ON \boldsymbol{n}-ABSORBING PRIMARY SUBMODULES

Nilofer I. Shaikh and Rajendra P. Deore
Communicated by Ayman Badawi

MSC 2010 Classifications: 13A15
Keywords and phrases: n-absorbing primary ideal, n-absorbing primary submodule, n-absorbing ideal, irreducible submodule.

Acknowledgement: The authors would like to thank the referees for careful reading of this paper.

Abstract

Let R be a commutative ring with $1 \neq 0, n$ be a positive integer and M be an R module. In this paper, we introduce the concept of n-absorbing primary submodules generalising n-absorbing primary ideals of rings. A proper submodule N of an R-module M is called an n absorbing primary submodule if whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N. We have tried to prove some results on n-absorbing primary submodules.

1 Introduction

In this paper, all rings are commutative with non-zero identity and all modules are unital. Let R be a ring, I be an ideal of R, M be an R-module and N be a submodule of M. The radical of I is denoted by \sqrt{I} i.e. $\sqrt{I}=\left\{r \in R: r^{k} \in I\right.$ for some $\left.k \in \mathbb{N}\right\}$. We denote the residual of N over M by $(N: M)$ i.e. $(N: M)=\{r \in R: r M \subseteq N\}$.

The first generalisation of prime ideals in commutative rings was introduced by Ayman Badawi in [4], where he defined a non zero proper ideal I of R to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Expanding on this definition, Anderson and Badawi in [1] introduced the concept of n-absorbing ideals of R for a positive integer n. A proper ideal I of a commutative ring R is called as n-absorbing ideal if whenever $x_{1} \ldots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$, then there are n of the $x_{i}^{\prime} s$ whose product is in I.

In [5], Badawi introduced a generalisation of primary ideals, where he defined a proper ideal I of R to be a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. Recentely, A. E. Becker generalised 2-absorbing primary ideals to n absorbing primary ideals for positive integer n in [6]. A proper ideal I of a commutative ring R is said to be an n-absorbing primary ideal of R if whenever $x_{1}, \ldots, x_{n+1} \in R$ and $x_{1} x_{2} \ldots x_{n+1} \in$ I, then either $x_{1} x_{2} \ldots x_{n} \in I$ or a product of n of the $x_{i}^{\prime} s$ (other than $x_{1} \ldots x_{n}$) is in \sqrt{I}.

The concept of 2-absorbing and weakly 2 -absorbing submodules, which are generalisations of prime and weak prime submodules, was introduced and investigated by Darani and Soheilnia in [7]. They defined a proper submodule N of an R-module M to be 2-absorbing (respectively weakly 2 -absorbing) submodule of M if whenever $a, b \in R, m \in M$ and $a b m \in N$ (resp. $0 \neq a b m \in N)$, then $a b \in(N: M)$ or $a m \in N$ or $b m \in N$. Later in [8], Darani and Soheilnia introduced and studied the concept of n-absorbing submodules generalising n-absorbing ideals of rings. They defined a proper submodule N of an R-module M to be an n-absorbing submodule if whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \ldots a_{n} \in(N: M)$ or there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N. In [9], M. K. Dubey and P. Aggarwal introduced the concept of 2-absorbing primary submodule which is a generalisation of primary submodule. They defined a proper submodule N of an R-module M to be 2-absorbing primary submodule if whenever $a, b \in R, m \in M$ and $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in \sqrt{(N: M)}$.

In this paper, we generalise the concept of n-absorbing primary ideals of a ring R to that of n-absorbing primary submodules of an R-module M. Let n be a positive integer. A proper
submodule N of an R-module M is said to be an n-absorbing primary submodule of M if whenever $a_{1}, \ldots, a_{n} \in R, m \in M$ and $a_{1} \ldots a_{n} m \in N$, then either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N. We have proved several properties of n-absorbing primary submodules. Most of the results are related to the references [6], [8] and [9] which have been proved for n-absorbing primary submodules.

In Theorem 2.3, we have proved that if N is an n-absorbing primary submodule of a cyclic multiplication R-module M, then $(N: M)$ is an n-absorbing primary ideal of R. In Theorem 2.8 , we have shown that any n-absorbing primary submodule is an m-absorbing primary submodule for $m \geq n$. In Theorem 2.15, we have given a characterisation of an n-absorbing primary submodule when it is irreducible.

