Closure prime spectrum of MS-Almost Distributive Lattices

N. Rafi¹, Ravi Kumar Bandaru² and M. Srujana³

Communicated by Ayman Badawi

MSC 2010 Classifications: 06D99,06D15.

Keywords and phrases: Almost Distributive Lattice(ADL), MS-ADL, closure ideal, Hausdorff space, compact space.

Abstract In this paper, the concept of closure ideal is introduced in an MS-ADL and their properties are studied. It is observed that the set of all closure ideals forms a De Morgan ADL and topological properties of prime closure ideals are studied in an MS-ADL. Finally, equivalent conditions are provided for prime closure ideal to become maximal.

1 Introduction

In 1981, the idea of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao as a common abstraction of almost all the current ring theoretical generalizations of Boolean algebra on the one side and distributive lattices on the other. An ADL is an algebraic structure $(L, \lor, \land, 0)$ that satisfies most of the distributive lattice conditions with the smallest element 0, except, if possible, the commutativity of two binary operations \vee and \wedge and the right distributivity of the binary operation " \lor " over " \land ." It has also been noted that each of these three properties transforms an ADL into a lattice distributive. Subsequently, several researchers have extended concepts like the class of pseudo-complemented lattices, stone lattices and normal lattices to the class of almost distributive lattices. In [2], authors introduced the concept of closure ideal in MS-algebras and studied its properties. In [8], as a popular abstraction of De Morgan ADLs and Stone ADLs, G. M. Addis recently identified a new equational class of algebras called MS-ADLs. The MS-ADL class properly includes the MS-algebras class, and most of the MS-algebras properties are generalized to MS-ADL class. In this paper, we introduce the concepts of closure ideal in an MS-ADL and studied its properties. We discuss topological properties of prime closure ideals of an MS-ADL and give equivalent conditions for a prime closure ideal to become maximal.

2 Preliminaries

We recall certain definitions, properties of an ADL and an MS-ADL in this section. We can go through the references for further literature about ADL.

Definition 2.1. [4] An almost distributive lattice (ADL) is an algebraic structure $(L, \lor, \land, 0)$ of type (2, 2, 0) satisfying the following set of axioms:

- 1. $a \lor 0 = a$,
- $2. \quad 0 \wedge a = 0,$
- 3. $(a \lor b) \land c = (a \land c) \lor (b \land c),$
- 4. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$
- 5. $a \lor (b \land c) = (a \lor b) \land (a \lor c),$
- 6. $(a \lor b) \land b = b$, for all $a, b, c \in L$.

Note that an element m of an ADL L is called a maximal element if $m \wedge x = x$ for all $x \in L$.

Definition 2.2. [4] A nonempty subset I of L is called an ideal (respectively a filter) of L, if $a \lor b, a \land x \in I$ (respectively $a \land b, x \lor a \in I$) for all $a, b \in I$ and $x \in L$. The set of all ideals (respectively filters) of L is denoted by $\Im(L)$ (respectively $\Im(L)$).

Lemma 2.3. [4] Let I be an ideal of an ADL L. Then, for any $a, b \in L$,

- *1.* $a \land b \in I$ *if and only if* $b \land a \in I$
- 2. $a \leq b$ and $b \in I$ implies that $a \in I$.

A proper ideal P of L is called a prime ideal if, for any $x, y \in L, x \land y \in P \Rightarrow x \in P$ or $y \in P$. A proper ideal M of L is said to be maximal if it is not properly contained in any proper ideal of L. It can be observed that every maximal ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal ideal.

Definition 2.4. [8] An MS-almost distributive lattice (MS-ADL) is an algebra ($L, \lor, \land, \circ, 0$) of type (2, 2, 1, 0) such that ($L, \lor, \land, 0$) is an ADL with maximal elements and $x \mapsto x^\circ$ is a unary operation on L satisfying the following axioms:

- 1. $x^{\circ\circ} \wedge x = x$,
- 2. $(x \lor y)^\circ = x^\circ \land y^\circ$,
- 3. $(x \wedge y)^\circ = x^\circ \vee y^\circ$,
- 4. m° = 0 for all maximal elements m of L, for all x, y ∈ L.
 In addition, if it satisfies the following condition:

5.
$$x^{\circ\circ} = x \wedge m$$
,

then L is called a De Morgan ADL.

Lemma 2.5. [8] The following holds in an MS-ADL L:

1. 0° is maximal,

2.
$$a \le b \Rightarrow b^{\circ} \le a^{\circ}$$
,

- 3. $a^{\circ\circ\circ} = a^{\circ}$,
- 4. $(a \wedge b)^{\circ \circ} = a^{\circ \circ} \wedge b^{\circ \circ},$
- 5. $(a \lor b)^{\circ \circ} = a^{\circ \circ} \lor b^{\circ \circ},$

6.
$$(a \wedge m)^\circ = a^\circ$$
,

7. $(a \wedge b)^{\circ} = (b \wedge a)^{\circ}$ for all $a, b \in L$.

Definition 2.6. [8] An element x of L is said to be dense if $x^{\circ} = 0$. The set of all dense elements of L is denoted by D(L).

Throughout this paper, an ideal of an MS-ADL $(L, \lor, \land, \circ, 0)$ is an ideal of an ADL $(L, \lor, \land, 0)$.

3 Closure ideals of MS-ADLs

In this section, we introduce the concept of closure ideal in an MS-ADL and study their properties.

Definition 3.1. Let *L* be an *MS*-ADL and *A* be any nonempty subset of *L*. Define the dominator of *S* as $S_{\circ\circ} = \{a \in L \mid s^{\circ\circ} \land a = a, \text{ for some } s \in S\}.$

The following lemma can be proved easily.

Lemma 3.2. Let L be an MS-ADL and S, T be any two nonempty subsets of L. Then we have the following:

- 1. $S \subseteq S_{\circ\circ}$
- 2. *if* $S \subseteq T$ *then* $S_{\circ\circ} \subseteq T_{\circ\circ}$
- 3. $(S_{\circ\circ})_{\circ\circ} = S_{\circ\circ}$.

Lemma 3.3. Let S, T be any two ideals of an MS-ADL L. Then we have the following:

- 1. $S_{\circ\circ}$ is an ideal of L
- 2. $(S \cap T)_{\circ\circ} = S_{\circ\circ} \cap T_{\circ\circ}$
- 3. $(S \lor T)_{\circ\circ} = S_{\circ\circ} \lor T_{\circ\circ}$.

Proof. 1. Clearly, we have that $0 \in S_{\circ\circ}$ and hence $S_{\circ\circ} \neq \emptyset$. Let $a, b \in S_{\circ\circ}$. Then there exist elements $s_1, s_2 \in S$ such that $s_1^{\circ\circ} \wedge a = a$ and $s_2^{\circ\circ} \wedge b = b$. Since $s_1, s_2 \in S$ and S is an ideal of L, we have that $s_1 \vee s_2 \in S$. Now, $(s_1 \vee s_2)^{\circ\circ} \wedge (a \vee b) = (s_1^{\circ\circ} \vee s_2^{\circ\circ}) \wedge (a \vee b) \wedge (a \vee b) =$ $(((s_1^{\circ\circ} \vee s_2^{\circ\circ}) \wedge a) \vee ((s_1^{\circ\circ} \vee s_2^{\circ\circ}) \wedge b)) \wedge (a \vee b) = (((s_1^{\circ\circ} \wedge a) \vee (s_2^{\circ\circ} \wedge a)) \vee ((s_1^{\circ\circ} \wedge b) \vee (s_2^{\circ\circ} \wedge b))) \wedge (a \vee b) = (a \vee (s_2^{\circ\circ} \wedge a)) \vee ((s_1^{\circ\circ} \wedge b) \vee b)) \wedge (a \vee b) = (a \vee (s_2^{\circ\circ} \wedge a) \vee b) \wedge (a \vee b) =$ $((s_2^{\circ\circ} \wedge a) \vee a \vee b) \wedge (a \vee b) = (a \vee b) \wedge (a \vee b) = a \vee b$. Therefore $a \vee b \in S_{\circ\circ}$. Let $a \in S_{\circ\circ}$. Then there exists an element $s \in S$ such that $s^{\circ\circ} \wedge a = a$. Let r be any element of L. Clearly, we have that $s^{\circ\circ} \wedge a \wedge r = a \wedge r$ and hence $x \wedge r \in S_{\circ\circ}$. Therefore $S_{\circ\circ}$ is an ideal of L.

2. Since $S \cap T \subseteq S$ and $S \cap T \subseteq T$, we have that $(S \cap T)_{\circ\circ} \subseteq S_{\circ\circ}$ and $(S \cap T)_{\circ\circ} \subseteq T_{\circ\circ}$. Therefore $(S \cap T)_{\circ\circ} \subseteq S_{\circ\circ} \cap T_{\circ\circ}$. Let $a \in S_{\circ\circ} \cap T_{\circ\circ}$. Then $a \in S_{\circ\circ}$ and $b \in T_{\circ\circ}$. Since $a \in S_{\circ\circ}$, there exists an element $s \in S$ such that $s^{\circ\circ} \wedge a = a$. Since $a \in T_{\circ\circ}$, there exists an element $t \in T$ such that $t^{\circ\circ} \wedge a = a$. Since $s \in S$, $t \in T$ and S, T are ideals of L, we have that $s \wedge t \in S \cap T$. Now $(s \wedge t)^{\circ\circ} \wedge a = s^{\circ\circ} \wedge t^{\circ\circ} \wedge a = a$. That implies $a \in (S \cap T)_{\circ\circ}$. Therefore $S_{\circ\circ} \cap T_{\circ\circ} \subseteq (S \cap T)_{\circ\circ}$. Thus $(S \cap T)_{\circ\circ} = S_{\circ\circ} \cap T_{\circ\circ}$.

