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Abstract In this paper, we continue the study of monomial ideals with respect to a regular
sequence on a commutative Noetherian ring R. Let x := x1, . . . , xd be a regular R-sequence
contained in the Jacobson radical of R. We first show that each monomial ideal a of R with
respect to x has a unique decomposition as an irredundant finite intersection of ideals of the
form xe1

σ(1)R+ · · ·+xes
σ(s)R, where σ is a permutation of {1, . . . , d}, s ∈ {1, . . . , d} and e1, . . . , es

are positive integers. As a consequence, it follows that a is an irreducible ideal if and only if it is
a generalized-parameter ideal. In addition, it is shown that if xR is a prime ideal, then the radical
of a and the symbolic powers of a are monomials. Finally, we prove that if a is a square-free
monomial ideal such that AssRR/ak ⊆ AssRR/a, for all integers k ≥ 1, then a is normal and
a(k) = ak, where a(k) denotes the kth symbolic power of a.

1 Introduction

Let R denote a commutative Noetherian ring with the identity 1R, and let x := x1, . . . , xd be
a regular R-sequence. A monomial with respect to x is a power product xe1

1 . . . xedd , where
e1, . . . , ed are non-negative integers (so a monomial is either a non-unit or the identity element
1R), and a monomial ideal with respect to x is a proper ideal generated by monomials.

A monomial ideal a of R with respect to x is called reducible if there exist two monomial
ideals b, c of R with respect to x such that a = b ∩ c and a 6= b, c. It is called irreducible if it is
not reducible.

Monomial ideals are important in several areas of current research in commutative Noetherian
rings, and they have been studied in their own right in several papers (for example see [2, 3, 4,
7, 12, 13]), so many interesting results are proved about such ideals.

Recall that an element x ∈ R is said to be integrally dependent on an ideal b of R if there
exists an integer n ≥ 1 and an equation of the form

xn + c1x
n−1 + · · ·+ cn = 0,

where ci ∈ bi for i = 1, . . . , n. The set of all elements that are integrally dependent on b is called
the integral closure of b, denoted by b̄. It is well known that b̄ is an ideal of R and that b ⊆ b̄. If
b = b̄, then b is called integrally closed; and we say that b is normal if for every integer n ≥ 1,
bn is integrally closed.

We refer the reader to [9] and [11] for more detailed information about integral dependence
on ideals.

For a positive integer n, a(n) denotes the nth symbolic power of a, which is defined as the
intersection of the primary components of an corresponding to the minimal associated primes of
a.

The aim of the present paper is to prove various results concerning monomial ideals with
respect to a regular sequence on Noetherian rings. The first main result provides a new and short
proof of the main results of Heinzer et al. (see [3, Corollary 4.10] and [4, Theorems 4.1 and
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4.10]). Namely, for a regular R-sequence x := x1, . . . , xd which is contained in the Jacobson
radical of R, it is shown that each monomial ideal a of R with respect to x has a unique decom-
position as an irredundant finite intersection of ideals of the form xe1

σ(1)R+ · · ·+ xes
σ(s)R, where

σ is a permutation of {1, . . . , d}, s ∈ {1, . . . , d} and e1, . . . , es are positive integers.

Several corollaries of this result are proved. First, we start with the following result.

Theorem 1.1. Let R denote a Noetherian ring and let x := x1, . . . , xd be a regular R-sequence
contained in the Jacobson radical of R. Suppose that a is a monomial ideal of R with respect to
x. Then the following conditions are hold:

(i) a is an irreducible ideal if and only if it is a generalized-parameter ideal.
(ii) (Cf. [5, Theorem 1(A)].) If a is a prime ideal, then for all integers n ≥ 1, a(n) = an.

Moreover, if xR is a prime ideal of R, then we have
(iii) the radical and the symbolic powers of a are monomials.
(iv) a is an intersection of monomial prime ideals, whenever a is square-free.
(v) a(k) = ak and a is normal, whenever a is square-free and AssRR/ak ⊆ AssRR/a, for

every integer k ≥ 1.

We say that a monomial m = xe1
1 . . . xedd with respect to a regular R-sequence x is square-

free if the all ei are 0 or 1. Also, a monomial ideal a with respect to x is called a square-free
monomial ideal if a is generated by square-free monomials.