$2 \boldsymbol{n}$-absorbing primary submodule

In this section, we define n-absorbing primary submodule and prove several results related to the same.

Definition 2.1. Let n be a positive integer. Let M be an R-module and N be a proper submodule of $M . N$ is said to be an n-absorbing primary submodule of M if for any $a_{1}, \ldots, a_{n} \in R$ and $m \in M, a_{1} \ldots a_{n} m \in N$ implies either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N.

Let $\hat{a_{i}}$ denote the element of R obtained by eliminating a_{i} from the product $a_{1} \ldots a_{n}$. Then the above condition can be written as $a_{1} \ldots a_{n} m \in N$ implies either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$.

It is easy to see that every n-absorbing submodule is an n-absorbing primary submodule but the converse need not be true which is illustrated as follows.

Example 2.2. Consider $R=\mathbb{Z}$ and an R-module $M=\mathbb{Z}_{162}$. Take a submodule $N=\{0,81\}$ of M. Then $(N: M)=\{r \in R: r M \subseteq N\}=\{0,81,162, \ldots\}=81 \mathbb{Z}$ and $\sqrt{(N: M)}=\{r \in$ $R: r^{k} M \subseteq N$ for some $\left.k \in \mathbb{N}\right\}=\{0,3,6,9, \ldots\}=3 \mathbb{Z}$. Now, $3 \cdot 3 \cdot 3 \cdot 3 \in N$ but $3 \cdot 3 \cdot 3 \notin N$ and $3 \cdot 3 \cdot 3 \notin(N: M)$. Therefore, N is not a 3-absorbing submodule of M but it is a 3-absorbing primary submodule of M since $3 \cdot 3 \cdot 3 \in \sqrt{(N: M)}$.

A natural question is that if N is an n-absorbing primary submodule of an R-module M, then is the ideal $(N: M)$ an n-absorbing primary ideal of R ? This is true in the case when $n=2$ and has been proved in [9, Theorem 2.6]. For the case where M is cyclic, we get the following result.

Theorem 2.3. Let M be a cyclic multiplication R-module. Let N be an n-absorbing primary submodule of M. Then $(N: M)$ is an n-absorbing primary ideal of R.

Proof. Let M be a cyclic R-module generated by m. Let $a_{1} \ldots a_{n+1} \in(N: M)$ for some $a_{1}, \ldots, a_{n+1} \in R$. Assume all products of n of the $a_{i}^{\prime} s$ except $a_{1} \ldots a_{n}$ are not in $\sqrt{(N: M)}$. Then $\hat{a_{i}} a_{n+1} \notin(N: M)$ for every $1 \leq i \leq n$, that is, $\hat{a_{i}} a_{n+1} m \notin N$ for every $1 \leq i \leq n$. Since $a_{1} \ldots a_{n+1} \in(N: M), a_{1} \ldots a_{n+1} m \in N$, which we can write as $\left(a_{2} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$. As N is an n-absorbing primary submodule of M, this implies either $\left(a_{2} \ldots a_{n}\right)\left(a_{1} m\right) \in N$ or $\left(a_{3} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$ or $\left(a_{2} a_{4} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$ or \ldots or $\left(a_{2} \ldots a_{n-1} a_{n+1}\right)\left(a_{1} m\right) \in N$ or $a_{2} \ldots a_{n+1} \in \sqrt{(N: M)}$ i.e. either $a_{1} a_{2} \ldots a_{n} m \in N$ or $\hat{a_{i}} a_{n+1} m \in N$ for some $2 \leq i \leq n$ or $\hat{a_{1}} a_{n+1} \in \sqrt{(N: M)}$. Since by assumption, $\hat{a_{i}} a_{n+1} \notin \sqrt{(N: M)}$ for every $1 \leq i \leq n$, both the latter cases are not possible. Therefore $a_{1} \ldots a_{n} m \in N$, which implies $a_{1} \ldots a_{n} \in(N: M)$. Thus $(N: M)$ is an n-absorbing primary ideal of R.

We state the following theorem which is used in this paper.
Theorem 2.4. ([6, Theorem 9]) If I is an n-absorbing primary ideal of R, then \sqrt{I} is an n absorbing ideal of R.

Theorem 2.5. Let N be an n-absorbing primary submodule of a cyclic multiplication R-module M. Then $\sqrt{(N: M)}$ is an n-absorbing ideal of R.

