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Abstract Let R be a commutative ring with 1 6= 0, n be a positive integer and M be an R-
module. In this paper, we introduce the concept of n-absorbing primary submodules generalising
n-absorbing primary ideals of rings. A proper submodule N of an R-module M is called an n-
absorbing primary submodule if whenever a1 . . . anm ∈ N for a1, . . . , an ∈ R and m ∈M , then
either a1 . . . an ∈

√
(N : M) or there are n − 1 of the a′is whose product with m is in N . We

have tried to prove some results on n-absorbing primary submodules.

1 Introduction

In this paper, all rings are commutative with non-zero identity and all modules are unital. Let R
be a ring, I be an ideal of R, M be an R-module and N be a submodule of M . The radical of I
is denoted by

√
I i.e.

√
I = {r ∈ R : rk ∈ I for some k ∈ N}. We denote the residual of N over

M by (N : M) i.e. (N : M) = {r ∈ R : rM ⊆ N}.
The first generalisation of prime ideals in commutative rings was introduced by Ayman

Badawi in [4], where he defined a non zero proper ideal I of R to be a 2-absorbing ideal of
R if whenever a, b, c ∈ R and abc ∈ I , then ab ∈ I or ac ∈ I or bc ∈ I . Expanding on this
definition, Anderson and Badawi in [1] introduced the concept of n-absorbing ideals of R for
a positive integer n. A proper ideal I of a commutative ring R is called as n-absorbing ideal if
whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of the x′is whose product is in
I .

In [5], Badawi introduced a generalisation of primary ideals, where he defined a proper ideal
I of R to be a 2-absorbing primary ideal of R if whenever a, b, c ∈ R and abc ∈ I , then ab ∈ I
or ac ∈

√
I or bc ∈

√
I . Recentely, A. E. Becker generalised 2-absorbing primary ideals to n-

absorbing primary ideals for positive integer n in [6]. A proper ideal I of a commutative ring R is
said to be an n-absorbing primary ideal of R if whenever x1, . . . , xn+1 ∈ R and x1x2 . . . xn+1 ∈
I , then either x1x2 . . . xn ∈ I or a product of n of the x′is (other than x1 . . . xn) is in

√
I .

The concept of 2-absorbing and weakly 2-absorbing submodules, which are generalisations
of prime and weak prime submodules, was introduced and investigated by Darani and Soheilnia
in [7]. They defined a proper submodule N of an R-module M to be 2-absorbing (respectively
weakly 2-absorbing) submodule of M if whenever a, b ∈ R, m ∈ M and abm ∈ N (resp.
0 6= abm ∈ N ), then ab ∈ (N : M) or am ∈ N or bm ∈ N . Later in [8], Darani and Soheilnia
introduced and studied the concept of n-absorbing submodules generalising n-absorbing ideals
of rings. They defined a proper submodule N of an R-module M to be an n-absorbing submod-
ule if whenever a1 . . . anm ∈ N for a1, . . . , an ∈ R and m ∈M , then either a1 . . . an ∈ (N : M)
or there are n − 1 of the a′is whose product with m is in N . In [9], M. K. Dubey and P. Ag-
garwal introduced the concept of 2-absorbing primary submodule which is a generalisation of
primary submodule. They defined a proper submodule N of an R-module M to be 2-absorbing
primary submodule if whenever a, b ∈ R, m ∈ M and abm ∈ N , then am ∈ N or bm ∈ N or
ab ∈

√
(N : M).

In this paper, we generalise the concept of n-absorbing primary ideals of a ring R to that
of n-absorbing primary submodules of an R-module M . Let n be a positive integer. A proper
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submodule N of an R-module M is said to be an n-absorbing primary submodule of M if
whenever a1, . . . , an ∈ R, m ∈ M and a1 . . . anm ∈ N , then either a1 . . . an ∈

√
(N : M) or

there are n − 1 of the a′is whose product with m is in N . We have proved several properties of
n-absorbing primary submodules. Most of the results are related to the references [6], [8] and
[9] which have been proved for n-absorbing primary submodules.

In Theorem 2.3, we have proved that if N is an n-absorbing primary submodule of a cyclic
multiplication R-module M , then (N : M) is an n-absorbing primary ideal of R. In Theorem
2.8, we have shown that any n-absorbing primary submodule is an m-absorbing primary sub-
module for m ≥ n. In Theorem 2.15, we have given a characterisation of an n-absorbing primary
submodule when it is irreducible.

