ([x, y])g(x∗) = ±α[x, y]x, for all x, y ∈ R.

From given assumption,

±α[x, y]g(x∗) = ±α[x, y]x, for all x, y ∈ R.

Finally, we establish the following relation,

±α[x, y](g(x∗)− x) = 0, for all x, y ∈ R.

Above relation can be rewritten as following relation,

α[x, y](g(x∗)− x) = 0, for all x, y ∈ R. (2.12)

Use yz instead of y where z ∈ R in (2.12) to get,

α[x, yz](g(x∗)− x) = 0, for all x, y, z ∈ R.

This implies that,

α([x, y]z + y[x, z])(g(x∗)− x) = 0, for all x, y, z ∈ R.

In above relation since 0 6= α ∈ Z(R), therefore above relation together with relation (2.12),
gives the following result,

α[x, y]z(g(x∗)− x) = 0 for all x, y, z ∈ R. (2.13)

From above relation (2.13), we have the following observation if A = {x ∈ R| α[x, y] = 0} and
B = {x ∈ R| g(x∗) = x} . Then A and B are additive subgroups of R whose union is R, but R
being an additive group it cannot be the union of its two proper subgroups. Thus, either A = R
or B = R. Let A = R. This implies that α[x, y] = 0, for all x, y ∈ R. Now replace y by zy
where z ∈ R, then αz[x, y] = 0. Since R is not commutative, there exists x0, y0 ∈ R such that
[x0, y0] 6= 0. As R is prime so we conclude that α = 0 which leads to a contradiction. Therefore
we now assume that B = R. Hence g(x∗) = x for all x ∈ R which gives relation (2.11) and
hence the required result follows.

Theorem 2.9. LetR be a non-commutative prime ring with involution ∗. Let F be a ∗-semimultip
lier on R associated with a function g : R → R such that F ([x, y]) = ±(xoy), then F is a map
given by F (x) = λx+ µ(x), where λ ∈ C and µ : R→ C.

Proof. By assumption,
F ([x, y]) = ±(xoy) for all x, y ∈ R

Use yx instead of y where x ∈ R in above relation, we get

F ([x, yx]) = ±(xo(yx)) for all x, y ∈ R.
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From above we get the following relation,

F ([x, y]x) = ±(xoy)x for all x, y ∈ R.

From the definition of ∗-semimultiplier, we have

F ([x, y])g(x∗) = ±(xoy)x for all x, y ∈ R.

By given hypothesis,
±(xoy)g(x∗) = ±(xoy)x for all x, y ∈ R.

This implies that,
±(xoy)(g(x∗)− x) = 0 for all x, y ∈ R.

Above relation can be written as,

(xoy)(g(x∗)− x) = 0 for all x, y ∈ R. (2.14)

Use yz instead of y where z ∈ R in (2.14) to get

(xo(yz))(g(x∗)− x) = 0 for all x, y, z ∈ R.

This implies that

(y(xoz) + [x, y]z)(g(x∗)− x) = 0 for all x, y, z ∈ R.

This implies that
[x, y]z(g(x∗)− x) = 0 for all x, y, z ∈ R (2.15)

which leads to (2.10) and hence we get the required result.

Theorem 2.10. LetR be a non-commutative prime ring with involution ∗ and F be a ∗-semimultip
lier on R associated with a function g : R → R. If F ([x, y]) = ±α(xoy), where α 6= 0 fixed
central element of R, then there exists λ ∈ C and µ : R → C such that F is a map given by
F (x) = λx+ µ(x).

Proof. By assumption,
F ([x, y]) = ±α(xoy), for all x, y ∈ R.

Use yx instead of y where x ∈ R in above relation we get,

F ([x, yx]) = ±α(xo(yx)) for all x, y ∈ R.

This implies that,
F ([x, y]x) = ±α(xoy)x for all x, y ∈ R.

From the definition of ∗-semimultiplier, we have

F ([x, y])g(x∗) = ±α(xoy)x for all x, y ∈ R.

This implies that,
±α(xoy)g(x∗) = ±α(xoy)x for all x, y ∈ R.

Thus we arrive at following relation,

±α(xoy)(g(x∗)− x) = 0 for all x, y ∈ R.

Above relation can be rewritten as,

α(xoy)(g(x∗)− x) = 0 for all x, y ∈ R. (2.16)

Use yz instead of y where z ∈ R in above relation, we get

α(xo(yz))(g(x∗)− x) = 0 for all x, y, z ∈ R.
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This implies that,

α(y(xoz) + [x, y]z)(g(x∗)− x) = 0 for all x, y, z ∈ R.