Proof. By Theorem 2.3, we get that $(N: M)$ is an n-absorbing primary ideal of R. Then by Theorem 2.4, $\sqrt{(N: M)}$ is an n-absorbing ideal of R.

We now give the following result using the ideal $(N: m)$, defined as $(N: m)=\{r \in R$: $r m \in N\}$, where R is a commutative ring, M is an R-module, N is a submodule of M and $m \in M$.

Theorem 2.6. Let N be an n-absorbing primary submodule of an R-module M. If $m \in N$, then $(N: m)=R$. If $m \notin N$, then $(N: m)$ is an n-absorbing primary ideal of R containing ($N: M$).

Proof. If $m \in N$, then there is nothing to prove. Let $m \in M \backslash N$. Then $(N: m)$ is a proper ideal of R containing $(N: M)$. Let $a_{1} \ldots a_{n+1} \in(N: m)$ for some $a_{1}, \ldots, a_{n+1} \in R$. Assume all products of n of the $a_{i}^{\prime} s$ except $a_{1} \ldots a_{n}$ are not in $\sqrt{(N: m)}$. Since $a_{1} \ldots a_{n+1} \in$ $(N: m), a_{1} \ldots a_{n+1} m \in N$, that is, $\left(a_{2} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$ and N is an n-absorbing primary submodule of M. This implies either $\left(a_{2} \ldots a_{n}\right)\left(a_{1} m\right) \in N$ or $\left(a_{3} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$ or $\left(a_{2} a_{4} \ldots a_{n+1}\right)\left(a_{1} m\right) \in N$ or \ldots or $\left(a_{2} \ldots a_{n-1} a_{n+1}\right)\left(a_{1} m\right) \in N$ or $a_{2} \ldots a_{n+1} \in \sqrt{(N: M)}$ i.e. either $a_{1} \ldots a_{n} m \in N$ or $\hat{a_{i}} a_{n+1} m \in N$ for some $2 \leq i \leq n$ or $\hat{a_{1}} a_{n+1} \in \sqrt{(N: M)}$. Therefore either $a_{1} \ldots a_{n} \in(N: m)$ or $\hat{a_{i}} a_{n+1} \in(N: m)$ for some $2 \leq i \leq n$ or $\hat{a_{1}} a_{n+1} \in \sqrt{(N: m)}$. Since by assumption, $\hat{a_{i}} a_{n+1} \notin \sqrt{(N: m)}$ for every $1 \leq i \leq n$, both the latter cases are not possible. Therefore $a_{1} \ldots a_{n} \in(N: m)$. Thus $(N: m)$ is an n-absorbing primary ideal of R.

The set of zero divisors of an R-module M is denoted by $Z d(M)$ and is defined as $Z d(M)=$ $\{r \in R$: there exists $0 \neq m \in M$ such that $r m=0\}$.

Theorem 2.7. Let N be an n-absorbing primary submodule of M. If the set of all zero divisors of $M / N, Z d(M / N)$, forms an ideal in R, then it is an n-absorbing primary ideal of R.

Proof. Assume $Z d(M / N)$ is an ideal in R. Let $a_{1} \ldots a_{n+1} \in Z d(M / N)$ for some $a_{1}, \ldots, a_{n+1} \in$ R. We know from [3] that if M is an R-module and N is a proper submodule of M, then $Z d(M / N)=\bigcup_{x \in M \backslash N}(N: x)$. Therefore $a_{1} \ldots a_{n+1} \in(N: m)$ for some $m \in M \backslash N$. Since N is an n-absorbing primary submodule and $m \in M \backslash N$, by Theorem $2.6,(N: m)$ is an n absorbing primary ideal of R. This implies either $a_{1} \ldots a_{n} \in(N: m)$ or $\hat{a_{i}} a_{n+1} \in \sqrt{(N: m)}$ for some $1 \leq i \leq n$. If $a_{1} \ldots a_{n} \in(N: m)$, then $a_{1} \ldots a_{n} \in Z d(M / N)$ and we are done. We know from [2] that if R is a ring and E_{α} is a family of subsets of R, then $\sqrt{\bigcup_{\alpha} E_{\alpha}}=\bigcup_{\alpha} \sqrt{E_{\alpha}}$. Therefore $\sqrt{Z d(M / N)}=\sqrt{\bigcup_{x \in M \backslash N}(N: x)}=\bigcup_{x \in M \backslash N} \sqrt{(N: x)}$. If $\hat{a_{i}} a_{n+1} \in \sqrt{(N: m)}$ for some $1 \leq i \leq n$, then $\hat{a_{i}} a_{n+1} \in \sqrt{Z d(M / N)}$ for some $1 \leq i \leq n$. Thus we get that $Z d(M / N)$ is an n-absorbing primary ideal of R.