One of our tools for proving Theorem 1.1 is the following:

Proposition 1.2. Let R denote a Noetherian ring and let x := x1, . . . , xd be a regular R-
sequence contained in the Jacobson radical of R. Suppose that a is a monomial ideal of R
with respect to x, and let u1, . . . , ur be a monomial generating sequence for a. Suppose that
u1 = vw, where v and w are co-prime monomials with respect to x and v 6= 1 6= w. Then

a = (vR+ u2R+ · · ·+ urR) ∩ (wR+ u2R+ · · ·+Rur).

Pursuing this point of view further we compute explicitly the radical of a monomial ideal. In
fact, we derive the following consequence of Theorem 1.1.

Proposition 1.3. Let R denote a Noetherian ring and let x := x1, . . . , xd be a regular R-
sequence contained in the Jacobson radical of R. Let a be a monomial ideal of R with respect
to x, and let u1, . . . , ur be a monomial generating sequence for a. Then the sequence ω1, . . . , ωr
is a monomial generating for Rad(a), where ωi = rad(ui), for all i = 1, . . . , r.

If m = xe1
1 . . . xedd is a monomial with respect to a regular R-sequence x, then the support of

m, denoted by supp(m), is defined to be the set {j|j ∈ {1, . . . , d} and ej 6= 0}. Also the radical
of m, denoted by rad(m), is defined as rad(m) := Πj∈supp(m)xj . It is clear that if m ∈ a, then
(rad(m))t ∈ a, for some integer t ≥ 1. Also, it is easy to see that m = rad(m) if and only if m
is a square-free monomial.

Throughout this paper all rings are commutative and Noetherian, with identity, unless oth-
erwise specified. We shall use R to denote such a ring and a an ideal of R. The radical of a,
denoted by Rad(a), is defined to be the set {x ∈ a : xn ∈ a for some n ∈ N}. Further, we denote
by mAssRR/a the set of minimal prime ideals of AssRR/a. We say that x1, . . . , xd form an
R-sequence (of elements of R) precisely when x1R+ · · ·+ xdR 6= R and for each i = 1, . . . , d,
the element xi is a non-zerodivisor on the R-module R/(x1R+ · · ·+ xi−1R).

For any unexplained notation and terminology we refer the reader to [1] or [10].

2 The Results

The aim of this paper is to add several new results concerning monomial ideals with respect to a
regularR-sequence x = x1, . . . , xd which is contained in the Jacobson radical ofR. Specifically,
we first shall show that if a is a monomial ideal of R with respect to x, then a has a unique
decomposition of generalized-parametric ideals. Several corollaries of this result are included.
The following proposition will be quite useful in the proof of that result. We begin with



804 Reza Naghipour and Simin Mollamahmoudi

Definition 2.1. Assume that R denotes a Noetherian ring, and let x := x1, . . . , xd be a regular
R-sequence of elements of R.

(i) Let u = xe1
1 . . . xedd and v = xt1

1 . . . x
td
d be two monomials with respect to x. For all i ∈

{1, . . . , d}, we set ki = min{ei, ti} and si = max{ei, ti}. Then, we define

gcd(u, v) = xk1
1 . . . xkdd , lcm(u, v) = xs1

1 . . . xsdd ,

the greatest common divisor resp. the least common multiple of u and v. We say that u and
v are co-prime if gcd(u, v) = 1.

(ii) Suppose that s is an integer such that 1 ≤ s ≤ d, let σ be a permutation of {1, . . . , d}, and let
e1, . . . , ed be positive integers. Then the ideal generated by the monomials xe1

σ(1), . . . , x
es
σ(s)

is called a generalized-parametric ideal.

Proposition 2.2. Suppose that R denotes a Noetherian ring and let x := x1, . . . , xd be a regular
R-sequence contained in the Jacobson radical of R. Let a be a non-zero monomial ideal of
R with respect to x, and assume that u1, . . . , ur is a monomial generating sequence for a. Set
u1 = v1w1, where v1 6= 1 6= w1 are co-prime monomials. Then

a = (v1R+ u2R+ · · ·+ urR) ∩ (w1R+ u2R+ · · ·+ urR).

Proof. Put

b := v1R+ u2R+ · · ·+ urR and c := w1R+ u2R+ · · ·+ urR.

