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Abstract In this paper, the concept of closure ideal is introduced in an MS−ADL and their
properties are studied. It is observed that the set of all closure ideals forms a De Morgan ADL and
topological properties of prime closure ideals are studied in an MS−ADL. Finally, equivalent
conditions are provided for prime closure ideal to become maximal.

1 Introduction

In 1981, the idea of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao as a
common abstraction of almost all the current ring theoretical generalizations of Boolean algebra
on the one side and distributive lattices on the other. An ADL is an algebraic structure (L,∨,∧, 0)
that satisfies most of the distributive lattice conditions with the smallest element 0, except, if
possible, the commutativity of two binary operations ∨ and ∧ and the right distributivity of
the binary operation "∨" over "∧." It has also been noted that each of these three properties
transforms an ADL into a lattice distributive. Subsequently, several researchers have extended
concepts like the class of pseudo-complemented lattices, stone lattices and normal lattices to the
class of almost distributive lattices. In [2], authors introduced the concept of closure ideal in
MS−algebras and studied its properties. In [8], as a popular abstraction of De Morgan ADLs
and Stone ADLs, G. M. Addis recently identified a new equational class of algebras called
MS−ADLs. The MS−ADL class properly includes the MS−algebras class, and most of the
MS−algebras properties are generalized to MS−ADL class. In this paper, we introduce the
concepts of closure ideal in an MS−ADL and studied its properties. We discuss topological
properties of prime closure ideals of an MS−ADL and give equivalent conditions for a prime
closure ideal to become maximal.

2 Preliminaries

We recall certain definitions, properties of an ADL and an MS−ADL in this section. We can go
through the references for further literature about ADL.

Definition 2.1. [4] An almost distributive lattice (ADL) is an algebraic structure (L,∨,∧, 0) of
type (2, 2, 0) satisfying the following set of axioms:

1. a ∨ 0 = a,

2. 0 ∧ a = 0,

3. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
4. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
5. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
6. (a ∨ b) ∧ b = b, for all a, b, c ∈ L.

Note that an element m of an ADL L is called a maximal element if m∧x = x for all x ∈ L.

Definition 2.2. [4] A nonempty subset I of L is called an ideal (respectively a filter) of L, if
a ∨ b, a ∧ x ∈ I (respectively a ∧ b, x ∨ a ∈ I) for all a, b ∈ I and x ∈ L. The set of all ideals
(respectively filters) of L is denoted by I(L) ( respectively F(L)).
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Lemma 2.3. [4] Let I be an ideal of an ADL L. Then, for any a, b ∈ L,

1. a ∧ b ∈ I if and only if b ∧ a ∈ I

2. a ≤ b and b ∈ I implies that a ∈ I.

A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒ x ∈ P or
y ∈ P . A proper ideal M of L is said to be maximal if it is not properly contained in any proper
ideal of L. It can be observed that every maximal ideal of L is a prime ideal. Every proper ideal
of L is contained in a maximal ideal.

Definition 2.4. [8] An MS−almost distributive lattice (MS−ADL) is an algebra (L,∨,∧,◦ , 0)
of type (2, 2, 1, 0) such that (L,∨,∧, 0) is an ADL with maximal elements and x 7→ x◦ is a unary
operation on L satisfying the following axioms:

1. x◦◦ ∧ x = x,

2. (x ∨ y)◦ = x◦ ∧ y◦,

3. (x ∧ y)◦ = x◦ ∨ y◦,

4. m◦ = 0 for all maximal elements m of L,
for all x, y ∈ L.
In addition, if it satisfies the following condition:

5. x◦◦ = x ∧m,

then L is called a De Morgan ADL.

Lemma 2.5. [8] The following holds in an MS−ADL L:

1. 0◦ is maximal,

2. a ≤ b⇒ b◦ ≤ a◦,

3. a◦◦◦ = a◦,

4. (a ∧ b)◦◦ = a◦◦ ∧ b◦◦,

5. (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,

6. (a ∧m)◦ = a◦,

7. (a ∧ b)◦ = (b ∧ a)◦ for all a, b ∈ L.

Definition 2.6. [8] An element x of L is said to be dense if x◦ = 0. The set of all dense elements
of L is denoted by D(L).

Throughout this paper, an ideal of anMS−ADL (L,∨,∧,◦ , 0) is an ideal of an ADL (L,∨,∧, 0).

3 Closure ideals of MS−ADLs

In this section, we introduce the concept of closure ideal in an MS−ADL and study their prop-
erties.

Definition 3.1. Let L be anMS−ADL andA be any nonempty subset of L.Define the dominator
of S as S◦◦ = {a ∈ L | s◦◦ ∧ a = a, for some s ∈ S}.

The following lemma can be proved easily.

Lemma 3.2. Let L be an MS−ADL and S, T be any two nonempty subsets of L. Then we have
the following:

1. S ⊆ S◦◦
2. if S ⊆ T then S◦◦ ⊆ T◦◦
3. (S◦◦)◦◦ = S◦◦.
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Lemma 3.3. Let S, T be any two ideals of an MS−ADL L. Then we have the following:

1. S◦◦ is an ideal of L

2. (S ∩ T )◦◦ = S◦◦ ∩ T◦◦

3. (S ∨ T )◦◦ = S◦◦ ∨ T◦◦.