2 n-absorbing primary submodule

In this section, we define n-absorbing primary submodule and prove several results related to the
same.

Definition 2.1. Let n be a positive integer. Let M be an R-module and N be a proper submodule
of M . N is said to be an n-absorbing primary submodule of M if for any a1, . . . , an ∈ R and
m ∈ M , a1 . . . anm ∈ N implies either a1 . . . an ∈

√
(N : M) or there are n − 1 of the a′is

whose product with m is in N .

Let âi denote the element of R obtained by eliminating ai from the product a1 . . . an. Then
the above condition can be written as a1 . . . anm ∈ N implies either a1 . . . an ∈

√
(N : M) or

âim ∈ N for some 1 ≤ i ≤ n.

It is easy to see that every n-absorbing submodule is an n-absorbing primary submodule but
the converse need not be true which is illustrated as follows.

Example 2.2. Consider R = Z and an R-module M = Z162. Take a submodule N = {0, 81} of
M . Then (N : M) = {r ∈ R : rM ⊆ N} = {0, 81, 162, . . . } = 81Z and

√
(N : M) = {r ∈

R : rkM ⊆ N for some k ∈ N} = {0, 3, 6, 9, . . . } = 3Z. Now, 3 · 3 · 3 · 3 ∈ N but 3 · 3 · 3 /∈ N
and 3 ·3 ·3 /∈ (N : M). Therefore, N is not a 3-absorbing submodule of M but it is a 3-absorbing
primary submodule of M since 3 · 3 · 3 ∈

√
(N : M).

A natural question is that if N is an n-absorbing primary submodule of an R-module M , then
is the ideal (N : M) an n-absorbing primary ideal of R? This is true in the case when n = 2
and has been proved in [9, Theorem 2.6]. For the case where M is cyclic, we get the following
result.

Theorem 2.3. Let M be a cyclic multiplication R-module. Let N be an n-absorbing primary
submodule of M . Then (N : M) is an n-absorbing primary ideal of R.

Proof. Let M be a cyclic R-module generated by m. Let a1 . . . an+1 ∈ (N : M) for some
a1, . . . , an+1 ∈ R. Assume all products of n of the a′is except a1 . . . an are not in

√
(N : M).

Then âian+1 /∈ (N : M) for every 1 ≤ i ≤ n, that is, âian+1m /∈ N for every 1 ≤ i ≤ n. Since
a1 . . . an+1 ∈ (N : M), a1 . . . an+1m ∈ N , which we can write as (a2 . . . an+1)(a1m) ∈ N .
As N is an n-absorbing primary submodule of M , this implies either (a2 . . . an)(a1m) ∈ N or
(a3 . . . an+1)(a1m) ∈ N or (a2a4 . . . an+1)(a1m) ∈ N or . . . or (a2 . . . an−1an+1)(a1m) ∈ N

or a2 . . . an+1 ∈
√
(N : M) i.e. either a1a2 . . . anm ∈ N or âian+1m ∈ N for some 2 ≤ i ≤ n

or â1an+1 ∈
√
(N : M). Since by assumption, âian+1 /∈

√
(N : M) for every 1 ≤ i ≤ n, both

the latter cases are not possible. Therefore a1 . . . anm ∈ N , which implies a1 . . . an ∈ (N : M).
Thus (N : M) is an n-absorbing primary ideal of R. 2

We state the following theorem which is used in this paper.

Theorem 2.4. ([6, Theorem 9]) If I is an n-absorbing primary ideal of R, then
√
I is an n-

absorbing ideal of R.

Theorem 2.5. Let N be an n-absorbing primary submodule of a cyclic multiplication R-module
M . Then

√
(N : M) is an n-absorbing ideal of R.
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Proof. By Theorem 2.3, we get that (N : M) is an n-absorbing primary ideal of R. Then by
Theorem 2.4,

√
(N : M) is an n-absorbing ideal of R. 2

We now give the following result using the ideal (N : m), defined as (N : m) = {r ∈ R :
rm ∈ N}, where R is a commutative ring, M is an R-module, N is a submodule of M and
m ∈M .