Theorem 2.8. Every n-absorbing primary submodule of an R-module is an m-absorbing primary submodule for $m \geq n$.

Proof. It is sufficient to prove that every n-absorbing primary submodule of an R-module is an $(n+1)$-absorbing primary submodule. Suppose N is an n-absorbing primary submodule of an R-module M. Let $a_{1} \ldots a_{n} a_{n+1} m \in N$ for some $a_{1}, \ldots, a_{n}, a_{n+1} \in R$ and $m \in M$. Let $a_{n} a_{n+1}:=a_{n^{\prime}}$. Then we have $a_{1} a_{2} \ldots a_{n^{\prime}} m \in N$ and N is an n-absorbing primary submodule. This implies either $a_{1} a_{2} \ldots a_{n^{\prime}} \in \sqrt{(N: M)}$ or $\hat{a_{i}} m \in N$ for some $i \in\left\{1,2,3, \ldots, n-1, n^{\prime}\right\}$. If $i \neq n^{\prime}$, then we are done. If $i=n^{\prime}$, then we have $a_{1} \ldots a_{n-1} m \in N$ and by definition of an ideal, we get that $a_{1} \ldots a_{n-1} a_{n} m \in N$ or $a_{1} \ldots a_{n-1} a_{n+1} m \in N$. Hence N is an $(n+1)$-absorbing primary submodule of M.

We now examine the structure of the intersection of k submodules that are each n_{j}-absorbing primary submodule of an R-module. For this, we first prove the following lemma.

Lemma 2.9. Let N_{j} be submodules of an R-module M for every $1 \leq j \leq k$. Then $\bigcap_{j=1}^{k} \sqrt{\left(N_{j}: M\right)}=$ $\sqrt{\left(\bigcap_{j=1}^{k} N_{j}: M\right)}$.

Proof. Let $r \in \bigcap_{j=1}^{k} \sqrt{\left(N_{j}: M\right)}$. Then $r \in \sqrt{\left(N_{j}: M\right)}$ for every $1 \leq j \leq k$. Therefore $r^{l_{j}} M \subseteq N_{j}$ for every $1 \leq j \leq k$, where l_{j} is some positive integer. Let $l=\max \left\{l_{1}, \ldots, l_{k}\right\}$. Then $r^{l} M \subseteq N_{j}$ for every $1 \leq j \leq k$ and so $r^{l} M \subseteq \bigcap_{j=1}^{k} N_{j}$. Thus $r \in \sqrt{\left(\bigcap_{j=1}^{k} N_{j}: M\right)}$. For the reverse inclusion, let $s \in \sqrt{\left(\bigcap_{j=1}^{k} N_{j}: M\right)}$. Then $s^{n} M \subseteq \bigcap_{j=1}^{k} N_{j}$ for some positive integer n. This implies $s^{n} M \subseteq N_{j}$ for every $1 \leq j \leq k$, that is, $s \in \sqrt{\left(N_{j}: M\right)}$ for every $1 \leq j \leq k$. Therefore $s \in \bigcap_{j=1}^{k} \sqrt{\left(N_{j}: M\right)}$. Hence $\bigcap_{j=1}^{k} \sqrt{\left(N_{j}: M\right)}=\sqrt{\left(\bigcap_{j=1}^{k} N_{j}: M\right)}$.

Theorem 2.10. Let M be an R-module. If N_{j} is an n_{j}-absorbing primary submodule of M for every $1 \leq j \leq k$, then $N_{1} \cap \cdots \cap N_{k}$ is an n-absorbing primary submodule of M for $n=n_{1}+\cdots+n_{k}$. In particular, if N_{1}, \ldots, N_{n} are primary submodules of M, then $N_{1} \cap \cdots \cap N_{n}$ is an n-absorbing primary submodule of M.