Proof. 1. Clearly, we have that 0 ∈ S◦◦ and hence S◦◦ 6= ∅. Let a, b ∈ S◦◦. Then there exist
elements s1, s2 ∈ S such that s◦◦1 ∧ a = a and s◦◦2 ∧ b = b. Since s1, s2 ∈ S and S is an ideal
of L, we have that s1 ∨ s2 ∈ S. Now, (s1 ∨ s2)◦◦ ∧ (a ∨ b) = (s◦◦1 ∨ s◦◦2 ) ∧ (a ∨ b) ∧ (a ∨ b) =
(((s◦◦1 ∨ s◦◦2 ) ∧ a) ∨ ((s◦◦1 ∨ s◦◦2 ) ∧ b)) ∧ (a ∨ b) = (((s◦◦1 ∧ a) ∨ (s◦◦2 ∧ a)) ∨ ((s◦◦1 ∧ b) ∨ (s◦◦2 ∧
b))) ∧ (a ∨ b) = ((a ∨ (s◦◦2 ∧ a)) ∨ ((s◦◦1 ∧ b) ∨ b)) ∧ (a ∨ b) = (a ∨ (s◦◦2 ∧ a) ∨ b) ∧ (a ∨ b) =
((s◦◦2 ∧ a) ∨ a ∨ b) ∧ (a ∨ b) = (a ∨ b) ∧ (a ∨ b) = a ∨ b. Therefore a ∨ b ∈ S◦◦. Let a ∈ S◦◦.
Then there exists an element s ∈ S such that s◦◦ ∧ a = a. Let r be any element of L. Clearly, we
have that s◦◦ ∧ a ∧ r = a ∧ r and hence x ∧ r ∈ S◦◦. Therefore S◦◦ is an ideal of L.
2. Since S∩T ⊆ S and S∩T ⊆ T,we have that (S∩T )◦◦ ⊆ S◦◦ and (S∩T )◦◦ ⊆ T◦◦. Therefore
(S ∩ T )◦◦ ⊆ S◦◦ ∩ T◦◦. Let a ∈ S◦◦ ∩ T◦◦. Then a ∈ S◦◦ and b ∈ T◦◦. Since a ∈ S◦◦, there
exists an element s ∈ S such that s◦◦ ∧ a = a. Since a ∈ T◦◦, there exists an element t ∈ T such
that t◦◦ ∧ a = a. Since s ∈ S, t ∈ T and S, T are ideals of L, we have that s ∧ t ∈ S ∩ T. Now
(s∧ t)◦◦ ∧ a = s◦◦ ∧ t◦◦ ∧ a = a. That implies a ∈ (S ∩ T )◦◦. Therefore S◦◦ ∩ T◦◦ ⊆ (S ∩ T )◦◦.
Thus (S ∩ T )◦◦ = S◦◦ ∩ T◦◦.
3. Clearly, we have that S◦◦ ∨ T◦◦ ⊆ (S ∨ T )◦◦. Let a ∈ (S ∨ T )◦◦. Then there exists an element
b ∈ S ∨T such that b◦◦ ∧ a = a. Since b ∈ S ∨T, there exist s ∈ S and t ∈ T such that b = s∨ t.
Now, a = b◦◦ ∧ a = (s ∨ t)◦◦ ∧ a = (s◦◦ ∨ t◦◦) ∧ a = (s◦◦ ∧ a) ∨ (t◦◦ ∧ a) ∈ S◦◦ ∨ T◦◦,
(since s◦◦ ∧ (s◦◦ ∧ b) = s◦◦ ∧ b ⇒ s◦◦ ∧ b ∈ S◦◦). Therefore (S ∨ T )◦◦ ⊆ S◦◦ ∨ T◦◦. Hence
(S ∨ T )◦◦ = S◦◦ ∨ T◦◦.

Corollary 3.4. If {Sα}α∈∆ is a family of ideals of L, then we have the following:

1. (
⋂
α∈∆

Sα)◦◦ =
⋂
α∈∆

(Sα)◦◦

2. (
∨
α∈∆

Sα)◦◦ =
∨
α∈∆

(Sα)◦◦

Now we have the following definition

Definition 3.5. An ideal I of an MS−ADL L is said to be a closure ideal if I = I◦◦.

By lemma-3.3, it is easy to get that the set IC(L) of all closure ideals of L forms a bounded
distributive lattice. For any element a of an MS−ADL L, the dominator {a}◦◦ is called a
principal closure ideal of L. For any MS−ADL L we can define the set of closed elements
L◦◦ = {x ∈ L | x = x◦◦}.

Lemma 3.6. Let L be an MS−ADL with maximal elements. Then for any x, y ∈ L, we have the
following:

1. {x}◦◦ = (x]◦◦ = (x◦◦]

2. {0}◦◦ = {0}

3. If m is any maximal element of L then {m}◦◦ = L

4. (x]◦◦ = (x◦◦]◦◦

5. x ∈ (y]◦◦ if and only if (x]◦◦ ⊆ (y]◦◦

6. if x ≤ y then (x]◦◦ ⊆ (y]◦◦

7. (x]◦◦ = L if and only if x is a dense element of L

8. (x]◦◦ = {0} if and only if x = 0.
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Proof. 1. Clearly, we have that {x}◦◦ ⊆ (x]◦◦. Let a ∈ (x]◦◦. Then there exists an element
b ∈ (x] such that b◦◦ ∧ a = a. Since b ∈ (x], we have x ∧ b = b. Now x◦◦ ∧ a = (x ∨ b)◦◦ ∧ a =
(x◦◦ ∨ b◦◦) ∧ a = (x◦◦ ∧ a) ∨ (b◦◦ ∧ a) = (x◦◦ ∧ a) ∨ a = a. That implies a ∈ {x}◦◦ and hence
(x]◦◦ ⊆ {x}◦◦. Therefore (x]◦◦ = {x}◦◦. Now a ∈ {x}◦◦ iff x◦◦∧a = a iff a ∈ (x◦◦]. Therefore
{x}◦◦ = (x]◦◦ = (x◦◦].
2. Let a ∈ {0}◦◦. Then 0◦◦ ∧ a = a. That implies 0 ∧ a = a and hence a = 0. Therefore
{0}◦◦ = {0}.
3. Let m be any maximal element of L. For any a ∈ L, we have that m◦◦ ∧ a = m ∧ a = a.
Therefore a ∈ {m}◦◦, for all a ∈ L. Hence L = {m}◦◦.
4. Clearly, we have that (x] ⊆ (x◦◦] and hence (x]◦◦ ⊆ (x◦◦]◦◦. Let a ∈ (x◦◦]◦◦. Then there
exists an element b ∈ (x◦◦] such that b◦◦∧a = a. Since b ∈ (x◦◦], we have x◦◦∧b = b and hence
x◦◦ ∧ b◦◦ = b◦◦. Now x◦◦ ∧ a = (x◦◦ ∨ b◦◦) ∧ a = (x◦◦ ∧ a) ∨ (b◦◦ ∧ a) = (x◦◦ ∧ a) ∨ a = a.
That implies a ∈ (x◦◦] = (x]◦◦. That implies (x◦◦]◦◦ ⊆ (x]◦◦. Therefore (x◦◦]◦◦ = (x]◦◦.
5. Assume that x ∈ (y]◦◦. Then y◦◦∧x = x. Let a ∈ (x]◦◦. Then x◦◦∧a = a.Now a = x◦◦∧a =
(y◦◦ ∧ x)◦◦ ∧ a = y◦◦ ∧ x◦◦ ∧ a = y◦◦ ∧ a. That implies a ∈ (y]◦◦. Therefore (x]◦◦ ⊆ (y]◦◦.
Assume that (x]◦◦ ⊆ (y]◦◦. Clearly, we have that x ∈ (x]◦◦ ⊆ (y]◦◦. Therefore x ∈ (y]◦◦.
6. Assume that x ≤ y. Then x ∧ y = x. Let a ∈ (x]◦◦. Then x◦◦ ∧ a = a. Now a = x◦◦ ∧ a =
(x ∧ y)◦◦ ∧ a = x◦◦ ∧ y◦◦ ∧ a = y◦◦ ∧ x◦◦ ∧ a = y◦◦ ∧ a. That implies a ∈ (y]◦◦. Therefore
(x]◦◦ ⊆ (y]◦◦.
7. Assume that (x]◦◦ = L. Then choose a maximal element m of L such that m ∈ (x]◦◦. That
implies x◦◦ ∧m = m. Now x◦ = x◦ ∨ 0 = x◦ ∨m◦ = x◦◦◦ ∨m◦ = (x◦◦ ∧m)◦ = m◦ = 0.
That implies x is a dense element of L. Conversely, assume that x is a dense element of L. Then
x◦ = 0. Let a be any element of L. Now a = 0◦ ∧ a = x◦◦ ∧ a. That implies a ∈ (x]◦◦, for all
a ∈ L. Therefore (x]◦◦ = L.
8. Assume that (x]◦◦ = {0}. Clearly we have that x ∈ (x]◦◦ and hence x = 0. Conversely
assume that x = 0. Let a ∈ (x]◦◦. Then x◦◦ ∧ a = a. That implies 0◦◦ ∧ a = a and hence
0 ∧ a = a. Therefore a = 0. Thus (x]◦◦ = {0}.