Then, it is clear that a ⊆ b ∩ c. On the other hand, in view of [7, Proposition 1], we have

b ∩ c = lcm(v1, w1)R+ lcm(v1, u2)R+ · · ·+ lcm(v1, ur)R

+ lcm(u2, w1)R+ lcm(u2, u2)R+ · · ·+ lcm(u2, ur)R

...

+ lcm(ur, w1)R+ lcm(ur, u2)R+ · · ·+ lcm(ur, ur)R.

Now, since gcd(w1, v1) = 1, it follows that lcm(w1, v1) = v1w1 = u1, and so

b ∩ c ⊆ u1R+ u2R+ · · ·+ urR = a,

as required.

We are now ready to state and prove one of our main results, which provides a new and short
proof of the main results of [3, Corollary 4.10] and [4, Theorems 4.1 and 4.10]).

Theorem 2.3. Suppose that R denotes a Noetherian ring and let x := x1, . . . , xd be a regular R-
sequence contained in the Jacobson radical of R. Let a be a non-zero monomial ideal of R with
respect to x. Then a has a finite irredundant intersection generalized-parametric ideals, say,
a = ∩mi=1qi, where each qi is of the form x

ei1
i1
R + · · · + x

eik
ik
R. Moreover, such an irredundant

presentation, up to the order of the factors, is unique.

Proof. Let a be a non-zero monomial ideal of R with respect to x, and let the monomials
u1, . . . , ur generate a. If every ui has pure power, then being nothing to prove. So suppose
that some ui is not a pure power, say u1. Then we can write u1 = vw, where v and w are
monomials with respect to x with gcd(v, w) = 1. Hence, in view of Proposition 2.2, we have
a = b ∩ c, where

b := vR+ u2R+ · · ·+ urR and c := wR+ u2R+ · · ·+ urR.

Now, if {v, u2, . . . , ur} or {w, u2, . . . , ur} contains an element which is not a pure power,
we proceed as before and obtain a finite number of steps a presentation of a as an intersection
of monomial ideals generated by pure powers. That is a is a finite intersection of generalized-
parameter ideals. Now, by omitting those ideals which contains the intersection of the others we
end up with an irredundant intersection of generalized-parameter ideals.

Therefore it remains to show that such a presentation for a is unique. For this, suppose that a
has two irredundant decompositions, say
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a = q1 ∩ . . . ∩ qr and a = q′1 ∩ . . . ∩ q′s,

where qi and q′j are generated-parameter ideals, for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. We need to
show that r = s and that {q1, . . . , qr} = {q′1 . . . , q′s}. It is enough for us to show that for each
i = 1, . . . , r, there exists j = 1, . . . , s such that q′j ⊆ qi, and by symmetry we then also have
that for each k = 1, . . . , s, there exists l = 1, . . . , r such that ql ⊆ q′k. In order to do so, let
i ∈ {1, . . . , r}, and we suppose that q′j * qi for all j = 1, . . . , s, and look for a contradiction.
We may assume that

qi = xe1
1 R+ · · ·+ xett R and q′j = xb1

1j
R+ · · ·+ xblljR.

Then for every j = 1, . . . , s, there exists 1 ≤ µj ≤ l such that xbjµj ∈ q′j \ qi. Whence, it follows
that either µj /∈ {1, . . . , t} or bj < eµj

. Now, let us set u = lcm(xb1
µ1
, . . . , xbsµs

). Then, we have
u ∈ ∩sj=1q

′
j = a, and so u ∈ ∩rj=1qj . In particular, it follows that

u ∈ qi = xe1
1 R+ · · ·+ xett R.

Consequently, in view of [7, Corollary 3], there exists 1 ≤ i ≤ t such that xeii |u and so u ∈ xeii R.
Hence, it follows from [7, Remark 1] that there exists 1 ≤ j ≤ s such that bj ≥ eµj

, which is a
contradiction.

The first application of Theorem 2.3 shows that two important notions of monomial irre-
ducible ideal and generalized-parameter monomial ideal are the same. Namely:

Corollary 2.4. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R. Then a monomial ideal with respect to x is
irreducible if and only if it is a generalized-parameter ideal.