Proof. Let $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ with $a_{1} \ldots a_{n} m \in N_{1} \cap \cdots \cap N_{k}:=N$ such that $\hat{a_{i}} m \notin N$ for every $1 \leq i \leq n$. Since $a_{1} \ldots a_{n} m \in N_{1} \cap \cdots \cap N_{k}, a_{1} \ldots a_{n} m \in N_{j}$ for every $1 \leq j \leq k$. Now, for every $1 \leq j \leq k, N_{j}$ is an n_{j}-absorbing primary submodule of M and $n_{j} \leq n$. Therefore by Theorem 2.8, each N_{j} is an n-absorbing primary submodule of M. This implies $a_{1} \ldots a_{n} \in \sqrt{\left(N_{j}: M\right)}$ for every $1 \leq j \leq k$, which gives that $a_{1} \ldots a_{n} \in \bigcap_{j=1}^{k} \sqrt{\left(N_{j}: M\right)}=\sqrt{\left(\bigcap_{j=1}^{k} N_{j}: M\right)}$ by Lemma 2.9. Thus $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$, proving that, N is an n-absorbing primary submodule of M. The "In particular" statement is clear.

Theorem 2.11. Let N be an n-absorbing primary submodule of an R-module M and K be a submodule of M. Then $N \cap K$ is an n-absorbing primary submodule of K.

Proof. Clearly, $N \cap K$ is a proper submodule of K. Let $a_{1} \ldots a_{n} k \in N \cap K$ for some $a_{1}, \ldots, a_{n} \in$ R and $k \in K$. Then $a_{1} \ldots a_{n} k \in N$ and N is an n-absorbing primary submodule of M. This implies either $\hat{a_{i}} k \in N$ for some $1 \leq i \leq n$ or $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$. If $\hat{a_{i}} k \in N$ for some $1 \leq i \leq n$, then $\hat{a_{i}} k \in N \cap K$ for some $1 \leq i \leq n$ and we are done. If $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$, then $\left(a_{1} \ldots a_{n}\right)^{m} M \subseteq N$ for some positive integer m. In particular, $\left(a_{1} \ldots a_{n}\right)^{m} K \subseteq N$. Therefore $\left(a_{1} \ldots a_{n}\right)^{m} K \subseteq N \cap K$, which implies $a_{1} \ldots a_{n} \in \sqrt{(N \cap K: K)}$. Hence $N \cap K$ is an n-absorbing primary submodule of K.

Theorem 2.12. Let $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are R-modules. Let P and Q be proper submodules of M_{1} and M_{2} respectively. Then the following statements hold.
(1) $P \oplus M_{2}$ is an n-absorbing primary submodule of M if and only if P is an n-absorbing primary submodule of M_{1}.
(2) $M_{1} \oplus Q$ is an n-absorbing primary submodule of M if and only if Q is an n-absorbing primary submodule of M_{2}.

Proof. (1) Let $P \oplus M_{2}$ be an n-absorbing primary submodule of M. Let $a_{1} \ldots a_{n} m \in P$ for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M_{1}$ such that $\hat{a_{i}} m \notin P$ for every $1 \leq i \leq n$. Then $a_{1} \ldots a_{n}(m, 0) \in P \oplus M_{2}$ but $\left(\hat{a_{i}} m, 0\right) \notin P \oplus M_{2}$ for every $1 \leq i \leq n$. As $P \oplus M_{2}$ is an
n-absorbing primary submodule of M, we get that $a_{1} \ldots a_{n} \in \sqrt{\left(P \oplus M_{2}: M_{1} \oplus M_{2}\right)}$. This implies $\left(a_{1} \ldots a_{n}\right)^{k}\left(M_{1} \oplus M_{2}\right) \subseteq P \oplus M_{2}$ for some positive integer k. Therefore $\left(a_{1} \ldots a_{n}\right)^{k} M_{1} \subseteq$ P, that is, $a_{1} \ldots a_{n} \in \sqrt{\left(P: M_{1}\right)}$. Hence P is an n-absorbing primary submodule of M_{1}.