Theorem 2.6. Let N be an n-absorbing primary submodule of an R-module M . If m ∈ N ,
then (N : m) = R. If m /∈ N , then (N : m) is an n-absorbing primary ideal of R containing
(N : M).

Proof. If m ∈ N , then there is nothing to prove. Let m ∈ M \ N . Then (N : m) is a proper
ideal of R containing (N : M). Let a1 . . . an+1 ∈ (N : m) for some a1, . . . , an+1 ∈ R. As-
sume all products of n of the a′is except a1 . . . an are not in

√
(N : m). Since a1 . . . an+1 ∈

(N : m), a1 . . . an+1m ∈ N , that is, (a2 . . . an+1)(a1m) ∈ N and N is an n-absorbing pri-
mary submodule of M . This implies either (a2 . . . an)(a1m) ∈ N or (a3 . . . an+1)(a1m) ∈ N or
(a2a4 . . . an+1)(a1m) ∈ N or . . . or (a2 . . . an−1an+1)(a1m) ∈ N or a2 . . . an+1 ∈

√
(N : M)

i.e. either a1 . . . anm ∈ N or âian+1m ∈ N for some 2 ≤ i ≤ n or â1an+1 ∈
√
(N : M). There-

fore either a1 . . . an ∈ (N : m) or âian+1 ∈ (N : m) for some 2 ≤ i ≤ n or â1an+1 ∈
√
(N : m).

Since by assumption, âian+1 /∈
√
(N : m) for every 1 ≤ i ≤ n, both the latter cases are not pos-

sible. Therefore a1 . . . an ∈ (N : m). Thus (N : m) is an n-absorbing primary ideal of R. 2

The set of zero divisors of an R-module M is denoted by Zd(M) and is defined as Zd(M) =
{r ∈ R : there exists 0 6= m ∈M such that rm = 0}.

Theorem 2.7. Let N be an n-absorbing primary submodule of M . If the set of all zero divisors
of M/N, Zd(M/N), forms an ideal in R, then it is an n-absorbing primary ideal of R.

Proof. Assume Zd(M/N) is an ideal in R. Let a1 . . . an+1 ∈ Zd(M/N) for some a1, . . . , an+1 ∈
R. We know from [3] that if M is an R-module and N is a proper submodule of M , then
Zd(M/N) =

⋃
x∈M\N

(N : x). Therefore a1 . . . an+1 ∈ (N : m) for some m ∈ M \ N . Since

N is an n-absorbing primary submodule and m ∈ M \ N , by Theorem 2.6, (N : m) is an n-
absorbing primary ideal of R. This implies either a1 . . . an ∈ (N : m) or âian+1 ∈

√
(N : m)

for some 1 ≤ i ≤ n. If a1 . . . an ∈ (N : m), then a1 . . . an ∈ Zd(M/N) and we are done. We
know from [2] that if R is a ring and Eα is a family of subsets of R, then

√⋃
α
Eα =

⋃
α

√
Eα.

Therefore
√

Zd(M/N) =
√ ⋃
x∈M\N

(N : x) =
⋃

x∈M\N

√
(N : x). If âian+1 ∈

√
(N : m) for

some 1 ≤ i ≤ n, then âian+1 ∈
√
Zd(M/N) for some 1 ≤ i ≤ n. Thus we get that Zd(M/N)

is an n-absorbing primary ideal of R. 2

Theorem 2.8. Every n-absorbing primary submodule of an R-module is an m-absorbing pri-
mary submodule for m ≥ n.

Proof. It is sufficient to prove that every n-absorbing primary submodule of an R-module is
an (n+ 1)-absorbing primary submodule. Suppose N is an n-absorbing primary submodule of
an R-module M . Let a1 . . . anan+1m ∈ N for some a1, . . . , an, an+1 ∈ R and m ∈ M . Let
anan+1 := an′ . Then we have a1a2 . . . an′m ∈ N and N is an n-absorbing primary submodule.
This implies either a1a2 . . . an′ ∈

√
(N : M) or âim ∈ N for some i ∈ {1, 2, 3, . . . , n−1, n′}. If

i 6= n′, then we are done. If i = n′, then we have a1 . . . an−1m ∈ N and by definition of an ideal,
we get that a1 . . . an−1anm ∈ N or a1 . . . an−1an+1m ∈ N . Hence N is an (n + 1)-absorbing
primary submodule of M . 2

We now examine the structure of the intersection of k submodules that are each nj-absorbing
primary submodule of an R-module. For this, we first prove the following lemma.
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Lemma 2.9. Let Nj be submodules of an R-module M for every 1 ≤ j ≤ k. Then
k⋂
j=1

√
(Nj : M) =√

(
k⋂
j=1

Nj : M).