In above relation since 0 6= α ∈ Z(R), therefore above relation together with relation (2.16),
gives the following result,

α[x, y]z(g(x∗)− x) = 0 for all x, y, z ∈ R.

From above relation we are in the receipt of (2.13) which gives the required result.

Theorem 2.11. Let R be a non-commutative prime ring with involution ∗ and I be a non-zero
ideal and F be a ∗-semimultiplier associated with a function g : R → R. If F (x)F (y) = ±xy
for all x, y ∈ I then there exists λ ∈ C and µ : I → C such that F (x) = λx+µ(x) for all x ∈ I.

Proof. By assumption,
F (x)F (y) = ±xy for all x, y ∈ I.

Use yz instead of y where z ∈ R,

F (x)F (yz) = ±x(yz) for all x, y, z ∈ I.

This implies that,
F (x)F (y)g(z∗) = ±(xy)z for all x, y, z ∈ I.

From the assumption,
±xyg(z∗) = ±(xy)z for all x, y, z ∈ I.

Above relation gives the follwing result,

±xy(g(z∗)− z) = 0 for all x, y, z ∈ I.

Use yq instead of q where q ∈ R in above relation, we get

±xyq(g(z∗)− z) = 0 for all x, y, z, q ∈ I.

The above relation can be rewritten as,

xyR(g(z∗)− z) = 0 for all x, y, z, q ∈ I.

By primeness of R,
xy = 0 for all x, y ∈ I.

This implies that,
x ∈ I ∩ l(I) = {0}.

A contradiction since I 6= {0}. Hence we find that,

g(z∗) = z, for all z ∈ I.

Utilizing the definition of ∗-semimultiplier and above relation, we have

F (xy) = F (x)g(y∗) = g(x∗)F (y), for all x, y ∈ I.

This implies that,
F (xy) = F (x)y = xF (y), for all x, y ∈ I.

Put x = y in above relation we get,

[F (x), x] = 0, for all x ∈ I.

By [[10], Theorem 4.2] , there exists λ ∈ C and µ : I → C such that,

F (x) = λx+ µ(x), for all x ∈ I.
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Theorem 2.12. Let I be a non-zero right ideal of a non-commutative prime ring R with involu-
tion ∗. Further let F : R→ R be a ∗-semimultiplier and g be an associated surjective map such
that F (x) ∈ Z(R) for all x ∈ I . Then F = 0 or g vanishes on I .

Proof. Let v ∈ I and u ∈ R. Then by assumption we have

F (v), F (vu) ∈ Z(R), vu ∈ I ⇒ [F (vu), u] = 0, for all v ∈ I, for all u ∈ R.

Utilizing the definition of ∗-semimultiplier, we have

[F (v)g(u∗), u] = 0, for all v ∈ I, for all u ∈ R,

which implies that

[F (v), u]g(u∗) + F (v)[g(u∗), u] = 0, for all v ∈ I, for all u ∈ R. (2.17)

Since F : I → Z(R), therefore from (2.17), we have

F (v)[g(u∗), u] = 0, for all v ∈ I, for all u ∈ R. (2.18)

From (2.18), we have

F (v)[w, u] = 0, for all v ∈ I, for all u, w ∈ R.

F (v)p[w, u] = 0 for all v ∈ I, for all u, w, p ∈ R.

From the primeness and non-commutativity of R, we conclude that

F (v) = 0, for all v ∈ I.

Replace v by ve, where e ∈ R in above relation, we have

F (ve) = 0 for all v ∈ I, for all e ∈ R.

That is,
g(v∗)F (e) = 0 for all v ∈ I, for all e ∈ R.

We now replace e by et where t ∈ R to get the following relation,

g(v∗)g(e∗)F (t) = 0 for all v ∈ I, for all e ∈ R.

Since g is surjective,

g(v∗)RF (t) = (0), for all v ∈ I, for all t ∈ R.

By primeness of R, we have either

F (t) = 0 for all t ∈ R.

Thence we conclude,
F = 0.

or,
g(v∗) = 0, for all v ∈ I.

Theorem 2.13. Let R be a non-commutative prime ring with involution ∗ and deg(R) > 2.
Further let I be a non-zero ideal, where F : R → Qml(R) be a ∗-semimultiplier associated
with an additive surjective map g : R → Qml(R). If F (x)F (y) = ±yxα for all x, y ∈ I and
α be a fixed element of R, then there exists λ ∈ C and µ : I → C such that F (x) = λx+ µ(x),
for all x ∈ I or F = 0.
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Proof. By assumption,
F (x)F (y) = ±yxα, for all x, y ∈ I.