Conversely, let P be an n-absorbing primary submodule of M_{1}. Let $a_{1}, \ldots, a_{n} \in R$ and $\left(m_{1}, m_{2}\right) \in M$ with $a_{1} \ldots a_{n}\left(m_{1}, m_{2}\right) \in P \oplus M_{2}$. Then $a_{1} \ldots a_{n} m_{1} \in P$. Assume that $\hat{a_{i}}\left(m_{1}, m_{2}\right) \notin P \oplus M_{2}$ for every $1 \leq i \leq n$, which gives that $\hat{a_{i}} m_{1} \notin P$ for every $1 \leq i \leq n$. As P is an n-absorbing primary submodule of M_{1}, this implies that $a_{1} \ldots a_{n} \in \sqrt{\left(P: M_{1}\right)}$, that is, $\left(a_{1} \ldots a_{n}\right)^{k} M_{1} \subseteq P$ for some positive integer k. Therefore $\left(a_{1} \ldots a_{n}\right)^{k}\left(M_{1} \oplus M_{2}\right) \subseteq P \oplus M_{2}$. Hence $P \oplus M_{2}$ is an n-absorbing primary submodule of M.
(2) Proof is smiliar to (1).

Let M be an R-module and N be a submodule of M. For $r \in R,(N: r)$, also denoted by N_{r} is defined as $N_{r}=(N: r)=\{m \in M: r m \in N\}$. Clearly, N_{r} is a submodule of M containing N.

Theorem 2.13. Let N be an n-absorbing primary submodule of an R-module M. Then $N_{r}=$ $(N: r)$ is an n-absorbing primary submodule of M containing N for all $r \in R \backslash(N: M)$.

Proof. Let $r \in R \backslash(N: M)$. Let $a_{1} \ldots a_{n} m \in(N: r)$ for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M$. Then $a_{1} \ldots a_{n}(r m) \in N$ and N is an n-absorbing primary submodule of M. This implies either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or $\hat{a_{i}} r m \in N$ for some $1 \leq i \leq n$. If $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$, then $\left(a_{1} \ldots a_{n}\right)^{k} M \subseteq N$ for some positive integer k. Therefore $\left(a_{1} \ldots a_{n}\right)^{k} M \subseteq N_{r}$ as $N \subseteq N_{r}$. This gives that $a_{1} \ldots a_{n} \in \sqrt{\left(N_{r}: M\right)}$ and we are done. If for some $1 \leq i \leq n, \hat{a_{i}} r m \in N$, then $\hat{a_{i}} m \in(N: r)$ for some $1 \leq i \leq n$. Thus $(N: r)$ is an n-absorbing primary submodule of M containing N.

Theorem 2.14. Let N be a submodule of an R-module M. Then the following are equivalent.
(1) N is an n-absorbing primary submodule of M.
(2) For $a_{1}, \ldots, a_{n} \in R$ such that $a_{1} \ldots a_{n} \notin \sqrt{(N: M)}, N_{a_{1} \ldots a_{n}}=\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$ where $\hat{a_{i}}=$ $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$.

Proof. (1) \Rightarrow (2) Assume that N is an n-absorbing primary submodule of M. For $a_{1}, \ldots, a_{n} \in$ R, let $a_{1} \ldots a_{n} \notin \sqrt{(N: M)}$. Let $m \in N_{a_{1} \ldots a_{n}}$. Then $a_{1} \ldots a_{n} m \in N$ and N is an n-absorbing primary submodule. This implies either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$. Since by assumption, $a_{1} \ldots a_{n} \notin \sqrt{(N: M)}, \hat{a_{i}} m \in N$ for some $1 \leq i \leq n$, that is, $m \in N_{\hat{a_{i}}}$ for some $1 \leq i \leq n$. Thus $m \in \bigcup_{i=1}^{n} N_{\hat{a_{i}}}$. Now, let $k \in \bigcup_{i=1}^{n} N_{\hat{a}_{i}}$. Then $\hat{a_{i}} k \in N$ for some $1 \leq i \leq n$. Therefore $a_{i} \hat{a_{i}} k=a_{1} \ldots a_{n} k \in N$. Thus $k \in N_{a_{1} \ldots a_{n}}$. Hence we get that $N_{a_{1} \ldots a_{n}}=\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$.
$(2) \Rightarrow(1)$ Let $a_{1} \ldots a_{n} m \in N$ for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ such that $a_{1} \ldots a_{n} \notin$ $\sqrt{(N: M)}$. Then by assumption, $N_{a_{1} \ldots a_{n}}=\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$. As $a_{1} \ldots a_{n} m \in N, m \in N_{a_{1} \ldots a_{n}}=$ $\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$. Therefore $m \in N_{\hat{a_{i}}}$ for some $1 \leq i \leq n$, that is, $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$. Thus N is an n-absorbing primary submodule of M .