Proof. Let r ∈
k⋂
j=1

√
(Nj : M). Then r ∈

√
(Nj : M) for every 1 ≤ j ≤ k. Therefore

rljM ⊆ Nj for every 1 ≤ j ≤ k, where lj is some positive integer. Let l = max{l1, . . . , lk}.

Then rlM ⊆ Nj for every 1 ≤ j ≤ k and so rlM ⊆
k⋂
j=1

Nj . Thus r ∈
√
(
k⋂
j=1

Nj : M). For the

reverse inclusion, let s ∈
√
(
k⋂
j=1

Nj : M). Then snM ⊆
k⋂
j=1

Nj for some positive integer n. This

implies snM ⊆ Nj for every 1 ≤ j ≤ k, that is, s ∈
√
(Nj : M) for every 1 ≤ j ≤ k. Therefore

s ∈
k⋂
j=1

√
(Nj : M). Hence

k⋂
j=1

√
(Nj : M) =

√
(
k⋂
j=1

Nj : M). 2

Theorem 2.10. Let M be an R-module. If Nj is an nj-absorbing primary submodule of M
for every 1 ≤ j ≤ k, then N1 ∩ · · · ∩ Nk is an n-absorbing primary submodule of M for
n = n1+ · · ·+nk. In particular, if N1, . . . , Nn are primary submodules of M , then N1∩· · ·∩Nn

is an n-absorbing primary submodule of M .

Proof. Let a1, . . . , an ∈ R and m ∈ M with a1 . . . anm ∈ N1 ∩ · · · ∩ Nk := N such that
âim /∈ N for every 1 ≤ i ≤ n. Since a1 . . . anm ∈ N1 ∩ · · · ∩ Nk, a1 . . . anm ∈ Nj for
every 1 ≤ j ≤ k. Now, for every 1 ≤ j ≤ k, Nj is an nj-absorbing primary submod-
ule of M and nj ≤ n. Therefore by Theorem 2.8, each Nj is an n-absorbing primary sub-
module of M . This implies a1 . . . an ∈

√
(Nj : M) for every 1 ≤ j ≤ k, which gives that

a1 . . . an ∈
k⋂
j=1

√
(Nj : M) =

√
(
k⋂
j=1

Nj : M) by Lemma 2.9. Thus a1 . . . an ∈
√
(N : M),

proving that, N is an n-absorbing primary submodule of M . The “In particular” statement is
clear. 2

Theorem 2.11. Let N be an n-absorbing primary submodule of an R-module M and K be a
submodule of M . Then N ∩K is an n-absorbing primary submodule of K.

Proof. Clearly, N∩K is a proper submodule of K. Let a1 . . . ank ∈ N∩K for some a1, . . . , an ∈
R and k ∈ K. Then a1 . . . ank ∈ N and N is an n-absorbing primary submodule of M . This
implies either âik ∈ N for some 1 ≤ i ≤ n or a1 . . . an ∈

√
(N : M). If âik ∈ N for some

1 ≤ i ≤ n, then âik ∈ N ∩K for some 1 ≤ i ≤ n and we are done. If a1 . . . an ∈
√
(N : M),

then (a1 . . . an)mM ⊆ N for some positive integer m. In particular, (a1 . . . an)mK ⊆ N . There-
fore (a1 . . . an)mK ⊆ N ∩ K, which implies a1 . . . an ∈

√
(N ∩K : K). Hence N ∩ K is an

n-absorbing primary submodule of K. 2

Theorem 2.12. Let M = M1 ⊕M2 where M1 and M2 are R-modules. Let P and Q be proper
submodules of M1 and M2 respectively. Then the following statements hold.

(1) P ⊕M2 is an n-absorbing primary submodule of M if and only if P is an n-absorbing
primary submodule of M1.

(2) M1 ⊕ Q is an n-absorbing primary submodule of M if and only if Q is an n-absorbing
primary submodule of M2.