3. Clearly, we have that $S_{\circ\circ} \lor T_{\circ\circ} \subseteq (S \lor T)_{\circ\circ}$. Let $a \in (S \lor T)_{\circ\circ}$. Then there exists an element $b \in S \lor T$ such that $b^{\circ\circ} \land a = a$. Since $b \in S \lor T$, there exist $s \in S$ and $t \in T$ such that $b = s \lor t$. Now, $a = b^{\circ\circ} \land a = (s \lor t)^{\circ\circ} \land a = (s^{\circ\circ} \lor t^{\circ\circ}) \land a = (s^{\circ\circ} \land a) \lor (t^{\circ\circ} \land a) \in S_{\circ\circ} \lor T_{\circ\circ}$, (since $s^{\circ\circ} \land (s^{\circ\circ} \land b) = s^{\circ\circ} \land b \Rightarrow s^{\circ\circ} \land b \in S_{\circ\circ}$). Therefore $(S \lor T)_{\circ\circ} \subseteq S_{\circ\circ} \lor T_{\circ\circ}$.

Corollary 3.4. If $\{S_{\alpha}\}_{\alpha \in \Delta}$ is a family of ideals of L, then we have the following:

 $1. \ (\bigcap_{\alpha \in \Delta} S_{\alpha})_{\circ \circ} = \bigcap_{\alpha \in \Delta} (S_{\alpha})_{\circ \circ}$ $2. \ (\bigvee_{\alpha \in \Delta} S_{\alpha})_{\circ \circ} = \bigvee_{\alpha \in \Delta} (S_{\alpha})_{\circ \circ}$

Now we have the following definition

Definition 3.5. An ideal I of an MS-ADL L is said to be a closure ideal if $I = I_{\circ\circ}$.

By lemma-3.3, it is easy to get that the set $\mathfrak{I}_C(L)$ of all closure ideals of L forms a bounded distributive lattice. For any element a of an MS-ADL L, the dominator $\{a\}_{\circ\circ}$ is called a principal closure ideal of L. For any MS-ADL L we can define the set of closed elements $L^{\circ\circ} = \{x \in L \mid x = x^{\circ\circ}\}.$

Lemma 3.6. Let *L* be an MS-ADL with maximal elements. Then for any $x, y \in L$, we have the following:

- 1. $\{x\}_{\circ\circ} = (x]_{\circ\circ} = (x^{\circ\circ}]$
- 2. $\{0\}_{\circ\circ} = \{0\}$
- *3. If m is any maximal element of L then* $\{m\}_{\circ\circ} = L$
- 4. $(x]_{\circ\circ} = (x^{\circ\circ}]_{\circ\circ}$
- 5. $x \in (y]_{\circ\circ}$ if and only if $(x]_{\circ\circ} \subseteq (y]_{\circ\circ}$
- 6. if $x \leq y$ then $(x]_{\circ\circ} \subseteq (y]_{\circ\circ}$
- 7. $(x]_{\circ\circ} = L$ if and only if x is a dense element of L
- 8. $(x]_{\circ\circ} = \{0\}$ if and only if x = 0.

Proof. 1. Clearly, we have that $\{x\}_{\circ\circ} \subseteq (x]_{\circ\circ}$. Let $a \in (x]_{\circ\circ}$. Then there exists an element $b \in (x]$ such that $b^{\circ\circ} \wedge a = a$. Since $b \in (x]$, we have $x \wedge b = b$. Now $x^{\circ\circ} \wedge a = (x \vee b)^{\circ\circ} \wedge a = (x^{\circ\circ} \vee b^{\circ\circ}) \wedge a = (x^{\circ\circ} \wedge a) \vee (b^{\circ\circ} \wedge a) = (x^{\circ\circ} \wedge a) \vee a = a$. That implies $a \in \{x\}_{\circ\circ}$ and hence $(x]_{\circ\circ} \subseteq \{x\}_{\circ\circ}$. Therefore $(x]_{\circ\circ} = \{x\}_{\circ\circ}$. Now $a \in \{x\}_{\circ\circ}$ iff $x^{\circ\circ} \wedge a = a$ iff $a \in (x^{\circ\circ}]$. Therefore $\{x\}_{\circ\circ} = (x]_{\circ\circ} = (x^{\circ\circ}]$.

2. Let $a \in \{0\}_{\circ\circ}$. Then $0^{\circ\circ} \wedge a = a$. That implies $0 \wedge a = a$ and hence a = 0. Therefore $\{0\}_{\circ\circ} = \{0\}$.

3. Let m be any maximal element of L. For any $a \in L$, we have that $m^{\circ\circ} \wedge a = m \wedge a = a$. Therefore $a \in \{m\}_{\circ\circ}$, for all $a \in L$. Hence $L = \{m\}_{\circ\circ}$.

4. Clearly, we have that $(x] \subseteq (x^{\circ\circ}]$ and hence $(x]_{\circ\circ} \subseteq (x^{\circ\circ}]_{\circ\circ}$. Let $a \in (x^{\circ\circ}]_{\circ\circ}$. Then there exists an element $b \in (x^{\circ\circ}]$ such that $b^{\circ\circ} \wedge a = a$. Since $b \in (x^{\circ\circ}]$, we have $x^{\circ\circ} \wedge b = b$ and hence $x^{\circ\circ} \wedge b^{\circ\circ} = b^{\circ\circ}$. Now $x^{\circ\circ} \wedge a = (x^{\circ\circ} \vee b^{\circ\circ}) \wedge a = (x^{\circ\circ} \wedge a) \vee (b^{\circ\circ} \wedge a) = (x^{\circ\circ} \wedge a) \vee a = a$. That implies $a \in (x^{\circ\circ}] = (x]_{\circ\circ}$. That implies $(x^{\circ\circ}]_{\circ\circ} \subseteq (x]_{\circ\circ}$. Therefore $(x^{\circ\circ}]_{\circ\circ} = (x]_{\circ\circ}$.

5. Assume that $x \in (y]_{\circ\circ}$. Then $y^{\circ\circ} \wedge x = x$. Let $a \in (x]_{\circ\circ}$. Then $x^{\circ\circ} \wedge a = a$. Now $a = x^{\circ\circ} \wedge a = (y^{\circ\circ} \wedge x)^{\circ\circ} \wedge a = y^{\circ\circ} \wedge x^{\circ\circ} \wedge a = y^{\circ\circ} \wedge a$. That implies $a \in (y]_{\circ\circ}$. Therefore $(x]_{\circ\circ} \subseteq (y]_{\circ\circ}$. Assume that $(x]_{\circ\circ} \subseteq (y]_{\circ\circ}$. Clearly, we have that $x \in (x]_{\circ\circ} \subseteq (y]_{\circ\circ}$. Therefore $x \in (y]_{\circ\circ}$.

6. Assume that $x \leq y$. Then $x \wedge y = x$. Let $a \in (x]_{\circ\circ}$. Then $x^{\circ\circ} \wedge a = a$. Now $a = x^{\circ\circ} \wedge a = (x \wedge y)^{\circ\circ} \wedge a = x^{\circ\circ} \wedge y^{\circ\circ} \wedge a = y^{\circ\circ} \wedge x^{\circ\circ} \wedge a = y^{\circ\circ} \wedge a$. That implies $a \in (y]_{\circ\circ}$. Therefore $(x]_{\circ\circ} \subseteq (y]_{\circ\circ}$.

7. Assume that $(x]_{\circ\circ} = L$. Then choose a maximal element m of L such that $m \in (x]_{\circ\circ}$. That implies $x^{\circ\circ} \wedge m = m$. Now $x^{\circ} = x^{\circ} \vee 0 = x^{\circ} \vee m^{\circ} = x^{\circ\circ\circ} \vee m^{\circ} = (x^{\circ\circ} \wedge m)^{\circ} = m^{\circ} = 0$. That implies x is a dense element of L. Conversely, assume that x is a dense element of L. Then $x^{\circ} = 0$. Let a be any element of L. Now $a = 0^{\circ} \wedge a = x^{\circ\circ} \wedge a$. That implies $a \in (x]_{\circ\circ}$, for all $a \in L$. Therefore $(x]_{\circ\circ} = L$.

8. Assume that $(x]_{\circ\circ} = \{0\}$. Clearly we have that $x \in (x]_{\circ\circ}$ and hence x = 0. Conversely assume that x = 0. Let $a \in (x]_{\circ\circ}$. Then $x^{\circ\circ} \wedge a = a$. That implies $0^{\circ\circ} \wedge a = a$ and hence $0 \wedge a = a$. Therefore a = 0. Thus $(x]_{\circ\circ} = \{0\}$.