Proof. (=⇒) Let a be a monomial ideal ofRwith respect to x. If a is irreducible and {u1, . . . , ur}
is a monomial system of generators of a such that some ui is not a pure power, say u1, then we
can write u1 = vw, where u and w are coprime monomials and v 6= 1 6= w. Then, in view of
Proposition 2.2, we have

a = (vR+ u2R+ · · ·+ urR) ∩ (wR+ u2R+ · · ·+ urR),

which is a contradiction.
(⇐=) Conversely, let a be a generalized-parameter ideal, and suppose that a is not irre-

ducible. Then, in view of the definition, there exist integers ei ≥ 1 such that

a = xe1
i1
R+ · · ·+ xekikR,

and that there are two monomial ideals b and c properly containing a such that a = b ∩ c. In
view of the Theorem 2.3, we have b = ∩ri=1qi and c = ∩sj=1q

′
j , where qi and q′i are generalized-

parameter ideals. Hence a = (∩ri=1qi) ∩ (∩si=1q
′
i). By omitting suitable ideals in the intersection

on the right-hand side, we derive an irredundant decomposition for a. Now, the uniqueness
statement in Theorem 2.3 implies that a = qi or a = q′j , for some i or j, which is a contradiction.

The second consequence of Theorem 2.3, which is an extension of a result of M. Hochster,
shows that the symbolic powers and the ordinary powers, of a monomial prime ideal are equal
(see [5, Theorem 1(A)]).

Corollary 2.5. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R. Let p be a monomial prime ideal of R with
respect to x. Then for all integers n ≥ 1, p(n) = pn.

Proof. Since p is a monomial prime ideal, it easily follows that p is a generalized-parameter
ideal. Hence we can assume that p = xe1

i1
R + · · · + xesisR, where 1 ≤ s ≤ d and ei ∈ N. As

p is prime, it yields that xi1 , . . . , xis ∈ p, and so p = xi1R + · · · + xisR. Therefore, since p
is generated by a regular R-sequence, it follows from [6, Theorem 125 and Exercise 13] that
AssRR/pn ⊆ AssRR/p for any n ∈ N. Consequently, AssRR/pn = {p}, for every n ∈ N, and
so pn is a p-primary ideal. Hence p(n) = pn, as required.



806 Reza Naghipour and Simin Mollamahmoudi

As a third conclusion of Theorem 2.3, we derive the following result which shows that the
radical and the symbolic powers of a monomial ideals are also monomial.

Corollary 2.6. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that xR is a prime ideal. Then for any
monomial ideal a of R, the ideals Rad(a) and a(n) are also monomials, for every integer n ≥ 1.

Proof. In view of Theorem 2.3, we have a = ∩mi=1qi, with qi = x
ei1
σ(i1)

R+ · · ·+ x
eik
σ(ik)

R, where
σ is a permutation on {1, . . . , d} and k ≥ 1 is an integer. As, by hypothesis the ideal xR is
prime, it follows from [12, Theorem 3.4] that qi is pi-primary, for all i = 1, . . . ,m, where
pi = xσ(i1)R+ · · ·+ xσ(ik)R. Whence

Rad(a) = ∩mi=1pi and a(n) = ∩i∈T qi,

where T ⊆ {1, . . . ,m}. Now, the assertion follows from [7, Proposition 1].

In the sequel of this paper, we will study some properties of the square-free monomial ide-
als. Specially, we show that if a is a square-free monomial ideal of R such that AssRR/an ⊆
AssRR/a, for all integers n ≥ 1, then all powers of a and a(n) are integrally closed. The follow-
ing proposition which explicitly describes the radical of a monomial ideal is needed in the proof
of that theorem.

Recall that for a monomial m = xe1
1 . . . xedd , the radical of m is is defined as rad(m) =

Πj∈supp(m)xj , where the set supp(m) := {j| 1 ≤ j ≤ d and ej 6= 0} denotes the support of m.

Proposition 2.7. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that xR is a prime ideal. Let a be
a monomial ideal of R with monomial generating sequence u1, . . . , ur. Then the monomials
rad(u1), . . . , rad(ur) is a monomial generating sequence for Rad(a).

Proof. Let us put a = u1R+ · · ·+urR, and set ωi = rad(ui), for all i = 1, . . . , r. We shall show
that Rad(a) = ω1R+ · · ·+ ωrR. To do this, because of rad(uj) ∈ Rad(a) for every 1 ≤ j ≤ r,
it follows that

ω1R+ · · ·+ ωrR ⊆ Rad(a).