Use yx instead of x where y ∈ R in above relation,

F (yx)F (y) = ±y(yx)α, for all x, y ∈ I.

Utilize the definition of a ∗-semimultiplier in above relation we obtain the following results,

g(y∗)F (x)F (y) = ±y(yx)α, for all x, y ∈ I.

From given assumption,

±g(y∗)(yx)α = ±y(yx)α, for all x, y ∈ I.

This implies that,
(g(y∗)− y)yxα = 0, for all x, y ∈ I.

From above we get the following relation,

(g(y∗)− y)yRxα = (0), for all x, y ∈ I.

Thus by primeness of R, either
xα = 0, for all x ∈ I,

or
(g(y∗)− y)y = 0, for all y ∈ I.

By implementing primeness of R in xα = 0, we find that α = 0. Thus,

F (x)F (y) = 0, for all x, y ∈ I,

which has simple consequence as,

F (x)oF (y) = 0, for all x, y ∈ I.

Use yt in place of y where t ∈ R in above relation,

F (x)oF (yt) = 0, for all x, y ∈ I and for all t ∈ R.

This implies that,

F (x)o(F (y)g(t∗)) = 0, for all x, y ∈ I and for all t ∈ R.

Making use of the definition of a ∗-semimultiplier, we obtain the following relation,

(F (x)oF (y))g(t∗)− F (y)[F (x), g(t∗)] = 0, for all x, y ∈ I and for all t ∈ R.

F (y)[F (x), g(t∗)] = 0, for all x, y ∈ I and for all t ∈ R.

From above relation, we have

F (y)[F (x), w] = 0, for all x, y ∈ I and for all w ∈ R.

Use wp instead of w where p ∈ R in above relation, we obtain that

F (y)w[F (x), p] = 0, for all x, y ∈ I and for all w, p ∈ R

Since R is prime either F (y) = 0, for all y ∈ I or F (x) ∈ Z(R), for all x ∈ I .
In the both case F = 0, following argument from Theorem 2.12.
Further if we have,

(g(y∗)− y)y = 0, for all y ∈ I.

Using x+ z in place of y where x, z ∈ I we get a functional identity on the ideal I of ring R of
the form,

E1(z)x+E2(x)z = 0, for all x, z ∈ I.
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where
E1(z) = g(z∗)− z, for all z ∈ I.

and
E2(x) = g(x∗)− x for all x ∈ I.

Since deg(R) > 2, we have from [[6] Theorem 2.2]

g(z∗) = z for all z ∈ I.

Hence from the definition of ∗-semimultiplier, we have

F (xy) = F (x)g(y∗) = g(x∗)F (y) for all x, y ∈ I.

We obtain that,
F (xy) = F (x)y = xF (y) for all x, y ∈ I.

Thus, we get the following,
[F (x), x] = 0 for all x ∈ I.

Above relation prompts the desired result following [[10],Theorem 4.2].

3 ∗-SEMIMULTIPLIERS CONNECTED VIA SOME SPECIAL TYPE OF
IDENTITIES

Theorem 3.1. Let R be a non-commutative prime ring with involution ∗ . Let F and G be two ∗-
semimultipliers on R and f and g be the associated surjective maps respectively. If F (x)G(y) =
G(x)F (y), for all x, y ∈ R and F 6= 0, then there exists λ ∈ C such that G(x) = λF (x) for all
x ∈ R .

Proof. We are given that ,

F (x)G(y) = G(x)F (y), for all x, y ∈ R. (3.1)

Use yz instead of y where z ∈ R in (3.1), we have

F (x)G(yz) = G(x)F (yz), for all x, y, z ∈ R.

Utilizing the definition of ∗-semimultipliers, we have

F (x)g(y∗)G(z) = G(x)f(y∗)F (z), for all x, y, z ∈ R.

Since g and f are surjective maps, we have

F (x)wG(z) = G(x)qF (z), for all x, w, q, z ∈ R. (3.2)

Use w instead of q in (3.2), we have

F (x)wG(z) = G(x)wF (z), for all x, w, z ∈ R. (3.3)

Replace z by x in above relation, we have

F (x)wG(x) = G(x)wF (x), for all x, w ∈ R.