Theorem 3.7. Let L be an MS−ADL with maximal elements. Then we have the following con-
ditions:

1. The set M◦◦(L) of all principal closure ideals of L is a bounded sublattice of the lattice
IC(L)

2. L is homomorphic to M◦◦(L)

3. M◦◦(L) is a De Morgan algebra

4. L◦◦ is isomorphic to M◦◦(L).

Proof. 1. Clearly, we have {0}, L ∈M◦◦(L). Let (x]◦◦, (y]◦◦ ∈M◦◦(L). Now we have (x]◦◦ ∨
(y]◦◦ = ((x] ∨ (y]]◦◦ = (x ∨ y]◦◦ and (x]◦◦ ∩ (y]◦◦ = ((x] ∩ (y]]◦◦ = (x ∧ y]◦◦. Therefore
(M◦◦(L),∨,∩, {0}, L) is a bounded sublattices of I◦◦(L).
2. Define f : L −→M◦◦(L) by f(x) = (x]◦◦. Clearly, we have that f(0) = {0} and f(m) = L,
where m is any maximal element of L. Let x, y ∈ L. Now f(x∨y) = (x∨y]◦◦ = (x]◦◦∨(y]◦◦ =
f(x) ∨ f(y) and f(x ∧ y) = (x]◦◦ ∩ (y]◦◦ = f(x) ∩ f(y). Therefore f is homomorphism.
3. Define the unary operation − on M◦◦(L) by (x]◦◦ = (x◦]◦◦. Let x, y ∈ L. (i). Now (x]◦◦ =

(x◦]◦◦ = (x◦◦]◦◦ = (x]◦◦. (ii). Now (x]◦◦ ∨ (y]◦◦ = (x ∨ y]◦◦ = ((x ∨ y)◦]◦◦ = (x◦ ∧ y◦]◦◦ =
(x◦]◦◦ ∩ (y◦]◦◦ = (x]◦◦ ∩ (y]◦◦. (iii). Now ((x]◦◦ ∩ (y]◦◦) = (x ∧ y]◦◦ = ((x ∧ y)◦]◦◦ =

(x◦ ∨ y◦]◦◦ = (x◦]◦◦ ∨ (y◦]◦◦ = (x]◦◦ ∨ (y]◦◦. (iv). We have that (0]◦◦ = (0◦]◦◦ = L. Therefore
(M◦◦(L),∨,∩,− , {0}, L) is a De Morgan algebra.
4. Define g : L◦◦ −→M◦◦(L) by g(x) = (x◦◦]◦◦, for all x ∈ L◦◦. Let x, y ∈ L◦◦. Then x = x◦◦

and y = y◦◦. Suppose x = y. Then (x◦◦]◦◦ = (y◦◦]◦◦. That implies g(x) = g(y) and hence
g is well defined. Let x, y ∈ L◦◦. Then x = x◦◦ and y = y◦◦. Suppose g(x) = g(y). Then
(x◦◦]◦◦ = (y◦◦]◦◦. That implies (x◦◦] = (y◦◦]. That implies x◦◦ ∧ y = y and y◦◦ ∧ x = x.
That implies (x◦◦ ∧ y)◦◦ = y◦◦ and (y◦◦ ∧ x)◦◦ = x◦◦. That implies x◦◦ ∧ y◦◦ = y◦◦ and
x◦◦ ∧ y◦◦ = x◦◦. Therefore x◦◦ = y◦◦ and hence x = y. Thus g is one-one. Let (x◦◦]◦◦ ∈
M◦◦(L). Clearly, we have that (x◦◦]◦◦ = g(x). Therefore g is onto. Let x, y ∈ L◦◦. Then
x = x◦◦ and y = y◦◦. Now g(x ∨ y) = ((x ∨ y)]◦◦ = (x◦◦]◦◦ ∨ (y◦◦]◦◦ = g(x) ∨ g(y). Now
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g(x ∧ y) = ((x ∧ y)◦◦]◦◦ = (x◦◦]◦◦ ∩ (y◦◦]◦◦ = g(x) ∧ g(y). Therefore g is homomorphism and
hence g is isomorphism.

Theorem 3.8. Let I be an ideal of an MS−ADL L. Then I◦◦ =
⋃
x∈I

(x]◦◦.

Proof. Let a ∈ I◦◦. Then there exists an element x ∈ I such that x◦◦ ∧ a = a. That implies
a ∈ (x]◦◦ and hence a ∈

⋃
x∈I

(x]◦◦. Therefore I◦◦ ⊆
⋃
x∈I

(x]◦◦. Let a ∈
⋃
x∈I

(x]◦◦. Then there exists

an element y ∈ I such that a ∈ (y]◦◦. That implies y◦◦ ∧ a = a. Since y ∈ I, we get that a ∈ I◦◦.
Therefore

⋃
x∈I

(x]◦◦ ⊆ I◦◦ and hence
⋃
x∈I

(x]◦◦ = I◦◦.

Definition 3.9. Let L be an MS−ADL.
For any ideal I of L, define an operator σ : I(L) −→ I(M◦◦(L)) as σ(I) = {(x]◦◦ | x ∈ I}.
For any ideal Ĩ of M◦◦(L), define an operator ←−σ : M◦◦(L) −→ I(L) as ←−σ (Ĩ) = {a ∈

L | (a]◦◦ ∈ Ĩ}.