A submodule N of an R-module M is said to be irreducible if it cannot be expressed as the intersection of two submodules of M. We now give a characterisation of an n-absorbing primary submodule when it is irreducible.

Theorem 2.15. Let N be an irreducible proper submodule of an R-module M. Then N is an n-absorbing primary submodule of M if and only if $\left(N: r^{n-1}\right)=\left(N: r^{n}\right)$ for all $r \in R \backslash$ $\sqrt{(N: M)}$.
Proof. Assume that N is an n-absorbing primary submodule of M. Let $r \in R \backslash \sqrt{(N: M)}$. Clearly, $\left(N: r^{n-1}\right) \subseteq\left(N: r^{n}\right)$. For the reverse inclusion, let $m \in\left(N: r^{n}\right)$. Then $r^{n} m \in N$ and
N is an n-absorbing primary submodule of M. Therefore either $r^{n-1} m \in N$ or $r^{n} \in \sqrt{(N: M)}$. If $r^{n-1} m \in N$, then $m \in\left(N: r^{n-1}\right)$ and we are done. If $r^{n} \in \sqrt{(N: M)}$, then $r \in \sqrt{(N: M)}$, which is a contradiction.

Conversely, assume that $\left(N: r^{n-1}\right)=\left(N: r^{n}\right)$ for all $r \in R \backslash \sqrt{(N: M)}$. Let $a_{1} \ldots a_{n} m \in$ N for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ such that $a_{1} \ldots a_{n} \notin \sqrt{(N: M)}$. Then we have to show that $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$. On the contrary, we assume that $\hat{a_{i}} m \notin N$ for every $1 \leq i \leq n$. If $a_{i} \in \sqrt{(N: M)}$ for some $1 \leq i \leq n$, then $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$, which is a contradiction. Therefore $a_{i} \notin \sqrt{(N: M)}$ for every $1 \leq i \leq n$. Hence by assumption $\left(N: a_{i}^{n-1}\right)=\left(N: a_{i}^{n}\right)$ for every $1 \leq i \leq n$. Clearly, $N+R a_{1}^{n-1} m$ and $N+R \hat{a_{1}} m$ are submodules of M and $N \subseteq\left(N+R a_{1}^{n-1} m\right) \cap\left(N+R \hat{a_{1}} m\right)$. Let $n \in\left(N+R a_{1}^{n-1} m\right) \cap\left(N+R \hat{a_{1}} m\right)$. Then $n=n_{1}+r_{1} a_{1}^{n-1} m=n_{2}+r_{2} \hat{a_{1}} m$ where $r_{1}, r_{2} \in R$ and $n_{1}, n_{2} \in N$. Therefore $a_{1} n=a_{1} n_{1}+r_{1} a_{1}^{n} m=a_{1} n_{2}+r_{2} a_{1} \ldots a_{n} m$ and $r_{2} a_{1} \ldots a_{n} m, a_{1} n_{2}, a_{1} n_{1} \in N$, so $r_{1} a_{1}^{n} m \in N$, which implies $r_{1} m \in\left(N: a_{1}^{n}\right)$. But $\left(N: a_{1}^{n}\right)=\left(N: a_{1}^{n-1}\right)$. Therefore $r_{1} a_{1}^{n-1} m \in N$ and hence $n \in N$. Therefore $\left(N+R a_{1}^{n-1} m\right) \cap\left(N+R \hat{a_{1}} m\right) \subseteq N$. Thus we get that $N=$ $\left(N+R a_{1}^{n-1} m\right) \cap\left(N+R \hat{a_{1}} m\right)$, which is a contradiction as N is an irreducible submodule of M. Hence N is an n-absorbing primary submodule of M.

Theorem 2.16. Let $f: M \rightarrow M^{\prime}$ be an epimorphism of R-modules. Then the following statements hold.
(1) If N is an n-absorbing primary submodule of M such that $\operatorname{Ker} f \subseteq N$, then $f(N)$ is an n-absorbing primary submodule of M^{\prime}.
(2) If N^{\prime} is an n-absorbing primary submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is an n-absorbing primary submodule of M.