Theorem 3.7. Let *L* be an *MS*-ADL with maximal elements. Then we have the following conditions:

- 1. The set $\mathfrak{M}_{\circ\circ}(L)$ of all principal closure ideals of L is a bounded sublattice of the lattice $\mathfrak{I}_C(L)$
- 2. *L* is homomorphic to $\mathfrak{M}_{\circ\circ}(L)$
- 3. $\mathfrak{M}_{\circ\circ}(L)$ is a De Morgan algebra
- 4. $L^{\circ\circ}$ is isomorphic to $\mathfrak{M}_{\circ\circ}(L)$.

Proof. 1. Clearly, we have $\{0\}, L \in \mathfrak{M}_{\circ\circ}(L)$. Let $(x]_{\circ\circ}, (y]_{\circ\circ} \in \mathfrak{M}_{\circ\circ}(L)$. Now we have $(x]_{\circ\circ} \lor (y]_{\circ\circ} = ((x] \lor (y]]_{\circ\circ} = (x \lor y]_{\circ\circ}$ and $(x]_{\circ\circ} \cap (y]_{\circ\circ} = ((x] \cap (y]]_{\circ\circ} = (x \land y]_{\circ\circ}$. Therefore $(\mathfrak{M}_{\circ\circ}(L), \lor, \cap, \{0\}, L)$ is a bounded sublattices of $\mathfrak{I}_{\circ\circ}(L)$.

2. Define $f: L \longrightarrow \mathfrak{M}_{\circ\circ}(L)$ by $f(x) = (x]_{\circ\circ}$. Clearly, we have that $f(0) = \{0\}$ and f(m) = L, where *m* is any maximal element of *L*. Let $x, y \in L$. Now $f(x \lor y) = (x \lor y]_{\circ\circ} = (x]_{\circ\circ} \lor (y]_{\circ\circ} = f(x) \lor f(y)$ and $f(x \land y) = (x]_{\circ\circ} \cap (y]_{\circ\circ} = f(x) \cap f(y)$. Therefore *f* is homomorphism.

3. Define the unary operation \neg on $\mathfrak{M}_{\circ\circ}(L)$ by $\overline{[x]}_{\circ\circ} = (x^{\circ}]_{\circ\circ}$. Let $x, y \in L$. (i). Now $\overline{[x]}_{\circ\circ} = \overline{[x^{\circ}]}_{\circ\circ} = \overline{[x^{\circ}]}_{\circ\circ} = (x^{\circ\circ}]_{\circ\circ} = (x]_{\circ\circ}$. (ii). Now $\overline{[x]}_{\circ\circ} \vee (y]_{\circ\circ} = \overline{[x \vee y]}_{\circ\circ} = (x \vee y)^{\circ}]_{\circ\circ} = (x^{\circ} \wedge y^{\circ}]_{\circ\circ} = (x^{\circ})_{\circ\circ} \cap (y^{\circ}]_{\circ\circ} = \overline{[x]}_{\circ\circ} \cap \overline{[y]}_{\circ\circ}$. (iii). Now $\overline{[(x]}_{\circ\circ} \cap (y]_{\circ\circ}) = \overline{[x \wedge y]}_{\circ\circ} = ((x \wedge y)^{\circ}]_{\circ\circ} = (x^{\circ} \vee y^{\circ}]_{\circ\circ} = (x^{\circ})_{\circ\circ} \vee (y^{\circ}]_{\circ\circ} = \overline{[x]}_{\circ\circ} \vee \overline{[y]}_{\circ\circ}$. (iv). We have that $\overline{[0]}_{\circ\circ} = (0^{\circ}]_{\circ\circ} = L$. Therefore $(\mathfrak{M}_{\circ\circ}(L), \vee, \cap, \neg, \{0\}, L)$ is a De Morgan algebra. 4. Define $g: L^{\circ\circ} \longrightarrow \mathfrak{M}_{\circ\circ}(L)$ by $g(x) = (x^{\circ\circ}]_{\circ\circ}$, for all $x \in L^{\circ\circ}$. Let $x, y \in L^{\circ\circ}$. Then $x = x^{\circ\circ}$

4. Define $g: L^{\circ\circ} \longrightarrow \mathfrak{M}_{\circ\circ}(L)$ by $g(x) = (x^{\circ\circ}]_{\circ\circ}$, for all $x \in L^{\circ\circ}$. Let $x, y \in L^{\circ\circ}$. Then $x = x^{\circ\circ}$ and $y = y^{\circ\circ}$. Suppose x = y. Then $(x^{\circ\circ}]_{\circ\circ} = (y^{\circ\circ}]_{\circ\circ}$. That implies g(x) = g(y) and hence g is well defined. Let $x, y \in L^{\circ\circ}$. Then $x = x^{\circ\circ}$ and $y = y^{\circ\circ}$. Suppose g(x) = g(y). Then $(x^{\circ\circ}]_{\circ\circ} = (y^{\circ\circ}]_{\circ\circ}$. That implies $(x^{\circ\circ}] = (y^{\circ\circ}]$. That implies $x^{\circ\circ} \wedge y = y$ and $y^{\circ\circ} \wedge x = x$. That implies $(x^{\circ\circ} \wedge y)^{\circ\circ} = y^{\circ\circ}$ and $(y^{\circ\circ} \wedge x)^{\circ\circ} = x^{\circ\circ}$. That implies $x^{\circ\circ} \wedge y^{\circ\circ} = y^{\circ\circ}$ and $x^{\circ\circ} \wedge y^{\circ\circ} = x^{\circ\circ}$. Therefore $x^{\circ\circ} = y^{\circ\circ}$ and hence x = y. Thus g is one-one. Let $(x^{\circ\circ}]_{\circ\circ} \in$ $\mathfrak{M}_{\circ\circ}(L)$. Clearly, we have that $(x^{\circ\circ}]_{\circ\circ} = g(x)$. Therefore g is onto. Let $x, y \in L^{\circ\circ}$. Then $x = x^{\circ\circ}$ and $y = y^{\circ\circ}$. Now $g(x \vee y) = ((x \vee y)]_{\circ\circ} = (x^{\circ\circ}]_{\circ\circ} \vee (y^{\circ\circ}]_{\circ\circ} = g(x) \vee g(y)$. Now $g(x \wedge y) = ((x \wedge y)^{\circ\circ}]_{\circ\circ} = (x^{\circ\circ}]_{\circ\circ} \cap (y^{\circ\circ}]_{\circ\circ} = g(x) \wedge g(y)$. Therefore g is homomorphism and hence g is isomorphism.

Theorem 3.8. Let I be an ideal of an MS-ADL L. Then $I_{\circ\circ} = \bigcup_{x \in I} (x]_{\circ\circ}$.

Proof. Let $a \in I_{\circ\circ}$. Then there exists an element $x \in I$ such that $x^{\circ\circ} \wedge a = a$. That implies $a \in (x]_{\circ\circ}$ and hence $a \in \bigcup_{x \in I} (x]_{\circ\circ}$. Therefore $I_{\circ\circ} \subseteq \bigcup_{x \in I} (x]_{\circ\circ}$. Let $a \in \bigcup_{x \in I} (x]_{\circ\circ}$. Then there exists an element $y \in I$ such that $a \in (y]_{\circ\circ}$. That implies $y^{\circ\circ} \wedge a = a$. Since $y \in I$, we get that $a \in I_{\circ\circ}$. Therefore $\bigcup_{x \in I} (x]_{\circ\circ} \subseteq I_{\circ\circ}$ and hence $\bigcup_{x \in I} (x]_{\circ\circ} = I_{\circ\circ}$.

Definition 3.9. Let *L* be an *MS*-ADL.

For any ideal I of L, define an operator $\sigma : \Im(L) \longrightarrow \Im(\mathfrak{M}_{\circ\circ}(L))$ as $\sigma(I) = \{(x]_{\circ\circ} \mid x \in I\}$. For any ideal \widetilde{I} of $\mathfrak{M}_{\circ\circ}(L)$, define an operator $\overleftarrow{\sigma} : \mathfrak{M}_{\circ\circ}(L) \longrightarrow \Im(L)$ as $\overleftarrow{\sigma}(\widetilde{I}) = \{a \in L \mid (a]_{\circ\circ} \in \widetilde{I}\}$.

Lemma 3.10. Let L be an MS-ADL. Then we have

- *1.* For any ideal I of L, $\sigma(I)$ is an ideal of $\mathfrak{M}_{\circ\circ}(L)$
- 2. For any ideal \widetilde{I} of $\mathfrak{M}_{\circ\circ}(L)$, $\overleftarrow{\sigma}(\widetilde{I})$ is an ideal of L
- *3.* $\overleftarrow{\sigma}$ and σ are isotones
- 4. $\sigma \overleftarrow{\sigma}(\widetilde{I}) = \widetilde{I}$, for all ideal \widetilde{I} of $\mathfrak{M}_{\circ\circ}(L)$
- 5. σ is homomorphism.