Lemma 3.10. Let L be an MS−ADL. Then we have

1. For any ideal I of L, σ(I) is an ideal of M◦◦(L)

2. For any ideal Ĩ of M◦◦(L),←−σ (Ĩ) is an ideal of L

3. ←−σ and σ are isotones

4. σ←−σ (Ĩ) = Ĩ , for all ideal Ĩ of M◦◦(L)

5. σ is homomorphism.

Proof. 1. Let I be any ideal of L. Clearly, we have that (0]◦◦ ⊆ σ(I) and hence σ(I) 6= ∅. Let
(a]◦◦, (b]◦◦ ∈ σ(I). Then a, b ∈ I. That implies a ∨ b ∈ I. that implies (a ∨ b]◦◦ ∈ σ(I). Since
(a]◦◦∨(b]◦◦ = (a∨b]◦◦,we have that (a]◦◦∨(b]◦◦ ∈ σ(I). Let (a]◦◦ ∈ σ(I) and (r]◦◦ ∈M◦◦(L).
Then a ∈ I and hence a ∧ r ∈ I. That implies (a ∧ r]◦◦ ∈ σ(I). Therefore (a]◦◦ ∩ (r]◦◦ ∈ σ(I)
and hence σ(I) is an ideal of M◦◦(L).
2. Let Ĩ be any ideal of M◦◦(L). Since (0]◦◦ ∈ Ĩ , we have that 0 ∈ ←−σ (Ĩ). Therefore←−σ (Ĩ) 6= ∅.
Let a, b ∈ ←−σ (Ĩ). Then (a]◦◦, (b]◦◦ ∈ Ĩ . Since Ĩ is an ideal of M◦◦(L),we have that (a]◦◦∨(b]◦◦ ∈
Ĩ and hence (a ∨ b]◦◦ ∈ Ĩ . Therefore a ∨ b ∈ ←−σ (Ĩ). Let a ∈ ←−σ (Ĩ) and r ∈ L. Then (a]◦◦ ∈ Ĩ
and (r]◦◦ ∈ M◦◦(L). Since Ĩ is an ideal of M◦◦(L), we have that (a]◦◦ ∩ (r]◦◦ ∈ Ĩ and hence
(a ∧ r]◦◦ ∈ Ĩ . Therefore a ∧ r ∈ ←−σ (Ĩ). Thus←−σ (Ĩ) is an ideal of L.
3. Let Ĩ and J̃ be two ideals of M◦◦(L) with Ĩ ⊆ J̃ . Now we prove that ←−σ (Ĩ) ⊆ ←−σ (J̃). Let
a ∈ ←−σ (Ĩ). Then (a]◦◦ ∈ Ĩ ⊆ J̃ . That implies (a]◦◦ ∈ J̃ . That implies a ∈ ←−σ (J̃). Therefore
←−σ (Ĩ) ⊆ ←−σ (J̃) and hence←−σ is an isotone operator. Let I and J be two ideals of L with I ⊆ J.
Let (a]◦◦ ∈ σ(I). Then a ∈ I ⊆ J. That implies (a]◦◦ ∈ σ(J) and hence σ(I) ⊆ σ(J). Therefore
σ is an isotone operator.
4. Let Ĩ be an ideal of M◦◦(L). Then ←−σ (Ĩ) is an ideal of L. Let a be any element of L. Now
(a]◦◦ ∈ Ĩ iff a ∈ ←−σ (Ĩ) iff (a]◦◦ ∈ σ(←−σ (Ĩ)). Therefore Ĩ = σ(←−σ (Ĩ)).
5. Let I, J ∈ I(L). Clearly we have σ(I ∩ J) ⊆ σ(I) ∩ σ(J). Let (a]◦◦ ∈ σ(I) ∩ σ(J). Then
(a]◦◦ ∈ σ(I) and (a]◦◦ ∈ σ(J). Then there exist i ∈ I and j ∈ J such that (a]◦◦ = (i]◦◦ and
(a]◦◦ = (j]◦◦.Now (a]◦◦ = (i]◦◦∩(j]◦◦ = (i∧j]◦◦ ∈ σ(I∩J). Therefore σ(I)∩σ(J) ⊆ σ(I∩J).
Hence σ(I)∩ σ(J) = σ(I ∩ J). Clearly, we have σ(I)∨ σ(J) ⊆ σ(I ∨ J). Let (a]◦◦ ∈ σ(I ∨ J).
Then a ∈ I ∨ J. Then there exist x ∈ I and y ∈ J such that a = x ∨ y. Now (a]◦◦ = (x ∨ y]◦◦ =
(x]◦◦ ∨ (y]◦◦ ∈ σ(I)∨σ(J). Therefore σ(I ∨J) ⊆ σ(I)∨σ(J). Hence σ(I ∨J) = σ(I)∨σ(J).
Thus σ is homomorphism.

Theorem 3.11. The map←−σ σ : I(L) −→ I(L) is a closure operator.

Proof. 1. Let I be any ideal of L and a ∈ I. Then (a]◦◦ ∈ σ(I). Since σ(I) is an ideal of
M◦◦(L), we get that a ∈ ←−σ (σ(I)). Therefore I ⊆ ←−σ (σ(I)).
2. Let I, J be any two ideals of L with I ⊆ J. Let x ∈ ←−σ (σ(I)). Then (a]◦◦ ∈ σ(I). That
implies a ∈ I ⊆ J. That implies a ∈ J and hence (a]◦◦ ∈ σ(J). Therefore a ∈ ←−σ (σ(J)). Thus
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←−σ (σ(I)) ⊆ ←−σ (σ(J)).
3. From 1 and 2, we have that ←−σ (σ(I)) ⊆ ←−σ σ(←−σ σ(I)). Let a ∈ ←−σ σ(←−σ σ(I)). Then (a]◦◦ ∈
σ(←−σ σ(I)) and hence a ∈ ←−σ (σ(I)). Therefore ←−σ σ(←−σ σ(I)) ⊆ ←−σ (σ(I)). Thus ←−σ σ(←−σ σ(I)) =
←−σ (σ(I)).

Corollary 3.12. For any two ideals I, J of an MS−ADL L, we have ←−σ σ(I ∩ J) = ←−σ (I) ∩
←−σ σ(J).

Proof. Clearly, we have that ←−σ σ(I ∩ J) ⊆ ←−σ σ(I) ∩ ←−σ σ(J). Let a ∈ ←−σ (I) ∩ ←−σ σ(J). Then
a ∈ ←−σ (I) and a ∈ ←−σ σ(J). That implies (a]◦◦ ∈ σ(I) and (a]◦◦ ∈ σ(J). That implies (a]◦◦ ∈
σ(I)∩σ(J) = σ(I ∩J). That implies a ∈ ←−σ σ(I ∩J) and hence←−σ σ(I)∩←−σ σ(J) ⊆ ←−σ σ(I ∩J).
Therefore←−σ σ(I ∩ J) =←−σ σ(I) ∩←−σ σ(J).