Now in order to show the opposite inclusion, since in view of Corollary 2.6, Rad(a) is a
monomial ideal with respect to x, it is enough for us to show that for each monomialm ∈ Rad(a)
there exists a monomial m′ and 1 ≤ i ≤ r such that m = m′ωi. To this end, it follows from
m ∈ Rad(a) that ml ∈ I for some integer l ≥ 1. Hence, in view of [7, Corollary 3], there exists
a monomial m′ such that ml = m′uj for some 1 ≤ j ≤ r. Now it is easy to see that this yields
the desired conclusion.

Corollary 2.8. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that xR is a prime ideal. Suppose that
a is a monomial ideal with respect to x. Then, Rad(a) = a if and only if a is square-free. In
particular, every monomial prime ideal is square-free.

Proof. The assertion readily follows from Proposition 2.7.

Corollary 2.9. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that the ideal xR is prime. Then every
square-free monomial ideal a with respect to x is a finite intersection of monomial prime ideals.
In fact, a = ∩p∈mAssR R/ap.

Proof. In view of Theorem 2.3, a has a finite irredundant primary representation, say a = ∩mi=1qi,
where for all i = 1, . . . ,m, we have

qi = x
ei1
i1
R+ · · ·+ x

eik
ik
R,

for some positive integers ei1 , . . . , eik . Now, as Rad(qi) = xi1R + · · · + xikR is a monomial
prime ideal (cf. [12, Theorem 3.4]), the desired conclusion follows from Corollary 2.8.
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Corollary 2.10. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that the ideal xR is prime. Let a be a
square-free monomial ideal with respect to x. Then

a(k) =
⋂

p∈mAssR R/a p
k,

for any integer k ≥ 1.

Proof. In view of Corollary 2.9, we have a = ∩p∈mAssR R/ap. Now, it is easy to see that

a(k) =
⋂

p∈mAssR R/a p
(k),

for any integer k ≥ 1, and so the assertion follows from Corollary 2.5.

We are now ready to state and prove the final main result of this paper.

Theorem 2.11. Let R denote a Noetherian ring and assume that x := x1, . . . , xd is a regular
R-sequence contained in the Jacobson radical of R such that the ideal xR is prime. Let a be a
square-free monomial ideal with respect to x such that AssRR/ak ⊆ mAssRR/a for all integers
k ≥ 1. Then a(k) = ak and a is a normal ideal.

Proof. Since, a is square-free, it follows from Corollary 2.9 that a = ∩p∈AssR R/ap, and so
AssRR/a = mAssRR/a. Therefore AssRR/a = mAssRR/ak, and hence it follows from
AssRR/ak ⊆ AssRR/a that AssRR/ak = mAssRR/ak. Now, let ak = ∩mi=1qi be an irredun-
dant primary decomposition of ak with qi is pi-primary. Then, as

a(k) =
⋂

pi∈mAssR R/ak qi and AssRR/ak = mAssRR/ak,

it follows that a(k) = ak.
Now, we show that for all integers k ≥ 1, the ideal ak is integrally closed, i.e., ak = ak. To

do this, in view of [7, Proposition 4], it is enough for us to show that for a monomial m in which
ml ∈ akl for some integer l ≥ 1, we have m ∈ ak; note that by virtue of [7, Theorem 1] the ideal
ak is monomial. Since a(j) = aj for all integer j ≥ 1, and according to Corollary 2.10,

a(j) =
⋂

p∈mAssR R/a p
j ,

it suffices to prove that whenever ml ∈ ∩p∈mAssR R/ap
lk, for some integer l ≥ 1, we have

m ∈
⋂

p∈mAssR R/a p
k.

To do this so, let m = xe1
1 . . . xedd . Then ml = xlel1 . . . xledd , and it easily follows from

ml ∈
⋂

p∈mAssR R/a p
lk

that lei ≥ lk, for all i = 1, . . . , d, in which xi ∈ p, for all p ∈ mAssRR/a. This then implies that
ei ≥ k for all i = 1, . . . , d for which xi ∈ p and for all p ∈ mAssRR/a, which yields the desired
conclusion.
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