Proof. 1. Let I be any ideal of L. Clearly, we have that $(0]_{\circ\circ} \subseteq \sigma(I)$ and hence $\sigma(I) \neq \emptyset$. Let $(a]_{\circ\circ}, (b]_{\circ\circ} \in \sigma(I)$. Then $a, b \in I$. That implies $a \lor b \in I$. that implies $(a \lor b]_{\circ\circ} \in \sigma(I)$. Since $(a]_{\circ\circ} \lor (b]_{\circ\circ} = (a \lor b]_{\circ\circ}$, we have that $(a]_{\circ\circ} \lor (b]_{\circ\circ} \in \sigma(I)$. Let $(a]_{\circ\circ} \in \sigma(I)$ and $(r]_{\circ\circ} \in \mathfrak{M}_{\circ\circ}(L)$. Then $a \in I$ and hence $a \land r \in I$. That implies $(a \land r]_{\circ\circ} \in \sigma(I)$. Therefore $(a]_{\circ\circ} \cap (r]_{\circ\circ} \in \sigma(I)$ and hence $\sigma(I)$ is an ideal of $\mathfrak{M}_{\circ\circ}(L)$.

2. Let \widetilde{I} be any ideal of $\mathfrak{M}_{\circ\circ}(L)$. Since $(0]_{\circ\circ} \in \widetilde{I}$, we have that $0 \in \overleftarrow{\sigma}(\widetilde{I})$. Therefore $\overleftarrow{\sigma}(\widetilde{I}) \neq \emptyset$. Let $a, b \in \overleftarrow{\sigma}(\widetilde{I})$. Then $(a]_{\circ\circ}, (b]_{\circ\circ} \in \widetilde{I}$. Since \widetilde{I} is an ideal of $\mathfrak{M}_{\circ\circ}(L)$, we have that $(a]_{\circ\circ} \lor (b]_{\circ\circ} \in \widetilde{I}$ and hence $(a \lor b]_{\circ\circ} \in \widetilde{I}$. Therefore $a \lor b \in \overleftarrow{\sigma}(\widetilde{I})$. Let $a \in \overleftarrow{\sigma}(\widetilde{I})$ and $r \in L$. Then $(a]_{\circ\circ} \in \widetilde{I}$ and $(r]_{\circ\circ} \in \mathfrak{M}_{\circ\circ}(L)$. Since \widetilde{I} is an ideal of $\mathfrak{M}_{\circ\circ}(L)$, we have that $(a]_{\circ\circ} \cap (r]_{\circ\circ} \in \widetilde{I}$ and hence $(a \land r]_{\circ\circ} \in \widetilde{I}$. Therefore $a \land r \in \overleftarrow{\sigma}(\widetilde{I})$. Thus $\overleftarrow{\sigma}(\widetilde{I})$ is an ideal of L.

3. Let \widetilde{I} and \widetilde{J} be two ideals of $\mathfrak{M}_{\circ\circ}(L)$ with $\widetilde{I} \subseteq \widetilde{J}$. Now we prove that $\overleftarrow{\sigma}(\widetilde{I}) \subseteq \overleftarrow{\sigma}(\widetilde{J})$. Let $a \in \overleftarrow{\sigma}(\widetilde{I})$. Then $(a]_{\circ\circ} \in \widetilde{I} \subseteq \widetilde{J}$. That implies $(a]_{\circ\circ} \in \widetilde{J}$. That implies $a \in \overleftarrow{\sigma}(\widetilde{J})$. Therefore $\overleftarrow{\sigma}(\widetilde{I}) \subseteq \overleftarrow{\sigma}(\widetilde{J})$ and hence $\overleftarrow{\sigma}$ is an isotone operator. Let I and J be two ideals of L with $I \subseteq J$. Let $(a]_{\circ\circ} \in \sigma(I)$. Then $a \in I \subseteq J$. That implies $(a]_{\circ\circ} \in \sigma(J)$ and hence $\sigma(I) \subseteq \sigma(J)$. Therefore σ is an isotone operator.

4. Let \widetilde{I} be an ideal of $\mathfrak{M}_{\circ\circ}(L)$. Then $\overleftarrow{\sigma}(\widetilde{I})$ is an ideal of L. Let a be any element of L. Now $(a]_{\circ\circ} \in \widetilde{I}$ iff $a \in \overleftarrow{\sigma}(\widetilde{I})$ iff $(a]_{\circ\circ} \in \sigma(\overleftarrow{\sigma}(\widetilde{I}))$. Therefore $\widetilde{I} = \sigma(\overleftarrow{\sigma}(\widetilde{I}))$.

5. Let $I, J \in \mathfrak{I}(L)$. Clearly we have $\sigma(I \cap J) \subseteq \sigma(I) \cap \sigma(J)$. Let $(a]_{\circ\circ} \in \sigma(I) \cap \sigma(J)$. Then $(a]_{\circ\circ} \in \sigma(I)$ and $(a]_{\circ\circ} \in \sigma(J)$. Then there exist $i \in I$ and $j \in J$ such that $(a]_{\circ\circ} = (i]_{\circ\circ}$ and $(a]_{\circ\circ} = (j]_{\circ\circ}$. Now $(a]_{\circ\circ} = (i]_{\circ\circ} \cap (j]_{\circ\circ} = (i \wedge j]_{\circ\circ} \in \sigma(I \cap J)$. Therefore $\sigma(I) \cap \sigma(J) \subseteq \sigma(I \cap J)$. Hence $\sigma(I) \cap \sigma(J) = \sigma(I \cap J)$. Clearly, we have $\sigma(I) \vee \sigma(J) \subseteq \sigma(I \vee J)$. Let $(a]_{\circ\circ} \in \sigma(I \vee J)$. Then $a \in I \vee J$. Then there exist $x \in I$ and $y \in J$ such that $a = x \vee y$. Now $(a]_{\circ\circ} = (x \vee y]_{\circ\circ} = (x]_{\circ\circ} \vee (y]_{\circ\circ} \in \sigma(I) \vee \sigma(J)$. Therefore $\sigma(I \vee J) \subseteq \sigma(I) \vee \sigma(J)$. Hence $\sigma(I \vee J) = \sigma(I) \vee \sigma(J)$. Thus σ is homomorphism.

Theorem 3.11. The map $\overleftarrow{\sigma} \sigma : \mathfrak{I}(L) \longrightarrow \mathfrak{I}(L)$ is a closure operator.

Proof. 1. Let I be any ideal of L and $a \in I$. Then $(a]_{\circ\circ} \in \sigma(I)$. Since $\sigma(I)$ is an ideal of $\mathfrak{M}_{\circ\circ}(L)$, we get that $a \in \overleftarrow{\sigma}(\sigma(I))$. Therefore $I \subseteq \overleftarrow{\sigma}(\sigma(I))$.

2. Let I, J be any two ideals of L with $I \subseteq J$. Let $x \in \overleftarrow{\sigma}(\sigma(I))$. Then $(a]_{\circ\circ} \in \sigma(I)$. That implies $a \in I \subseteq J$. That implies $a \in J$ and hence $(a]_{\circ\circ} \in \sigma(J)$. Therefore $a \in \overleftarrow{\sigma}(\sigma(J))$. Thus

 $\overleftarrow{\sigma}(\sigma(I)) \subseteq \overleftarrow{\sigma}(\sigma(J)).$

3. From 1 and 2, we have that $\overleftarrow{\sigma}(\sigma(I)) \subseteq \overleftarrow{\sigma}\sigma(\overleftarrow{\sigma}\sigma(I))$. Let $a \in \overleftarrow{\sigma}\sigma(\overleftarrow{\sigma}\sigma(I))$. Then $(a]_{\circ\circ} \in \sigma(\overleftarrow{\sigma}\sigma(I))$ and hence $a \in \overleftarrow{\sigma}(\sigma(I))$. Therefore $\overleftarrow{\sigma}\sigma(\overleftarrow{\sigma}\sigma(I)) \subseteq \overleftarrow{\sigma}(\sigma(I))$. Thus $\overleftarrow{\sigma}\sigma(\overleftarrow{\sigma}\sigma(I)) = \overleftarrow{\sigma}(\sigma(I))$.

Corollary 3.12. For any two ideals I, J of an MS-ADL L, we have $\overleftarrow{\sigma} \sigma(I \cap J) = \overleftarrow{\sigma}(I) \cap \overleftarrow{\sigma} \sigma(J)$.

Proof. Clearly, we have that $\overleftarrow{\sigma}\sigma(I \cap J) \subseteq \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J)$. Let $a \in \overleftarrow{\sigma}(I) \cap \overleftarrow{\sigma}\sigma(J)$. Then $a \in \overleftarrow{\sigma}(I)$ and $a \in \overleftarrow{\sigma}\sigma(J)$. That implies $(a]_{\circ\circ} \in \sigma(I)$ and $(a]_{\circ\circ} \in \sigma(J)$. That implies $(a]_{\circ\circ} \in \sigma(I) \cap \sigma(J) = \sigma(I \cap J)$. That implies $a \in \overleftarrow{\sigma}\sigma(I \cap J)$ and hence $\overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J) \subseteq \overleftarrow{\sigma}\sigma(I \cap J)$. Therefore $\overleftarrow{\sigma}\sigma(I \cap J) = \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J)$.