Hence if F (x) 6= 0 for some x ∈ R, then from Lemma 1.4 there exists λ(x) ∈ C such that

G(x) = λ(x)F (x), for some x ∈ R.

We now tend to show that this λ(x) is independent of x and for which we proceed as follows.
If F (x) 6= 0 and F (z) 6= 0 then it follows from (3.3) that,

F (x)wλ(z)F (z) = λ(x)F (x)wF (z), for all w ∈ R.
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Thus we have established the following result,

(λ(z)− λ(x))F (x)wF (z) = 0, for all w ∈ R.

Since R is prime we have,
(λ(z)− λ(x)) = 0.

This implies that,

λ(x) = λ(z), that is the value λ(x) is independent of x

Thus we have proved that there exists λ ∈ C, such that

G(x) = λF (x), holds for all x ∈ R.

Theorem 3.2. Let R be a non-commutative prime ring with involution ∗. Let D,F,G and H be
the ∗-semimultipliers on R and d, f, g and h be the associated surjective maps respectively. If
D(x)G(y) = H(x)F (y) for all x, y ∈ R and F 6= 0 , D 6= 0, then there exists λ ∈ C such that
G(x) = λF (x) and H(x) = λD(x) for all x ∈ R.

Proof. We are given that,

D(x)G(y) = H(x)F (y) for all x, y ∈ R. (3.4)

Use yz instead of y where z ∈ R in (3.4), we have

D(x)G(yz) = H(x)F (yz) for all x, y, z ∈ R.

Utilizing the definition of ∗-semimultiplier and since associated maps d, g, h and f are surjective,
we have

D(x)g(y∗)G(z) = H(x)f(y∗)F (z) for all x, y, z ∈ R. (3.5)

Put g(y∗) = w and f(y∗) = q in (3.5) we have,

D(x)wG(z) = H(x)qF (z) for all x, w, z ∈ R. (3.6)

Use w instead of q in (3.6), we have

D(x)wG(z) = H(x)wF (z) for all x, w, z ∈ R. (3.7)

Use wF (p) instead of w where p ∈ R in (3.7),

D(x)wF (p)G(z) = H(x)wF (p)F (z) for all x, w, z, p ∈ R.

From (3.7), we have

D(x)wF (p)G(z) = D(x)wG(p)F (z) for all x, w, p, z ∈ R.

From above relation,we have

D(x)w(F (p)G(z)−G(p)F (z)) = 0 for all x, w, p, z ∈ R.

By primeness of R and since D 6= 0, we have

F (p)G(z)−G(p)F (z) = 0 for all p, z ∈ R.

From Theorem 3.1, we have

G(x) = λF (x), for some λ ∈ C and for all x ∈ R.
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Using above relation in (3.7), we have

D(x)wλF (z) = H(x)wF (z) for all x, w, z ∈ R.

We have the following relation,

D(x)wλF (z) = H(x)wF (z) for all x, w, z ∈ R.

This implies that,
(D(x)λ−H(x))wF (z) = 0 for all x, w, z ∈ R.

Owing to primeness of ring R and since F 6= 0, we have

H(x) = λD(x) for all x ∈ R.

Theorem 3.3. LetR be a non-commutative prime ring with involution ∗where F is a ∗-semimultip
lier on R and g is the associated onto maps. If (F (x))2 = 0 for all x ∈ R, then F = 0.

Proof. Since,
(F (x))2 = 0 for all x ∈ R. (3.8)

F (x)oF (y) = 0 for all x, y ∈ R. (3.9)

Use yt instead of y where y ∈ R in above relation (3.9) and the definition of ∗-semimultiplier,
we obtain that,

F (x)oF (yt) = 0 for all x, y, t ∈ R.

This implies that,
F (x)o(F (y)g(t∗)) = 0 for all x, y, t ∈ R.

Utilizing the definition of a ∗-semimultiplier, we obtain that

(F (x)oF (y))g(t∗)− F (y)[F (x), g(t∗)] = 0 for all x, y, t ∈ R.

F (y)[F (x), g(t∗)] = 0 for all x, y, t ∈ R. (3.10)

In (3.10), since g is surjective map, we have the following result

F (y)[F (x), w] = 0 for all x, y, w ∈ R. (3.11)

Use wp instead of w where p ∈ R in (3.11), we obtain that,

F (y)w[F (x), p] = 0 for all x, y, w, p ∈ R.

Since R is prime either F (y) = 0 or F (x) ∈ Z(R). In the latter case F = 0, following argument
from Theorem 2.12 .