Theorem 3.13. Let I be an ideal of an MS−ADL L. Then the following conditions are equiva-
lent:

1. ←−σ σ(I) = I.

2. for any a, b ∈ L, (a]◦◦ = (b]◦◦ and a ∈ I imply b ∈ I

3. I is a closure ideal

4. I =
⋃
i∈I

(i]◦◦

5. if a ∈ I then (a]◦◦ ⊆ I.

Proof. 1 ⇒ 2 : Assume that ←−σ σ(I) = I. Let a, b ∈ L with (a]◦◦ = (b]◦◦ and a ∈ I. Then
a ∈ ←−σ σ(I). Then (a]◦◦ ∈ σ(I). That implies (b]◦◦ ∈ σ(I) and hence b ∈ ←−σ σ(I) = I. Therefore
b ∈ I.
2⇒ 3 : Assume 2. Clearly, I ⊆ I◦◦. Let a ∈ I◦◦. Then there exists an element x ∈ I x◦◦∧a = a.
That implies (x◦◦∧]◦◦ = (a]◦◦. That implies (a]◦◦ = (x◦◦]◦◦ ∩ (a]◦◦. That implies (a]◦◦ =
(x]◦◦ ∩ (a]◦◦ = (x ∧ a]◦◦. Since I is an ideal of L, we have that x ∧ a ∈ I. By our assumption,
we get that a ∈ I and hence I◦◦ ⊆ I. Therefore I = I◦◦.
3⇒ 4 : Clear.
4⇒ 5 : Assume that 4. Let a ∈ I. By our assumption we get that (a]◦◦ ⊆ I.
5⇒ 1 : Assume that 5. Clearly, we have I ⊆ ←−σ σ(I). Let a ∈ ←−σ σ(I). Then (a]◦◦ ∈ σ(I). Then
there exists element b ∈ I such that (a]◦◦ = (b]◦◦. By our assumption, we get that (b]◦◦ ⊆ I and
hence (a]◦◦ ⊆ I. That implies a ∈ I. Therefore←−σ σ(I) ⊆ I. Hence←−σ σ(I) = I.

Lemma 3.14. Let L be an MS−ADL. Then we have the following conditions:

1. if x ∈ L◦◦ then (x] is a closure ideal of L

2. for any ideal I of L,←−σ σ(I) = I◦◦

3. for any ideal I of L, I◦◦ is a closure ideal

4. the map←−σ σ : I(L) −→ I(L) is homomorphism.

Proof. 1. Let x ∈ L◦◦. Clearly, we have that (x] ⊆ ←−σ σ((x]). Let a ∈ ←−σ σ((x]). Then (a]◦◦ ∈
σ((x]). That implies there exists an element b ∈ (x] such that (a]◦◦ = (b]◦◦. That implies (a]◦◦ =
(b]◦◦ ⊆ (x]◦◦ = (x◦◦] = (x]. That implies a ∈ (x] and hence ←−σ σ((x]) ⊆ (x]. Therefore
←−σ σ((x]) = (x]. Thus (x] is a closure ideal of L.
2. Let I be any ideal of L. Now we prove that I◦◦ = ←−σ σ(I). Let a ∈ I◦◦. Then there exists an
element x ∈ I such that x◦◦∧a = a. That implies (a]◦◦ ⊆ (x]◦◦ ∈ σ(I). Since σ(I) is an ideal of
M◦◦(L) and by lemma-2.3, we get that (a]◦◦ ∈ σ(I). Therefore a ∈ ←−σ σ(I). Thus I◦◦ =←−σ σ(I).
Let a ∈ ←−σ σ(I). Then (a]◦◦ ∈ σ(I). Then there exists an element b ∈ I such that (a]◦◦ = (b]◦◦.
That implies a ∈ (b]◦◦ and hence b◦◦ ∧ a = a. Since I is an ideal of L, we get that a ∈ I◦◦.
Therefore←−σ σ(I) ⊆ I◦◦. Hence I◦◦ =←−σ σ(I).
3. Clear
4. Let I, J ∈ I(L). Now ←−σ σ(I ∩ J) = (I ∩ J)◦◦ = I◦◦ ∩ J◦◦ = ←−σ σ(I) ∩ ←−σ σ(J). Now
←−σ σ(I ∨ J) = (I ∨ J)◦◦ = I◦◦ ∨ J◦◦ = ←−σ σ(I) ∨ ←−σ σ(J). Clearly, we have that ←−σ σ({0}) =
←−σ ({0}) = {0} and←−σ σ(L) =←−σ ((M)◦◦(L)) = L. Therefore←−σ σ is homomorphism.
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Definition 3.15. A closure ideal I of an MS−ADL L is said to be prime if I is a prime ideal of
L.

Theorem 3.16. Let L be an MS−ADL. Then there is an isomorphism of the lattice of closure
ideals of L onto the ideal lattice of M◦◦(L). Under this isomorphism the prime closure ideals
corresponding to prime ideals of M◦◦(L).

Proof. Define g : IC(L) −→ I(M◦◦(L)) by g(I) = σ(I). Clearly g is well defined. Let
I, J ∈ IC(L) with g(I) = g(J). Then σ(I) = σ(J) and hence ←−σ σ(I) = ←−σ σ(J). Therefore
I = J. Thus g is one-one. Let Ĩ be an ideal of M◦◦(L). Then ←−σ (Ĩ) is an ideal of L. That
implies σ(

←−
( Ĩ)) = Ĩ . That implies←−σ (σ(←−σ (Ĩ))) = ←−σ (Ĩ). That implies←−σ (Ĩ) is a closure ideal

of L. Now g(←−σ (Ĩ)) = σ←−σ (Ĩ) = Ĩ . Therefore g is onto. Since σ is homomorphism, we get g is
homomorphism. Hence g is an isomorphism. Let I be a prime closure ideal of L. Now we prove
that g(I) is a prime ideal of M◦◦(L). Let (a]◦◦, (b]◦◦ ∈M◦◦(L) with (a]◦◦∩(b]◦◦ ∈ g(I) = σ(I).
Then (a ∧ b]◦◦ ∈ σ(I). Then there exists an element c ∈ I such that (a ∧ b]◦◦ = (c]◦◦. Since I
is a closure ideal of L and c ∈ I, we get that a ∧ b ∈ I. Since I is a prime ideal of L, we have
that either a ∈ I or b ∈ I. That implies (a]◦◦ ∈ σ(I) or (b]◦◦ ∈ σ(I). Therefore σ(I) = g(I)

is a prime ideal of M◦◦(L). Let Ĩ be a prime ideal of M◦◦(L). Since g is onto, there exists an
closure ideal I of L such that g(I) = Ĩ . Since g(I) = σ(I), we have that σ(I) = Ĩ . Let a, b ∈ L
with a ∧ b ∈ I. Then (a ∧ b]◦◦ ∈ σ(I). That implies (a]◦◦ ∩ (b]◦◦ ∈ σ(I) = Ĩ . Since Ĩ is a prime
ideal of M◦◦(L), we have that (a]◦◦ ⊆ Ĩ = σ(I) or (b]◦◦ ⊆ Ĩ = σ(I). That implies a ∈ ←−σ σ(I)
or b ∈ ←−σ σ(I). That implies a ∈ I or b ∈ I. Therefore I is a prime ideal of L.