Theorem 3.13. Let I be an ideal of an MS-ADL L. Then the following conditions are equivalent:

- 1. $\overleftarrow{\sigma}\sigma(I) = I.$
- 2. for any $a, b \in L$, $(a]_{\circ\circ} = (b]_{\circ\circ}$ and $a \in I$ imply $b \in I$
- 3. I is a closure ideal

4.
$$I = \bigcup_{i \in I} (i]_{\circ \circ}$$

5. if $a \in I$ then $(a]_{\circ\circ} \subseteq I$.

Proof. $1 \Rightarrow 2$: Assume that $\overleftarrow{\sigma} \sigma(I) = I$. Let $a, b \in L$ with $(a]_{\circ\circ} = (b]_{\circ\circ}$ and $a \in I$. Then $a \in \overleftarrow{\sigma} \sigma(I)$. Then $(a]_{\circ\circ} \in \sigma(I)$. That implies $(b]_{\circ\circ} \in \sigma(I)$ and hence $b \in \overleftarrow{\sigma} \sigma(I) = I$. Therefore $b \in I$.

 $2 \Rightarrow 3$: Assume 2. Clearly, $I \subseteq I_{\infty}$. Let $a \in I_{\infty}$. Then there exists an element $x \in I x^{\infty} \land a = a$. That implies $(x^{\circ\circ} \land]_{\circ\circ} = (a]_{\circ\circ}$. That implies $(a]_{\circ\circ} = (x^{\circ\circ}]_{\circ\circ} \cap (a]_{\circ\circ}$. That implies $(a]_{\circ\circ} = (x]_{\circ\circ} \cap (a]_{\circ\circ} = (x \land a]_{\circ\circ}$. Since *I* is an ideal of *L*, we have that $x \land a \in I$. By our assumption, we get that $a \in I$ and hence $I_{\circ\circ} \subseteq I$. Therefore $I = I_{\circ\circ}$. $3 \Rightarrow 4$: Clear.

 $4 \Rightarrow 5$: Assume that 4. Let $a \in I$. By our assumption we get that $(a]_{\circ\circ} \subseteq I$.

 $5 \Rightarrow 1$: Assume that 5. Clearly, we have $I \subseteq \overleftarrow{\sigma} \sigma(I)$. Let $a \in \overleftarrow{\sigma} \sigma(I)$. Then $(a]_{\circ\circ} \in \sigma(I)$. Then there exists element $b \in I$ such that $(a]_{\circ\circ} = (b]_{\circ\circ}$. By our assumption, we get that $(b]_{\circ\circ} \subseteq I$ and hence $(a]_{\circ\circ} \subseteq I$. That implies $a \in I$. Therefore $\overleftarrow{\sigma} \sigma(I) \subseteq I$. Hence $\overleftarrow{\sigma} \sigma(I) = I$.

Lemma 3.14. Let *L* be an *MS*-ADL. Then we have the following conditions:

- 1. if $x \in L^{\circ \circ}$ then (x] is a closure ideal of L
- 2. for any ideal I of L, $\overleftarrow{\sigma} \sigma(I) = I_{\circ\circ}$
- *3.* for any ideal I of L, $I_{\circ\circ}$ is a closure ideal
- 4. the map $\overleftarrow{\sigma} \sigma : \mathfrak{I}(L) \longrightarrow \mathfrak{I}(L)$ is homomorphism.

Proof. 1. Let $x \in L^{\circ\circ}$. Clearly, we have that $(x] \subseteq \overleftarrow{\sigma} \sigma((x])$. Let $a \in \overleftarrow{\sigma} \sigma((x])$. Then $(a]_{\circ\circ} \in \sigma((x])$. That implies there exists an element $b \in (x]$ such that $(a]_{\circ\circ} = (b]_{\circ\circ}$. That implies $(a]_{\circ\circ} = (b]_{\circ\circ} \subseteq (x]_{\circ\circ} = (x^{\circ\circ}] = (x]$. That implies $a \in (x]$ and hence $\overleftarrow{\sigma} \sigma((x]) \subseteq (x]$. Therefore $\overleftarrow{\sigma} \sigma((x]) = (x]$. Thus (x] is a closure ideal of L.

2. Let *I* be any ideal of *L*. Now we prove that $I_{\circ\circ} = \overleftarrow{\sigma} \sigma(I)$. Let $a \in I_{\circ\circ}$. Then there exists an element $x \in I$ such that $x^{\circ\circ} \wedge a = a$. That implies $(a]_{\circ\circ} \subseteq (x]_{\circ\circ} \in \sigma(I)$. Since $\sigma(I)$ is an ideal of $\mathfrak{M}_{\circ\circ}(L)$ and by lemma-2.3, we get that $(a]_{\circ\circ} \in \sigma(I)$. Therefore $a \in \overleftarrow{\sigma} \sigma(I)$. Thus $I_{\circ\circ} = \overleftarrow{\sigma} \sigma(I)$. Let $a \in \overleftarrow{\sigma} \sigma(I)$. Then $(a]_{\circ\circ} \in \sigma(I)$. Then there exists an element $b \in I$ such that $(a]_{\circ\circ} = (b]_{\circ\circ}$. That implies $a \in (b]_{\circ\circ}$ and hence $b^{\circ\circ} \wedge a = a$. Since *I* is an ideal of *L*, we get that $a \in I_{\circ\circ}$. Therefore $\overleftarrow{\sigma} \sigma(I) \subseteq I_{\circ\circ}$. Hence $I_{\circ\circ} = \overleftarrow{\sigma} \sigma(I)$.

4. Let $I, J \in \mathfrak{I}(L)$. Now $\overleftarrow{\sigma}\sigma(I \cap J) = (I \cap J)_{\circ\circ} = I_{\circ\circ} \cap J_{\circ\circ} = \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J)$. Now $\overleftarrow{\sigma}\sigma(I \vee J) = (I \vee J)_{\circ\circ} = I_{\circ\circ} \vee J_{\circ\circ} = \overleftarrow{\sigma}\sigma(I) \vee \overleftarrow{\sigma}\sigma(J)$. Clearly, we have that $\overleftarrow{\sigma}\sigma(\{0\}) = \overleftarrow{\sigma}(\{0\}) = \{0\}$ and $\overleftarrow{\sigma}\sigma(L) = \overleftarrow{\sigma}((M)_{\circ\circ}(L)) = L$. Therefore $\overleftarrow{\sigma}\sigma$ is homomorphism. \Box

Definition 3.15. A closure ideal I of an MS-ADL L is said to be prime if I is a prime ideal of L.

Theorem 3.16. Let *L* be an MS-ADL. Then there is an isomorphism of the lattice of closure ideals of *L* onto the ideal lattice of $\mathfrak{M}_{\circ\circ}(L)$. Under this isomorphism the prime closure ideals corresponding to prime ideals of $\mathfrak{M}_{\circ\circ}(L)$.

Proof. Define $g : \mathfrak{I}_C(L) \longrightarrow \mathfrak{I}(\mathfrak{M}_{\circ\circ}(L))$ by $g(I) = \sigma(I)$. Clearly g is well defined. Let $I, J \in \mathfrak{I}_C(L)$ with g(I) = g(J). Then $\sigma(I) = \sigma(J)$ and hence $\overleftarrow{\sigma} \sigma(I) = \overleftarrow{\sigma} \sigma(J)$. Therefore I = J. Thus g is one-one. Let \overline{I} be an ideal of $\mathfrak{M}_{\infty}(L)$. Then $\overleftarrow{\sigma}(I)$ is an ideal of L. That implies $\sigma(\widetilde{I}) = \widetilde{I}$. That implies $\overleftarrow{\sigma}(\sigma(\overleftarrow{\sigma}(\widetilde{I}))) = \overleftarrow{\sigma}(\widetilde{I})$. That implies $\overleftarrow{\sigma}(\widetilde{I})$ is a closure ideal of L. Now $q(\overleftarrow{\sigma}(\widetilde{I})) = \sigma \overleftarrow{\sigma}(\widetilde{I}) = \widetilde{I}$. Therefore g is onto. Since σ is homomorphism, we get g is homomorphism. Hence q is an isomorphism. Let I be a prime closure ideal of L. Now we prove that g(I) is a prime ideal of $\mathfrak{M}_{\circ\circ}(L)$. Let $(a]_{\circ\circ}, (b]_{\circ\circ} \in \mathfrak{M}_{\circ\circ}(L)$ with $(a]_{\circ\circ} \cap (b]_{\circ\circ} \in g(I) = \sigma(I)$. Then $(a \wedge b]_{oo} \in \sigma(I)$. Then there exists an element $c \in I$ such that $(a \wedge b]_{oo} = (c]_{oo}$. Since I is a closure ideal of L and $c \in I$, we get that $a \wedge b \in I$. Since I is a prime ideal of L, we have that either $a \in I$ or $b \in I$. That implies $(a]_{\circ\circ} \in \sigma(I)$ or $(b]_{\circ\circ} \in \sigma(I)$. Therefore $\sigma(I) = g(I)$ is a prime ideal of $\mathfrak{M}_{00}(L)$. Let I be a prime ideal of $\mathfrak{M}_{00}(L)$. Since g is onto, there exists an closure ideal I of L such that $g(I) = \tilde{I}$. Since $g(I) = \sigma(I)$, we have that $\sigma(I) = \tilde{I}$. Let $a, b \in L$ with $a \wedge b \in I$. Then $(a \wedge b]_{\circ\circ} \in \sigma(I)$. That implies $(a]_{\circ\circ} \cap (b]_{\circ\circ} \in \sigma(I) = \widetilde{I}$. Since \widetilde{I} is a prime ideal of $\mathfrak{M}_{\circ\circ}(L)$, we have that $(a]_{\circ\circ} \subseteq \widetilde{I} = \sigma(I)$ or $(b]_{\circ\circ} \subseteq \widetilde{I} = \sigma(I)$. That implies $a \in \overleftarrow{\sigma} \sigma(I)$ or $b \in \overleftarrow{\sigma} \sigma(I)$. That implies $a \in I$ or $b \in I$. Therefore I is a prime ideal of L.