Proof. (1) Let P ⊕ M2 be an n-absorbing primary submodule of M . Let a1 . . . anm ∈ P
for some a1, . . . , an ∈ R and m ∈ M1 such that âim /∈ P for every 1 ≤ i ≤ n. Then
a1 . . . an(m, 0) ∈ P ⊕ M2 but (âim, 0) /∈ P ⊕ M2 for every 1 ≤ i ≤ n. As P ⊕ M2 is an
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n-absorbing primary submodule of M , we get that a1 . . . an ∈
√
(P ⊕M2 : M1 ⊕M2). This im-

plies (a1 . . . an)k(M1⊕M2) ⊆ P ⊕M2 for some positive integer k. Therefore (a1 . . . an)kM1 ⊆
P , that is, a1 . . . an ∈

√
(P : M1). Hence P is an n-absorbing primary submodule of M1.

Conversely, let P be an n-absorbing primary submodule of M1. Let a1, . . . , an ∈ R and
(m1,m2) ∈ M with a1 . . . an(m1,m2) ∈ P ⊕ M2. Then a1 . . . anm1 ∈ P . Assume that
âi(m1,m2) /∈ P ⊕M2 for every 1 ≤ i ≤ n, which gives that âim1 /∈ P for every 1 ≤ i ≤ n. As
P is an n-absorbing primary submodule of M1, this implies that a1 . . . an ∈

√
(P : M1), that is,

(a1 . . . an)kM1 ⊆ P for some positive integer k. Therefore (a1 . . . an)k(M1 ⊕M2) ⊆ P ⊕M2.
Hence P ⊕M2 is an n-absorbing primary submodule of M .

(2) Proof is smiliar to (1). 2

Let M be an R-module and N be a submodule of M . For r ∈ R, (N : r), also denoted by Nr

is defined as Nr = (N : r) = {m ∈M : rm ∈ N}. Clearly, Nr is a submodule of M containing
N .

Theorem 2.13. Let N be an n-absorbing primary submodule of an R-module M . Then Nr =
(N : r) is an n-absorbing primary submodule of M containing N for all r ∈ R \ (N : M).

Proof. Let r ∈ R \ (N : M). Let a1 . . . anm ∈ (N : r) for some a1, . . . , an ∈ R and m ∈ M .
Then a1 . . . an(rm) ∈ N and N is an n-absorbing primary submodule of M . This implies either
a1 . . . an ∈

√
(N : M) or âirm ∈ N for some 1 ≤ i ≤ n. If a1 . . . an ∈

√
(N : M), then

(a1 . . . an)kM ⊆ N for some positive integer k. Therefore (a1 . . . an)kM ⊆ Nr as N ⊆ Nr.
This gives that a1 . . . an ∈

√
(Nr : M) and we are done. If for some 1 ≤ i ≤ n, âirm ∈ N , then

âim ∈ (N : r) for some 1 ≤ i ≤ n. Thus (N : r) is an n-absorbing primary submodule of M
containing N . 2

Theorem 2.14. Let N be a submodule of an R-module M . Then the following are equivalent.

(1) N is an n-absorbing primary submodule of M .

(2) For a1, . . . , an ∈ R such that a1 . . . an /∈
√
(N : M), Na1...an =

n⋃
i=1

Nâi where âi =

a1 . . . ai−1ai+1 . . . an.

Proof. (1)⇒ (2) Assume that N is an n-absorbing primary submodule of M . For a1, . . . , an ∈
R, let a1 . . . an /∈

√
(N : M). Let m ∈ Na1...an . Then a1 . . . anm ∈ N and N is an n-absorbing

primary submodule. This implies either a1 . . . an ∈
√
(N : M) or âim ∈ N for some 1 ≤ i ≤ n.

Since by assumption, a1 . . . an /∈
√
(N : M), âim ∈ N for some 1 ≤ i ≤ n, that is, m ∈ Nâi for

some 1 ≤ i ≤ n. Thus m ∈
n⋃
i=1

Nâi . Now, let k ∈
n⋃
i=1

Nâi . Then âik ∈ N for some 1 ≤ i ≤ n.

Therefore aiâik = a1 . . . ank ∈ N . Thus k ∈ Na1...an . Hence we get that Na1...an =
n⋃
i=1

Nâi .