Lemma 3.17. Let L and L′ be two MS−ADLs and h : L −→ L′, a homomorphism. Then we
have the following:

1. for any nonempty subset S of L, h(S◦◦) ⊆ (h(S))◦◦

2. for any nonempty subset T of L′, (h−1(T ))◦◦ ⊆ h−1(T◦◦).

Proof. 1. Let S be any nonempty subset of L. Let a ∈ h(S◦◦). Then there exists an element
b ∈ S◦◦ such that a = h(b). Since b ∈ S◦◦, there exists an element s ∈ A such that s◦◦ ∧ b = b.
Now a = h(b) = h(s◦◦ ∧ b) = h(s◦◦) ∧ h(b) = (h(s))◦◦ ∧ h(b) = (h(s))◦◦ ∧ h(b). Since
h(s) ∈ h(S), we get that a = h(b) ∈ (h(S))◦◦ and hence h(s◦◦) ⊆ (h(S))◦◦.
2. Let T be any nonempty subset of L′. Let a ∈ (h−1(T ))◦◦. Then there exists an element
b ∈ h−1(T ) such that b◦◦ ∧ a = a. Since b ∈ h−1(T ), we get that h(b) ∈ T. Now h(a) =
h(b◦◦∧a) = h(b◦◦)∧h(a) = (h(b))◦◦∧h(a). That implies h(a) ∈ T◦◦ and hence a ∈ h−1(T◦◦).
Therefore (h−1(T ))◦◦ ⊆ h−1(T◦◦).

In general, h(S◦◦) ⊆ (h(S))◦◦ and h−1(T◦◦) ⊆ (h−1(T ))◦◦ are not true.

Example 3.18. Let L be the five element chain 0 < a < b < c < d < 1 and a◦ = b◦ = b, d◦ = 0.
Clearly L is an MS−algebra. Define h : L −→ L by h(0) = 0, h(a) = h(b), h(d) = d, h(1) =
1. Clearly h is a homomorphism. Take S = T = {0, a}. Then S◦◦ = {0, a, b} and h(S) = {0, b}.
That implies h(S◦◦) = {0, b} and (h(S))◦◦ = {0, a, b}. Therefore (h(S))◦◦ * h(A◦◦). We have
that h−1(T ) = {0} and T◦◦ = {0, a, b}. That implies (h−1(T ))◦◦ = {0} and h−1(T◦◦) =
{0, a, b}. Therefore h−1(T◦◦) * (h−1(T ))◦◦.

Definition 3.19. Let L and L′ be two MS−ADLs and h : L −→ L′, a homomorphism. h is
called closure ideal preserving if h(I◦◦) = (h(I))◦◦, for any ideal I of L.

Theorem 3.20. Let L and L′ be two MS−ADLs and h : L −→ L′, onto homomorphism. Then h
is a closure ideal preserving.

Theorem 3.21. Let L and L′ be two MS−ADLs and h : L −→ L′, onto homomorphism. Then
we have the following:

1. for any x ∈ L, h((x]◦◦) = (h(x)]◦◦

2. for any closure ideal I of L, h(I) is a closure ideal of L′
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3. for any closure ideal I of L, h(I) =
⋃
i∈I

(h(i)]◦◦.

Proof. 1. Let x ∈ L. Now a ∈ h((x]◦◦) iff a = h(y), for some y ∈ (x]◦◦ iff a = h(x◦◦ ∧ y),
(since y ∈ (x]◦◦, x◦◦ ∧ y = y) iff a = h(x◦◦) ∧ h(y) iff a = (h(x))◦◦ ∧ h(y) = h(y) iff
h(y) ∈ ((h(x))◦◦]◦◦ iff a ∈ (h(x)]◦◦. Therefore h((x]◦◦) = (h(x)]◦◦.
2. Let I be a closure ideal of L. Let a, b ∈ h(I). Then there exist elements x, y ∈ I such that
a = h(x) and b = h(y). Since x, y ∈ I, we get that x ∨ y ∈ I. Now a ∨ b = h(x) ∨ h(y) =
h(x ∨ y) ∈ h(I). Therefore a ∨ b ∈ h(I). Let a ∈ h(I). Then there exists an element x ∈ I
such that a = h(x). Let r be any element ofL′. Since h is onto, there exists an element y ∈ L
such that h(y) = r. Since x ∈ I, y ∈ L and I is an ideal of L, we have that x ∧ y ∈ I. Now
a∧r = h(x)∧h(y) = h(x∧y) ∈ h(I). That implies x∧r ∈ h(I). Therefore h(I) is an ideal of L′.
clearly, we have that h(I) ⊆ ←−σ σ(h(I)). Let a ∈ ←−σ σ(h(I)). Then (a]◦◦ ∈ σ(h(I)). Then there
exists an element b ∈ h(I) such that (a]◦◦ = (y]◦◦. That implies a ∈ (b]◦◦ ⊆ h(I◦◦) = h(I),
since I◦◦ = I. That implies a ∈ h(I) and hence←−σ σ(h(I)) ⊆ h(I). Therefore←−σ σ(h(I)) = h(I).
Thus h(I) is a closure ideal of L′.
3. Let I be a closure ideal of L. Then I = I◦◦ =

⋃
i∈I

(i]◦◦. That implies (i]◦◦ ⊆ I, for all

i ∈ I. That implies h((i]◦◦) ⊆ h(I) and hence (h(i)]◦◦ ⊆ h(I). Therefore
⋃
i∈I

(h(i)]◦◦ ⊆ h(I).

Let a ∈ h(I). Then there exists an element b ∈ I such that a = h(b). Now a = h(b) ∈
(h(b)]◦◦ ⊆

⋃
b∈I

(h(b)]◦◦ and hence a ∈
⋃
i∈I

(h(i)]◦◦. Therefore h(I) ⊆
⋃
i∈I

(h(i)]◦◦. Thus h(I) =⋃
i∈I

(h(i)]◦◦.