Lemma 3.17. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, a homomorphism. Then we have the following:

- 1. for any nonempty subset S of L, $h(S_{\circ\circ}) \subseteq (h(S))_{\circ\circ}$
- 2. for any nonempty subset T of L', $(h^{-1}(T))_{\circ\circ} \subseteq h^{-1}(T_{\circ\circ})$.

Proof. 1. Let S be any nonempty subset of L. Let $a \in h(S_{\circ\circ})$. Then there exists an element $b \in S_{\circ\circ}$ such that a = h(b). Since $b \in S_{\circ\circ}$, there exists an element $s \in A$ such that $s^{\circ\circ} \wedge b = b$. Now $a = h(b) = h(s^{\circ\circ} \wedge b) = h(s^{\circ\circ}) \wedge h(b) = (h(s))^{\circ\circ} \wedge h(b) = (h(s))^{\circ\circ} \wedge h(b)$. Since $h(s) \in h(S)$, we get that $a = h(b) \in (h(S))_{\circ\circ}$ and hence $h(s_{\circ\circ}) \subseteq (h(S))_{\circ\circ}$.

2. Let T be any nonempty subset of L'. Let $a \in (h^{-1}(T))_{\circ\circ}$. Then there exists an element $b \in h^{-1}(T)$ such that $b^{\circ\circ} \wedge a = a$. Since $b \in h^{-1}(T)$, we get that $h(b) \in T$. Now $h(a) = h(b^{\circ\circ} \wedge a) = h(b^{\circ\circ}) \wedge h(a) = (h(b))^{\circ\circ} \wedge h(a)$. That implies $h(a) \in T_{\circ\circ}$ and hence $a \in h^{-1}(T_{\circ\circ})$. Therefore $(h^{-1}(T))_{\circ\circ} \subseteq h^{-1}(T_{\circ\circ})$.

In general, $h(S_{\circ\circ}) \subseteq (h(S))_{\circ\circ}$ and $h^{-1}(T_{\circ\circ}) \subseteq (h^{-1}(T))_{\circ\circ}$ are not true.

Example 3.18. Let *L* be the five element chain 0 < a < b < c < d < 1 and $a^{\circ} = b^{\circ} = b$, $d^{\circ} = 0$. Clearly *L* is an *MS*-algebra. Define $h: L \longrightarrow L$ by h(0) = 0, h(a) = h(b), h(d) = d, h(1) = 1. Clearly *h* is a homomorphism. Take $S = T = \{0, a\}$. Then $S_{\circ\circ} = \{0, a, b\}$ and $h(S) = \{0, b\}$. That implies $h(S_{\circ\circ}) = \{0, b\}$ and $(h(S))_{\circ\circ} = \{0, a, b\}$. Therefore $(h(S))_{\circ\circ} \nsubseteq h(A_{\circ\circ})$. We have that $h^{-1}(T) = \{0\}$ and $T_{\circ\circ} = \{0, a, b\}$. That implies $(h^{-1}(T))_{\circ\circ} = \{0\}$ and $h^{-1}(T_{\circ\circ}) \oiint \{0, a, b\}$. Therefore $h^{-1}(T_{\circ\circ}) \oiint (h^{-1}(T))_{\circ\circ}$.

Definition 3.19. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, a homomorphism. h is called closure ideal preserving if $h(I_{\circ\circ}) = (h(I))_{\circ\circ}$, for any ideal I of L.

Theorem 3.20. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, onto homomorphism. Then h is a closure ideal preserving.

Theorem 3.21. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, onto homomorphism. Then we have the following:

- 1. for any $x \in L$, $h((x]_{\circ\circ}) = (h(x)]_{\circ\circ}$
- 2. for any closure ideal I of L, h(I) is a closure ideal of L'

3. for any closure ideal I of L, $h(I) = \bigcup_{i \in I} (h(i)]_{\circ \circ}$.

Proof. 1. Let $x \in L$. Now $a \in h((x]_{\circ\circ})$ iff a = h(y), for some $y \in (x]_{\circ\circ}$ iff $a = h(x^{\circ\circ} \land y)$, (since $y \in (x]_{\circ\circ}$, $x^{\circ\circ} \land y = y$) iff $a = h(x^{\circ\circ}) \land h(y)$ iff $a = (h(x))^{\circ\circ} \land h(y) = h(y)$ iff $h(y) \in ((h(x))^{\circ\circ}]_{\circ\circ}$ iff $a \in (h(x)]_{\circ\circ}$. Therefore $h((x]_{\circ\circ}) = (h(x)]_{\circ\circ}$.

2. Let *I* be a closure ideal of *L*. Let $a, b \in h(I)$. Then there exist elements $x, y \in I$ such that a = h(x) and b = h(y). Since $x, y \in I$, we get that $x \vee y \in I$. Now $a \vee b = h(x) \vee h(y) = h(x \vee y) \in h(I)$. Therefore $a \vee b \in h(I)$. Let $a \in h(I)$. Then there exists an element $x \in I$ such that a = h(x). Let *r* be any element of *L'*. Since *h* is onto, there exists an element $y \in L$ such that h(y) = r. Since $x \in I$, $y \in L$ and *I* is an ideal of *L*, we have that $x \wedge y \in I$. Now $a \wedge r = h(x) \wedge h(y) = h(x \wedge y) \in h(I)$. That implies $x \wedge r \in h(I)$. Therefore h(I) is an ideal of *L'*. clearly, we have that $h(I) \subseteq \overleftarrow{\sigma} \sigma(h(I))$. Let $a \in \overleftarrow{\sigma} \sigma(h(I))$. Then $(a]_{\circ\circ} \in \sigma(h(I))$. Then there exists an element $b \in h(I)$ such that $(a]_{\circ\circ} = (y]_{\circ\circ}$. That implies $a \in (b]_{\circ\circ} \subseteq h(I_{\circ\circ}) = h(I)$, since $I_{\circ\circ} = I$. That implies $a \in h(I)$ and hence $\overleftarrow{\sigma} \sigma(h(I)) \subseteq h(I)$. Therefore $\overleftarrow{\sigma} \sigma(h(I)) = h(I)$. Thus h(I) is a closure ideal of *L'*.

3. Let I be a closure ideal of L. Then $I = I_{\circ\circ} = \bigcup_{i \in I} (i]_{\circ\circ}$. That implies $(i]_{\circ\circ} \subseteq I$, for all $i \in I$. That implies $h((i]_{\circ\circ}) \subseteq h(I)$ and hence $(h(i)]_{\circ\circ} \subseteq h(I)$. Therefore $\bigcup_{i \in I} (h(i)]_{\circ\circ} \subseteq h(I)$.

Let $a \in h(I)$. Then there exists an element $b \in I$ such that a = h(b). Now $a = h(b) \in (h(b)]_{\circ\circ} \subseteq \bigcup_{b \in I} (h(b)]_{\circ\circ}$ and hence $a \in \bigcup_{i \in I} (h(i)]_{\circ\circ}$. Therefore $h(I) \subseteq \bigcup_{i \in I} (h(i)]_{\circ\circ}$. Thus $h(I) = \bigcup_{i \in I} (h(i)]_{\circ\circ}$.

Theorem 3.22. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, a homomorphism. Then we have the following:

- 1. for any closure ideal I of L', $h^{-1}(I)$ is a closure ideal of L
- 2. Kerh is a closure ideal of L
- 3. for a closure ideal I of L', $h^{-1}(I_{\circ\circ}) = (h^{-1}(I))_{\circ\circ}$.