(2) ⇒ (1) Let a1 . . . anm ∈ N for some a1, . . . , an ∈ R and m ∈ M such that a1 . . . an /∈√
(N : M). Then by assumption, Na1...an =

n⋃
i=1

Nâi . As a1 . . . anm ∈ N, m ∈ Na1...an =

n⋃
i=1

Nâi . Therefore m ∈ Nâi for some 1 ≤ i ≤ n, that is, âim ∈ N for some 1 ≤ i ≤ n. Thus N

is an n-absorbing primary submodule of M. 2

A submodule N of an R-module M is said to be irreducible if it cannot be expressed as the
intersection of two submodules of M . We now give a characterisation of an n-absorbing primary
submodule when it is irreducible.

Theorem 2.15. Let N be an irreducible proper submodule of an R-module M . Then N is an
n-absorbing primary submodule of M if and only if (N : rn−1) = (N : rn) for all r ∈ R \√
(N : M).

Proof. Assume that N is an n-absorbing primary submodule of M . Let r ∈ R \
√
(N : M).

Clearly, (N : rn−1) ⊆ (N : rn). For the reverse inclusion, let m ∈ (N : rn). Then rnm ∈ N and
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N is an n-absorbing primary submodule of M . Therefore either rn−1m ∈ N or rn ∈
√
(N : M).

If rn−1m ∈ N , then m ∈ (N : rn−1) and we are done. If rn ∈
√
(N : M), then r ∈

√
(N : M),

which is a contradiction.
Conversely, assume that (N : rn−1) = (N : rn) for all r ∈ R \

√
(N : M). Let a1 . . . anm ∈

N for some a1, . . . , an ∈ R and m ∈ M such that a1 . . . an /∈
√
(N : M). Then we have to

show that âim ∈ N for some 1 ≤ i ≤ n. On the contrary, we assume that âim /∈ N for ev-
ery 1 ≤ i ≤ n. If ai ∈

√
(N : M) for some 1 ≤ i ≤ n, then a1 . . . an ∈

√
(N : M), which

is a contradiction. Therefore ai /∈
√
(N : M) for every 1 ≤ i ≤ n. Hence by assumption

(N : an−1
i ) = (N : ani ) for every 1 ≤ i ≤ n. Clearly, N +Ran−1

1 m and N +Râ1m are submod-
ules of M and N ⊆ (N + Ran−1

1 m) ∩ (N + Râ1m). Let n ∈ (N + Ran−1
1 m) ∩ (N + Râ1m).

Then n = n1 + r1a
n−1
1 m = n2 + r2â1m where r1, r2 ∈ R and n1, n2 ∈ N . Therefore

a1n = a1n1+r1a
n
1 m = a1n2+r2a1 . . . anm and r2a1 . . . anm, a1n2, a1n1 ∈ N , so r1a

n
1 m ∈ N ,

which implies r1m ∈ (N : an1 ). But (N : an1 ) = (N : an−1
1 ). Therefore r1a

n−1
1 m ∈ N

and hence n ∈ N . Therefore (N + Ran−1
1 m) ∩ (N + Râ1m) ⊆ N . Thus we get that N =

(N + Ran−1
1 m) ∩ (N + Râ1m), which is a contradiction as N is an irreducible submodule of

M . Hence N is an n-absorbing primary submodule of M . 2

Theorem 2.16. Let f : M → M ′ be an epimorphism of R-modules. Then the following state-
ments hold.

(1) If N is an n-absorbing primary submodule of M such that Kerf ⊆ N , then f(N) is an
n-absorbing primary submodule of M ′.

(2) If N ′ is an n-absorbing primary submodule of M ′, then f−1(N ′) is an n-absorbing primary
submodule of M .