Theorem 3.22. Let L and L′ be two MS−ADLs and h : L −→ L′, a homomorphism. Then we
have the following:

1. for any closure ideal I of L′, h−1(I) is a closure ideal of L

2. Kerh is a closure ideal of L

3. for a closure ideal I of L′, h−1(I◦◦) = (h−1(I))◦◦.

Proof. 1. Let I be any closure ideal of L′. Clearly, h−1(I) is an ideal of L. Since h−1(I) ⊆
←−σ σ(h−1(I)), we have to prove that←−σ σ(h−1(I)) ⊆ h−1(I). Let a ∈ ←−σ σ(h−1(I)). Then (a]◦◦ ∈
σ(h−1(I)). Then there exists an element b ∈ h−1(I) such that (a]◦◦ = (b]◦◦. That implies
(a]◦◦ = (b]◦◦. That implies h((a]◦◦) = h((b]◦◦) and hence (h(a)]◦◦ = (h(b)]◦◦. Therefore
h(a) ∈ I, since h(b) ∈ I and I is a closure ideal of L′. That implies a ∈ h−1(I) and hence
←−σ σ(h−1(I)) ⊆ h−1(I). Therefore h−1(I) =←−σ σ(h−1(I)). Thus h−1(I) is a closure ideal of L.
2. Clearly, we have that Kerh is an ideal of L and kerh ⊆ ←−σ σ(kerh). Let a ∈ ←−σ σ(kerh). Then
(a]◦◦ ∈ σ(kerh). Then there exists an element b ∈ kerh such that (a]◦◦ = (b]◦◦. That implies
(a]◦◦ = (b]◦◦ and h(b) = 0′. That implies a ∈ (b]◦◦ and h(b) = 0′. That implies b◦◦ ∧ a = a and
h(b) = 0′. That implies h(b◦◦ ∧ a) = h(a) and h(b) = 0′. That implies h(b◦◦) ∧ h(a) = h(a)
and h(b) = 0′. That implies (h(b))◦◦ ∧ h(a) = h(a) and (h(b))◦◦ = (0)◦◦ = 0′. That implies
h(a) = 0′ and hence a ∈ kerh. Therefore←−σ σ(kerh) ⊆ kerh. Thus kerh is a closure ideal of L.
3. Let I be any closure ideal of L′. Then I = I◦◦. That implies h−1(I) = h−1(I◦◦) is a closure
ideal of L. That implies h−1(I◦◦) = (h−1(I))◦◦. Therefore h−1 is a closure ideal preserving.

Theorem 3.23. Let L and L′ be two MS−ADLs and h : L −→ L′, onto homomorphism. Then
we have the following:

1. M◦◦(L) is De Morgan homomorphic of M◦◦(L′)

2. IC(L) is homomorphic of IC(L′).

Proof. 1. Define f : M◦◦(L) −→ M◦◦(L′) by f((x]◦◦)h((x]◦◦). Let (x]◦◦, (y]◦◦ ∈ M◦◦(L).
Now, f((x]◦◦ ∨ (y]◦◦) = f((x ∨ y]◦◦) = h((x ∨ y]◦◦) = (h(x ∨ y)]◦◦ = (h(x) ∨ h(y)]◦◦ =
(h(x)]◦◦ ∨ (h(y)]◦◦ = h((x]◦◦) ∨ h((y]◦◦) = f((x]◦◦) ∨ f((y]◦◦). Now, f((x]◦◦ ∩ (y]◦◦) =
f((x∧y]◦◦) = h((x∧y]◦◦) = (h(x∧y)]◦◦ = (h(x)∧h(y)]◦◦ = (h(x)]◦◦∩(h(y)]◦◦ = h((x]◦◦)∩
h((y]◦◦) = f((x]◦◦)∩ f((y]◦◦). Clearly, we have that f((0]◦◦) = (0′]◦◦ and f((m]◦◦) = (m′]◦◦,
where 0 and 0′ are the zero elements of L and L′ respectively, and m and m′ are maximal
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elements of L and L′ respectively.
2. Define g : IC(L) −→ IC(L′) by g(I) = h(I). Clearly we have that g(L) = L′, and
g({0}) = {0′}, where 0 and 0′ are the zero elements of L and L′ respectively. Let I, J ∈ IC(L).
Now g(I ∨ J) = h(I ∨ J) = h(I) ∨ h(J) = g(I) ∨ g(J) and now g(I ∩ J) = h(I ∩ J) =
h(I) ∩ h(J) = g(I) ∩ g(J). Therefore g is homomorphism.

Theorem 3.24. Let I be a closure ideal and F, a filter of an MS−ADL L with F ∩ I = ∅. There
exists a prime closure ideal P of L such that I ⊆ P and P ∩ F = ∅.

Proof. Consider F = {G |G is a closure ideal and G∩F = ∅}. Clearly, I ∈ F and F satisfies the
Zorn’s lemma hypothesis. Then F has a maximal element sayN. Let a, b ∈ Lwith a∧b ∈ N.We
prove that either a ∈ N or b ∈ N. Suppose that a /∈ N and b /∈ N. Then N ⊂ N ∨(a] ⊆ ←−σ σ(N ∨
(a]) and N ⊂ N ∨ (b] ⊆ ←−σ σ(N ∨ (b]). That implies N ⊂ ←−σ σ(N ∨ (a]) and N ⊂ ←−σ σ(N ∨ (b]).
Since←−σ σ(N ∨ (a]) and←−σ σ(N ∨ (b]) are closure ideals of L, we get that←−σ σ(N ∨ (a])∩ F 6= ∅
and ←−σ σ(N ∨ (b]) ∩ F 6= ∅. Then choose x ∈ ←−σ σ(N ∨ (a]) ∩ F and y ∈ ←−σ σ(N ∨ (b]) ∩ F.
Therefore x∧ y ∈ F and x∧ y ∈ ←−σ σ(N ∨ (a])∩←−σ σ(N ∨ (b]) =←−σ σ((N ∨ (a])∩ (N ∨ (b])) =
←−σ σ(N ∨ (a∧ b]) =←−σ σ(N) = N. Therefore N ∩F 6= ∅, which is a contradiction. Hence a ∈ N
or b ∈ N. Thus N is a prime closure ideal of L.

Corollary 3.25. Let I be a closure ideal of an MS−ADL L and x /∈ I. Then there exists a prime
closure ideal P of L such that I ⊆ P and x /∈ P .

Corollary 3.26. For any closure ideal I of an MS−ADL L, we have
I = ∩{P/P is a closure ideal of L and I ⊆ P}

Corollary 3.27. The intersection of all prime closure ideals of an MS−ADL L is {0}.

We discuss some topological properties of prime closure ideals. For this, we first need the
following.

Theorem 3.28. Let L be an MS−ADL. Then every proper closure ideal of L is the intersection
of all prime closure ideals containing it.