Proof. 1. Let *I* be any closure ideal of *L'*. Clearly, $h^{-1}(I)$ is an ideal of *L*. Since $h^{-1}(I) \subseteq \overleftarrow{\sigma} \sigma(h^{-1}(I))$, we have to prove that $\overleftarrow{\sigma} \sigma(h^{-1}(I)) \subseteq h^{-1}(I)$. Let $a \in \overleftarrow{\sigma} \sigma(h^{-1}(I))$. Then $(a]_{\circ\circ} \in \sigma(h^{-1}(I))$. Then there exists an element $b \in h^{-1}(I)$ such that $(a]_{\circ\circ} = (b]_{\circ\circ}$. That implies $(a]_{\circ\circ} = (b]_{\circ\circ}$. That implies $h((a]_{\circ\circ}) = h((b]_{\circ\circ})$ and hence $(h(a)]_{\circ\circ} = (h(b)]_{\circ\circ}$. Therefore $h(a) \in I$, since $h(b) \in I$ and *I* is a closure ideal of *L'*. That implies $a \in h^{-1}(I)$ and hence $(\overleftarrow{\sigma} \sigma(h^{-1}(I)) \subseteq h^{-1}(I)$. Therefore $h^{-1}(I) = \overleftarrow{\sigma} \sigma(h^{-1}(I))$. Thus $h^{-1}(I)$ is a closure ideal of *L*. 2. Clearly, we have that *Kerh* is an ideal of *L* and *kerh* $\subseteq \overleftarrow{\sigma} \sigma(kerh)$. Let $a \in \overleftarrow{\sigma} \sigma(kerh)$. Then $(a]_{\circ\circ} \in \sigma(kerh)$. Then there exists an element $b \in kerh$ such that $(a]_{\circ\circ} = (b]_{\circ\circ}$. That implies $(a]_{\circ\circ} = (b]_{\circ\circ}$ and h(b) = 0'. That implies $a \in (b]_{\circ\circ}$ and h(b) = 0'. That implies $h(b^{\circ\circ} \land a) = h(a)$ and h(b) = 0'. That implies $h(b^{\circ\circ}) \land h(a) = h(a)$ and h(b) = 0'. That implies $(h(b))^{\circ\circ} \land h(a) = h(a)$ and $(h(b))^{\circ\circ} = (0)^{\circ\circ} = 0'$. That implies h(a) = 0' and hence $a \in kerh$. Therefore $\overleftarrow{\sigma} \sigma(kerh) \subseteq kerh$. Thus *kerh* is a closure ideal of *L*. 3. Let *I* be any closure ideal of *L'*. Then $I = I_{\circ\circ}$. That implies $h^{-1}(I) = h^{-1}(I_{\circ\circ})$ is a closure ideal of *L'*. Then *I* = $I_{\circ\circ}$. That implies $h^{-1}(I) = h^{-1}(I_{\circ\circ})$ is a closure ideal of *L'*. Then *I* = $I_{\circ\circ}$. That implies $h^{-1}(I) = h^{-1}(I_{\circ\circ})$ is a closure ideal of *L'*. Then *I* = $I_{\circ\circ}$. That implies $h^{-1}(I) = h^{-1}(I_{\circ\circ})$ is a closure ideal of *L*. That implies $h^{-1}(I_{\circ\circ}) = (h^{-1}(I))_{\circ\circ}$. Therefore h^{-1} is a closure ideal preserving. □

Theorem 3.23. Let L and L' be two MS-ADLs and $h : L \longrightarrow L'$, onto homomorphism. Then we have the following:

- 1. $\mathfrak{M}_{\circ\circ}(L)$ is De Morgan homomorphic of $\mathfrak{M}_{\circ\circ}(L')$
- 2. $\mathfrak{I}_C(L)$ is homomorphic of $\mathfrak{I}_C(L')$.

Proof. 1. Define $f: \mathfrak{M}_{\circ\circ}(L) \longrightarrow \mathfrak{M}_{\circ\circ}(L')$ by $f((x]_{\circ\circ})h((x]_{\circ\circ})$. Let $(x]_{\circ\circ}, (y]_{\circ\circ} \in \mathfrak{M}_{\circ\circ}(L)$. Now, $f((x]_{\circ\circ} \lor (y]_{\circ\circ}) = f((x \lor y]_{\circ\circ}) = h((x \lor y]_{\circ\circ}) = (h(x \lor y)]_{\circ\circ} = (h(x) \lor h(y)]_{\circ\circ} = (h(x) \lor h(y)]_{\circ\circ} = (h(x)) \lor h((y)]_{\circ\circ} = h((x)) \lor h((y)]_{\circ\circ} = f((x)) \lor h((y)]_{\circ\circ} = h((x \land y)) = f((x)) \lor h((y)]_{\circ\circ} = (h(x) \land h(y)]_{\circ\circ} = (h(x)) \lor h((y)]_{\circ\circ} = h((x)) \cap h((y)) = (f(x)) \cap f((y)) = (f(y)) \cap h((y)) \cap h((y)) = (f(y)) \cap h((y)) = (f(y)) \cap h((y)) = (f(y)) \cap h((y)) \cap h((y)) = (f(y)) \cap h((y)) \cap h((y)) = (f(y)) \cap h((y)) \cap h((y))$ elements of L and L' respectively.

2. Define $g : \mathfrak{I}_C(L) \longrightarrow \mathfrak{I}_C(L')$ by g(I) = h(I). Clearly we have that g(L) = L', and $g(\{0\}) = \{0'\}$, where 0 and 0' are the zero elements of L and L' respectively. Let $I, J \in \mathfrak{I}_C(L)$. Now $g(I \lor J) = h(I \lor J) = h(I) \lor h(J) = g(I) \lor g(J)$ and now $g(I \cap J) = h(I \cap J) = h(I \cap I) = g(I) \cap h(J) = g(I) \cap g(J)$. Therefore g is homomorphism.

Theorem 3.24. Let I be a closure ideal and F, a filter of an MS-ADL L with $F \cap I = \emptyset$. There exists a prime closure ideal P of L such that $I \subseteq P$ and $P \cap F = \emptyset$.

Proof. Consider $\mathfrak{F} = \{G \mid G \text{ is a closure ideal and } G \cap F = \emptyset\}$. Clearly, $I \in \mathfrak{F}$ and \mathfrak{F} satisfies the Zorn's lemma hypothesis. Then \mathfrak{F} has a maximal element say N. Let $a, b \in L$ with $a \land b \in N$. We prove that either $a \in N$ or $b \in N$. Suppose that $a \notin N$ and $b \notin N$. Then $N \subset N \lor (a] \subseteq \overleftarrow{\sigma} \sigma(N \lor (a])$ and $N \subset N \lor (b] \subseteq \overleftarrow{\sigma} \sigma(N \lor (b])$. That implies $N \subset \overleftarrow{\sigma} \sigma(N \lor (a])$ and $N \subset \overleftarrow{\sigma} \sigma(N \lor (b])$. Since $\overleftarrow{\sigma} \sigma(N \lor (a])$ and $\overleftarrow{\sigma} \sigma(N \lor (b])$ are closure ideals of L, we get that $\overleftarrow{\sigma} \sigma(N \lor (a]) \cap F \neq \emptyset$ and $\overleftarrow{\sigma} \sigma(N \lor (b]) \cap F \neq \emptyset$. Then choose $x \in \overleftarrow{\sigma} \sigma(N \lor (a]) \cap F$ and $y \in \overleftarrow{\sigma} \sigma(N \lor (b]) \cap F$. Therefore $x \land y \in F$ and $x \land y \in \overleftarrow{\sigma} \sigma(N \lor (a]) \cap \overleftarrow{\sigma} \sigma(N \lor (b]) = \overleftarrow{\sigma} \sigma((N \lor (a)) \cap (N \lor (b))) = \overleftarrow{\sigma} \sigma(N \lor (a \land b]) = \overleftarrow{\sigma} \sigma(N) = N$. Therefore $N \cap F \neq \emptyset$, which is a contradiction. Hence $a \in N$ or $b \in N$. Thus N is a prime closure ideal of L.

Corollary 3.25. Let I be a closure ideal of an MS-ADL L and $x \notin I$. Then there exists a prime closure ideal P of L such that $I \subseteq P$ and $x \notin P$.

Corollary 3.26. For any closure ideal I of an MS-ADL L, we have $I = \cap \{P/P \text{ is a closure ideal of } L \text{ and } I \subseteq P\}$

Corollary 3.27. *The intersection of all prime closure ideals of an* MS*–ADL* L *is* $\{0\}$ *.*

We discuss some topological properties of prime closure ideals. For this, we first need the following.

Theorem 3.28. Let L be an MS-ADL. Then every proper closure ideal of L is the intersection of all prime closure ideals containing it.