Theorem 3.4. Let R be a non-commutative prime ring with involution ∗ where D,G and H
are ∗-semimultipliers on R and d, g and h be the associated surjective maps respectively. If
D(x) = aG(x) +H(x)b, for all x ∈ R, where a 6∈ Z(R), b 6∈ Z(R), then D = G = H = 0.

Proof. We are given that,

D(x) = aG(x) +H(x)b, for all x ∈ R, where a 6∈ Z(R), b 6∈ Z(R). (3.12)

Use xy instead of x where y ∈ R in (3.12), we have ,

D(xy) = aG(xy) +H(xy)b, for all x, y ∈ R.
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Utilizing the definition of ∗-semimultiplier and since associated maps d, g and h are surjective ,
we have

d(x∗)D(y) = ag(x∗)G(y) + h(x∗)H(y)b, for all x, y ∈ R.

wD(y) = acG(y) + tH(y)b, for all w, y, c, t ∈ R.

From (3.12), above relation becomes,

waG(y) + wH(y)b = acG(y) + tH(y)b, for all c, y, w, t ∈ R.

Use w instead of c in above relation, we have

waG(y) + wH(y)b = awG(y) + tH(y)b, for all t, y, w ∈ R.

This implies that,

[w, a]G(y) + (w − t)H(y)b = 0, for all w, y, t ∈ R.

Use w instead of t in above relation, we have

[w, a]G(y) = 0, for all w, y ∈ R.

Use we instead of w where e ∈ R in above relation, we get

[w, a]eG(y) = 0, for all w, y, e ∈ R.

Using the fact that R is prime and a 6∈ Z(R), we get,

G(y) = 0, for all y ∈ R.

That is,
G = 0.

Now using above relation in (3.12), we obtain that

D(x) = H(x)b, for all x ∈ R.

Again replacing x with xy where y ∈ R in above relation, we have

D(xy) = H(xy)b, for all x, y ∈ R.

D(x)d(y∗) = H(x)h(y∗)b, for all x, y ∈ R.

Since d and h are surjective functions, we get

D(x)w = H(x)qb, for all x, w, q ∈ R.

H(x)bw = H(x)qb, for all x, w, q ∈ R.

Use w instead of q in above relation, we get

H(x)[b, w] = 0, for all x, w ∈ R.

Replace w by wr, where r ∈ R we have,

H(x)w[b, r] = 0, for all x, w, r ∈ R.

By primeness of R and since b 6∈ Z(R) we have, from above relation

H(x) = 0, for all x ∈ R. That is H = 0.

Thus we infer the following,

H(x) = 0 = G(x), for all x ∈ R.

From (3.12), we have D(x) = 0, for all x ∈ R. That is D = 0.
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Theorem 3.5. Let I be a non-zero ideal of a non-commutative prime ring R with involution
∗. Further let F be a ∗-semimultiplier associated with a surjective map g : R → R. If
F (x2) = ±x2, for all x ∈ R then there exists λ ∈ C and µ : R → C such that F (x) =
λx+ µ(x), for all x ∈ R.

Proof. Suppose, F (x2) = ±x2, for all x ∈ R.
Use x+ y instead of x where y ∈ R in above relation we obtain that,

F (xoy) = ±(xoy), for all x, y ∈ R. (3.13)

Use yx instead of y, in (3.13) we see,

F (xo(yx)) = ±(xo(yx)), for all x, y ∈ R.

From the definition of ∗-semimultiplier,

F (xoy)g(x∗) = ±(xoy)x, for all x y ∈ R.

From given assumption,

±(xoy)g(x∗) = ±(xoy)x, for all x, y ∈ R.

This implies that,
±(xoy)(g(x∗)− x) = 0, for all x, y ∈ R. (3.14)

Use yq instead of y where q ∈ R in above relation (3.14) we find that,

±(y(xoq) + [x, y]q)(g(x∗)− x) = 0, for all x, y ∈ R.

[x, y]q(g(x∗)− x) = 0, for all x, y ∈ R. (3.15)

From above relation we are in the receipt of (2.10) and hence we establish our result.

Theorem 3.6. Let R be a non-commutative prime ring and 0 6= F be a ∗-semimultiplier and g
be an associated surjective map. If [a, F (x)] = 0, for all x ∈ R for some fixed element a ∈ R,
then a ∈ Z(R).

Proof. Above result follows immediately by simple replacement of x by xy where y ∈ R in
[a, F (x)] = 0 and utilizing primeness.
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