Proof. (1) Assume N is an n-absorbing primary submodule of M such that Kerf ⊆ N . Let
a1 . . . anm

′ ∈ f(N) for some a1, . . . , an ∈ R and m′ ∈ M ′. Then a1 . . . anm
′ = f(t) for some

t ∈ N . As m′ ∈ M ′ and f is an epimorphism, there exists m ∈ M such that f(m) = m′.
Therefore a1 . . . anf(m) = f(t), that is, f(a1 . . . anm − t) = 0. This implies a1 . . . anm −
t ∈ Kerf ⊆ N . Thus a1 . . . anm ∈ N and N is an n-absorbing primary submodule of M .
Therefore either a1 . . . an ∈

√
(N : M) or âim ∈ N for some 1 ≤ i ≤ n. This implies either

a1 . . . an ∈
√
(f(N) : M ′) or âim′ ∈ f(N) for some 1 ≤ i ≤ n. Hence f(N) is an n-absorbing

primary submodule of M ′.
(2) Assume N ′ is an n-absorbing primary submodule of M ′. Let a1 . . . anm ∈ f−1(N ′)

for some a1, . . . , an ∈ R and m ∈ M . Then a1 . . . anf(m) ∈ N ′ and N ′ is an n-absorbing
primary submodule of M ′. This implies either a1 . . . an ∈

√
(N ′ : M ′) or âif(m) ∈ N ′ for

some 1 ≤ i ≤ n. Therefore either a1 . . . an ∈
√
(f−1(N ′) : M) or âim ∈ f−1(N ′) for some

1 ≤ i ≤ n. Hence f−1(N ′) is an n-absorbing primary submodule of M . 2

Theorem 2.17. Let N and K be submodules of an R-module M such that K ⊆ N . Then N is an
n-absorbing primary submodule of M if and only if N/K is an n-absorbing primary submodule
of M/K.

Proof. Define f : M →M/K by f(m) = m+K. Then f is an epimorphism of R-modules M
and M/K. Assume that N is an n-absorbing primary submodule of M . Now, Kerf = K ⊆ N .
Then by Theorem 2.16 (1), f(N) is an n-absorbing primary submodule of M/K. Hence N/K
is an n-absorbing primary submodule of M/K.

Conversely, assume that N/K is an n-absorbing primary submodule of M/K. Then by
Theorem 2.16 (2), f−1(N/K) is an n-absorbing primary submodule of M . Hence N is an n-
absorbing primary submodule of M . 2

Theorem 2.18. Suppose S is a multiplicatively closed subset of R and S−1M is the module of
fraction of M . Then the following statements hold.

(1) If N is an n-absorbing primary submodule of M such that (N : M)∩S = ∅, then S−1N is
an n-absorbing primary submodule of S−1M .
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(2) If S−1N is an n-absorbing primary submodule of S−1M such that Zd(M/N) ∩ S = ∅,
then N is an n-absorbing primary submodule of M .

Proof. (1) Assume N is an n-absorbing primary submodule of M such that (N : M) ∩ S = ∅.
Let a1

s1
. . . ansn

m
l ∈ S−1N for some a1, . . . , an ∈ R, s1, . . . , sn, l ∈ S and m ∈ M . Then there

exists s′ ∈ S such that s′a1 . . . anm ∈ N . Since N is an n-absorbing primary submodule of M ,
we get that either a1 . . . an ∈

√
(N : M) or âis′m ∈ N for some 1 ≤ i ≤ n. This implies either

a1
s1

. . . ansn ∈ S−1
√
(N : M) =

√
(S−1N : S−1M) or âi

ŝi
m
l ∈ S−1N for some 1 ≤ i ≤ n. Thus

S−1N is an n-absorbing primary submodule of S−1M .
(2) Assume S−1N is an n-absorbing primary submodule of S−1M such that Zd(M/N)∩S =

∅. Let a1 . . . anm ∈ N for some a1, . . . , an ∈ R and m ∈M . Then a1...anm
1 ∈ S−1N and S−1N

is an n-absorbing primary submodule of S−1M . Therefore either a1...an
1 ∈

√
(S−1N : S−1M)

or âim
1 ∈ S−1N for some 1 ≤ i ≤ n. If a1...an

1 ∈
√
(S−1N : S−1M) = S−1

√
(N : M),

then there exists s ∈ S such that (sa1 . . . an)kM ⊆ N for some positive integer k, that is,
sk(a1 . . . an)kM ⊆ N . As Zd(M/N) ∩ S = ∅, this implies (a1 . . . an)kM ⊆ N and we are
done. If âim

1 ∈ S−1N for some 1 ≤ i ≤ n, then there exists t ∈ S such that tâim ∈ N for some
1 ≤ i ≤ n, which gives that âim ∈ N for some 1 ≤ i ≤ n. Hence N is an n-absorbing primary
submodule of M . 2
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