Proof. Let *I* be a proper closure ideal of *L*. Consider the following set

 $\mathfrak{F}_0 = \cap \{P \mid P \text{ is a prime closure ideal and } I \subseteq P\}$. Clearly, $I \subseteq \mathfrak{F}_0$. Conversely, let $x \notin I$. Take $\mathfrak{F} = \{G \mid G \text{ is a closure ideal}, I \subseteq G, x \notin G\}$. Then clearly $I \in \mathfrak{F}$. Clearly \mathfrak{F} satisfies the hypothesis of Zorn's lemma. Let N be a maximal element of \mathfrak{F} . Let $a, b \in L$ be such that $a \notin N$ and $b \notin N$. Then $N \subset N \lor \{a\} \subseteq \overleftarrow{\sigma} \sigma\{N \lor \{a\}\}$ and $N \subset N \lor \{b\} \subseteq \overleftarrow{\sigma} \sigma\{N \lor \{b\}\}$. By maximality of N, we get $x \in \overleftarrow{\sigma} \sigma\{N \lor \{a\}\}$ and $x \in \overleftarrow{\sigma} \sigma\{N \lor \{b\}\}$. Hence we get that $x \in \overleftarrow{\sigma} \sigma\{N \lor \{a\}\} \cap \overleftarrow{\sigma} \sigma\{N \lor \{b\}\} = \overleftarrow{\sigma} \sigma\{[N \lor \{a\}] \cap [N \lor \{b\}]\} = \overleftarrow{\sigma} \sigma\{N \lor \{a \land b\}\}$. If $a \land b \in N$, then $x \in \overleftarrow{\sigma} \sigma(N) = N$, which is a contradiction. Thus N is a prime closure ideal such that $x \notin N$. Therefore $x \notin \mathfrak{F}_0$ and hence $\mathfrak{F} = \mathfrak{F}_0$. Thus every proper closure ideal of L is the intersection of all prime closure ideals containing it. \Box

4 The Space of Prime closure ideals

In this section, we discuss some topological concepts on the collection of prime closure ideals of an MS-ADL. Let $Spec_C(L)$ be the set of all prime closure ideals of an MS-ADL L. For any $A \subseteq L$, let $h(A) = \{P \in Spec_C(L) \mid A \nsubseteq P\}$ and for any $x \in L$; $h(x) = h(\{x\})$. For any two subsets A and B of L, it is obvious that $A \subseteq B$ implies $h(A) \subseteq h(B)$. The following observations can be verified directly.

Lemma 4.1. For any $x, y \in L$, the following conditions holds.

- 1. $\bigcup_{x \in L} h(x) = Spec_C(L)$
- 2. $h(x) \cup h(y) = h(x \lor y)$
- 3. $h(x) \cap h(y) = h(x \wedge y)$

- 4. $h(x) = \emptyset \Leftrightarrow x = 0$
- 5. $h(x) = Spec_C(L) \Leftrightarrow x$ is a maximal element of L.

From the above Lemma, it can be easily observed that the collection $\{h(x) \mid x \in L\}$ forms a base for a topology on $Spec_C(L)$ which is called a hull-kernel topology.

Theorem 4.2. For any ideal I of L, $h(I) = h(\overleftarrow{\sigma} \sigma(I))$.

Proof. Clearly we get that $h(I) \subseteq h(\overleftarrow{\sigma}\sigma(I))$. Let $P \in h(\overleftarrow{\sigma}\sigma(I))$. Then $\overleftarrow{\sigma}\sigma(I) \nsubseteq P$. Therefore we can choose an element $x \in \overleftarrow{\sigma} \sigma(I)$ such that $x \notin P$. Since $x \in \overleftarrow{\sigma} \sigma(I)$, we have $(x]_{\circ\circ} \in \sigma(I)$ and hence $(x]_{\circ\circ} = (y]_{\circ\circ}$, for some $y \in I$. Suppose $I \subseteq P$. Then $y \in P$. Since P is a closure ideal of L, we get that $x \in P$, which is a contradiction. Therefore $I \nsubseteq P$ and hence $P \in h(I)$. Thus $h(\overleftarrow{\sigma}\sigma(I)) \subseteq h(I).$

In the following theorem, the compact open set of $Spec_C(L)$ are characterized.

Theorem 4.3. For any MS-ADL, the set of all compact open sets of $Spec_{C}(L)$ is the base $\{h(x) \mid x \in L\}.$

Proof. Let $x \in L$ with $h(x) \subseteq \bigcup_{i \in \Delta} h(x_i)$. Let I be a ideal generated by $\{x_i \mid i \in \Delta\}$. Suppose $x \notin \overleftarrow{\sigma} \sigma(I)$. Since $\overleftarrow{\sigma} \sigma(I)$ is a closure ideal of L, there exists a prime closure ideal P of L such that $x \notin P$ and $\overleftarrow{\sigma} \sigma(I) \subseteq P$. Since $x \notin P$, we get that $P \in h(x) \subseteq \bigcup_{i \in A} h(x_i)$. That implies

 $x_i \notin P$, for some $i \in \Delta$, which is a contradiction to that $I \subseteq \overleftarrow{\sigma} \sigma(I) \subseteq P$. Therefore $x \in \overleftarrow{\sigma} \sigma(I)$. That implies $(x]_{\circ\circ} \in \sigma(I)$ and hence $(x]_{\circ\circ} = (y]_{\circ\circ}$, for some $y \in I$. Since I is an ideal generated by $\{x_i \mid i \in \Delta\}$, we get that $y = x_1 \lor x_2 \lor \cdots \lor x_n$, for some $x_1, x_2, \dots, x_n \in \{x_i \mid i \in \Delta\}$. That implies $(y]_{\circ\circ} = (x_1 \lor x_2 \lor \cdots \lor x_n]_{\circ\circ}$. Let $P \in h(x)$. Then $x \notin P$. Suppose $P \notin \bigcup h(x_i)$. Then

 $x_i \in P$, for all i = 1, 2, ..., n and hence $x_1 \vee x_2 \vee \cdots \vee x_n \in P$. That implies $y \in P$, which is a contradiction. Therefore $P \in \bigcup_{i \in \Delta} h(x_i)$ and hence $h(x) \subseteq \bigcup_{i=1}^n h(x_i)$. Thus h(x) is a compact space. It is enough to show that arow compared space. It is enough to show that every compact open subset of $Spec_C(L)$ is of the form h(x), for some $x \in L$. Let C be a compact open subset of $Spec_C(L)$. Since C is open, we get that $C = \bigcup h(a)$, for some $A \subseteq L$. Since C is compact, there exist $a_1, a_2, ..., a_n \in A$ such that $a{\in}A$

 $C = \bigcup_{i=1}^{n} h(a_i) = h(\bigvee_{i=1}^{n} a_i).$ Therefore C = h(x), for some $x \in L$.

Corollary 4.4. Let L be an MS-ADL. Then $Spec_C(L)$ is a compact space.

Theorem 4.5. Let L be an MS-ADL. Then the following are equivalent:

- 1. $Spec_C(L)$ is T_1 -space
- 2. every prime closure ideal is maximal
- 3. every prime closure ideal is minimal
- 4. $Spec_C(L)$ is Hausdorff space.

Proof. $1 \Rightarrow 2$: Assume that $Spec_C(L)$ is T_1 -space. Let P be a prime closure ideal of L. Suppose Q is any prime closure ideal of L with $P \subsetneq Q$. Since $Spec_C(L)$ is T_1 -space, there exist basic open sets h(x) and h(y) such that $P \in h(x) \setminus h(y)$ and $Q \in h(y) \setminus h(x)$. Since $P \notin h(y)$, we get that $y \in P \subsetneq Q$. Therefore $Q \notin h(y)$, which is a contradiction. Hence P is maximal. $2 \Rightarrow 3$: it is obvious

 $3 \Rightarrow 4$: Assume that every prime closure ideal is minimal. Let $P, Q \in Spec_C(L)$ with $P \neq Q$. Choose an element $a \in P$ such that $a \notin Q$. By our assumption, P is minimal prime ideal of L. Since $a \in P$, then there $c \notin P$ such that $a \wedge c = 0$. So that $Q \in h(a)$ and $P \in h(c)$. Now $h(a) \cap h(c) = h(a \lor c) = \emptyset$, since $a \lor c = 0$. $4 \Rightarrow 1$: Clear.

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, U.S.A (1967).
- [2] A.E. Badawy and M. Sambasiva Rao, *Closure ideals of MS-algebras*, Chamchuri Journal of Mathematics, 6, 31–46, (2014).
- [3] G. Gratzer, General Lattice Theory, Academic Press, New York, Sanfransisco, (1978).
- [4] G.C. Rao, *Almost Distributive Lattices*, Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam, (1980).
- [5] G.C. Rao, N. Rafi and B. Ravikumar, *On the prime filters of normal almost distributive lattices*, Southeast Asian Bulletin of Mathematics, **35**, 653–663, (2011).
- [6] G.C. Rao, N. Rafi and B. Ravikumar, *Topological characterization of dually normal almost distributive lattices*, Asian European Journal of Mathematics, 5, 1250043, DOI: 10-1142/S17355711250043X, (2012).
- [7] G.C. Rao and S. Ravi Kumar, *Minimal prime ideals in an ADL*, Int. J. Contemp. Sciences, 4, 475–484, (2009).
- [8] G.M. Addis, MS-almost distributive lattices, Asian-European Journal of Mathematics, 13(1), 2050135 (14 pages), (2020).
- [9] U.M. Swamy and G.C. Rao, *Almost Distributive Lattices*, J. Aust. Math. Soc. (Series A), **31**, 77–91, (1981).
- [10] U.M. Swamy, G.C. Rao and G. Nanaji Rao, *Pseudo-complementation on Almost Distributive Lattices*, Southeast Asian Bullettin of Mathematics, 24, 95–104, (2000).

Author information

N. Rafi¹, Ravi Kumar Bandaru² and M. Srujana³,

^{1,3}Department of Mathematics, Bapatla Engineering College, Bapatla, Andhra Pradesh, India-522 101 ²Department of Mathematics, GITAM(Deemed to be University), Hyderabad Campus, Telangana, India-502 329.

E-mail: rafimaths@gmail.com, ravimaths83@gmail.com, srujana.maths@gmail.com

Received: August 17, 2020 Accepted: October 27, 2020