Proof. Let I be a proper closure ideal of L. Consider the following set
F0 = ∩{P | P is a prime closure ideal and I ⊆ P}. Clearly, I ⊆ F0. Conversely, let x /∈ I.
Take F = {G | G is a closure ideal, I ⊆ G, x /∈ G}. Then clearly I ∈ F. Clearly F satisfies
the hypothesis of Zorn’s lemma. Let N be a maximal element of F. Let a, b ∈ L be such that
a /∈ N and b /∈ N. Then N ⊂ N ∨ (a] ⊆ ←−σ σ{N ∨ (a]} and N ⊂ N ∨ (b] ⊆ ←−σ σ{N ∨ (b]}.
By maximality of N, we get x ∈ ←−σ σ{N ∨ (a]} and x ∈ ←−σ σ{N ∨ (b]}. Hence we get that
x ∈ ←−σ σ{N ∨ (a]} ∩ ←−σ σ{N ∨ (b]} = ←−σ σ{[N ∨ (a]] ∩ [N ∨ (b]]} = ←−σ σ{N ∨ (a ∧ b]}. If
a ∧ b ∈ N, then x ∈ ←−σ σ(N) = N, which is a contradiction. Thus N is a prime closure ideal
such that x /∈ N. Therefore x /∈ F0 and hence F = F0. Thus every proper closure ideal of L is
the intersection of all prime closure ideals containing it.

4 The Space of Prime closure ideals

In this section, we discuss some topological concepts on the collection of prime closure ideals
of an MS−ADL. Let SpecC(L) be the set of all prime closure ideals of an MS−ADL L. For
any A ⊆ L, let h(A) = {P ∈ SpecC(L) | A * P} and for any x ∈ L; h(x) = h({x}). For
any two subsets A and B of L, it is obvious that A ⊆ B implies h(A) ⊆ h(B). The following
observations can be verified directly.

Lemma 4.1. For any x, y ∈ L, the following conditions holds.

1.
⋃
x∈L

h(x) = SpecC(L)

2. h(x) ∪ h(y) = h(x ∨ y)

3. h(x) ∩ h(y) = h(x ∧ y)
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4. h(x) = ∅ ⇔ x = 0

5. h(x) = SpecC(L)⇔ x is a maximal element of L.

From the above Lemma, it can be easily observed that the collection {h(x) | x ∈ L} forms a
base for a topology on SpecC(L) which is called a hull-kernel topology.

Theorem 4.2. For any ideal I of L, h(I) = h(←−σ σ(I)).

Proof. Clearly we get that h(I) ⊆ h(←−σ σ(I)). Let P ∈ h(←−σ σ(I)). Then←−σ σ(I) * P. Therefore
we can choose an element x ∈ ←−σ σ(I) such that x /∈ P. Since x ∈ ←−σ σ(I), we have (x]◦◦ ∈ σ(I)
and hence (x]◦◦ = (y]◦◦, for some y ∈ I. Suppose I ⊆ P. Then y ∈ P. Since P is a closure ideal
of L, we get that x ∈ P, which is a contradiction. Therefore I * P and hence P ∈ h(I). Thus
h(←−σ σ(I)) ⊆ h(I).

In the following theorem, the compact open set of SpecC(L) are characterized.

Theorem 4.3. For any MS−ADL, the set of all compact open sets of SpecC(L) is the base
{h(x) | x ∈ L}.

Proof. Let x ∈ L with h(x) ⊆
⋃
i∈∆

h(xi). Let I be a ideal generated by {xi | i ∈ ∆}. Suppose

x /∈ ←−σ σ(I). Since←−σ σ(I) is a closure ideal of L, there exists a prime closure ideal P of L such
that x /∈ P and ←−σ σ(I) ⊆ P. Since x /∈ P, we get that P ∈ h(x) ⊆

⋃
i∈∆

h(xi). That implies

xi /∈ P, for some i ∈ ∆, which is a contradiction to that I ⊆ ←−σ σ(I) ⊆ P. Therefore x ∈ ←−σ σ(I).
That implies (x]◦◦ ∈ σ(I) and hence (x]◦◦ = (y]◦◦, for some y ∈ I. Since I is an ideal generated
by {xi | i ∈ ∆}, we get that y = x1 ∨ x2 ∨ · · · ∨ xn, for some x1, x2, ..., xn ∈ {xi | i ∈ ∆}. That
implies (y]◦◦ = (x1 ∨ x2 ∨ · · · ∨ xn]◦◦. Let P ∈ h(x). Then x /∈ P. Suppose P /∈

⋃
i∈∆

h(xi). Then

xi ∈ P, for all i = 1, 2, ..., n and hence x1 ∨ x2 ∨ · · · ∨ xn ∈ P. That implies y ∈ P, which is

a contradiction. Therefore P ∈
⋃
i∈∆

h(xi) and hence h(x) ⊆
n⋃
i=1

h(xi). Thus h(x) is a compact

space. It is enough to show that every compact open subset of SpecC(L) is of the form h(x),
for some x ∈ L. Let C be a compact open subset of SpecC(L). Since C is open, we get that
C =

⋃
a∈A

h(a), for some A ⊆ L. Since C is compact, there exist a1, a2, ..., an ∈ A such that

C =
n⋃
i=1

h(ai) = h(
n∨
i=1

ai). Therefore C = h(x), for some x ∈ L.

Corollary 4.4. Let L be an MS−ADL. Then SpecC(L) is a compact space.

Theorem 4.5. Let L be an MS−ADL. Then the following are equivalent:

1. SpecC(L) is T1−space

2. every prime closure ideal is maximal

3. every prime closure ideal is minimal

4. SpecC(L) is Hausdorff space.

Proof. 1 ⇒ 2 : Assume that SpecC(L) is T1−space. Let P be a prime closure ideal of L.
Suppose Q is any prime closure ideal of L with P $ Q. Since SpecC(L) is T1−space, there exist
basic open sets h(x) and h(y) such that P ∈ h(x) \ h(y) and Q ∈ h(y) \ h(x). Since P /∈ h(y),
we get that y ∈ P $ Q. Therefore Q /∈ h(y), which is a contradiction. Hence P is maximal.
2⇒ 3 : it is obvious
3 ⇒ 4 : Assume that every prime closure ideal is minimal. Let P,Q ∈ SpecC(L) with P 6= Q.
Choose an element a ∈ P such that a /∈ Q. By our assumption, P is minimal prime ideal of
L. Since a ∈ P, then there c /∈ P such that a ∧ c = 0. So that Q ∈ h(a) and P ∈ h(c). Now
h(a) ∩ h(c) = h(a ∨ c) = ∅, since a ∨ c = 0.
4⇒ 1 : Clear.
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