Proof. (1) Assume N is an n-absorbing primary submodule of M such that $\operatorname{Kerf} \subseteq N$. Let $a_{1} \ldots a_{n} m^{\prime} \in f(N)$ for some $a_{1}, \ldots, a_{n} \in R$ and $m^{\prime} \in M^{\prime}$. Then $a_{1} \ldots a_{n} m^{\prime}=f(t)$ for some $t \in N$. As $m^{\prime} \in M^{\prime}$ and f is an epimorphism, there exists $m \in M$ such that $f(m)=m^{\prime}$. Therefore $a_{1} \ldots a_{n} f(m)=f(t)$, that is, $f\left(a_{1} \ldots a_{n} m-t\right)=0$. This implies $a_{1} \ldots a_{n} m-$ $t \in \operatorname{Ker} f \subseteq N$. Thus $a_{1} \ldots a_{n} m \in N$ and N is an n-absorbing primary submodule of M. Therefore either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$. This implies either $a_{1} \ldots a_{n} \in \sqrt{\left(f(N): M^{\prime}\right)}$ or $\hat{a_{i}} m^{\prime} \in f(N)$ for some $1 \leq i \leq n$. Hence $f(N)$ is an n-absorbing primary submodule of M^{\prime}.
(2) Assume N^{\prime} is an n-absorbing primary submodule of M^{\prime}. Let $a_{1} \ldots a_{n} m \in f^{-1}\left(N^{\prime}\right)$ for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M$. Then $a_{1} \ldots a_{n} f(m) \in N^{\prime}$ and N^{\prime} is an n-absorbing primary submodule of M^{\prime}. This implies either $a_{1} \ldots a_{n} \in \sqrt{\left(N^{\prime}: M^{\prime}\right)}$ or $\hat{a_{i}} f(m) \in N^{\prime}$ for some $1 \leq i \leq n$. Therefore either $a_{1} \ldots a_{n} \in \sqrt{\left(f^{-1}\left(N^{\prime}\right): M\right)}$ or $\hat{a_{i}} m \in f^{-1}\left(N^{\prime}\right)$ for some $1 \leq i \leq n$. Hence $f^{-1}\left(N^{\prime}\right)$ is an n-absorbing primary submodule of M.

Theorem 2.17. Let N and K be submodules of an R-module M such that $K \subseteq N$. Then N is an n-absorbing primary submodule of M if and only if N / K is an n-absorbing primary submodule of M / K.

Proof. Define $f: M \rightarrow M / K$ by $f(m)=m+K$. Then f is an epimorphism of R-modules M and M / K. Assume that N is an n-absorbing primary submodule of M. Now, $\operatorname{Kerf}=K \subseteq N$. Then by Theorem $2.16(1), f(N)$ is an n-absorbing primary submodule of M / K. Hence N / K is an n-absorbing primary submodule of M / K.

Conversely, assume that N / K is an n-absorbing primary submodule of M / K. Then by Theorem $2.16(2), f^{-1}(N / K)$ is an n-absorbing primary submodule of M. Hence N is an n absorbing primary submodule of M.

Theorem 2.18. Suppose S is a multiplicatively closed subset of R and $S^{-1} M$ is the module of fraction of M. Then the following statements hold.
(1) If N is an n-absorbing primary submodule of M such that $(N: M) \cap S=\emptyset$, then $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$.
(2) If $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$ such that $Z d(M / N) \cap S=\emptyset$, then N is an n-absorbing primary submodule of M.

Proof. (1) Assume N is an n-absorbing primary submodule of M such that ($N: M$) $\cap S=\emptyset$. Let $\frac{a_{1}}{s_{1}} \ldots \frac{a_{n}}{s_{n}} \frac{m}{l} \in S^{-1} N$ for some $a_{1}, \ldots, a_{n} \in R, s_{1}, \ldots, s_{n}, l \in S$ and $m \in M$. Then there exists $s^{\prime} \in S$ such that $s^{\prime} a_{1} \ldots a_{n} m \in N$. Since N is an n-absorbing primary submodule of M, we get that either $a_{1} \ldots a_{n} \in \sqrt{(N: M)}$ or $\hat{a_{i}} s^{\prime} m \in N$ for some $1 \leq i \leq n$. This implies either $\frac{a_{1}}{s_{1}} \ldots \frac{a_{n}}{s_{n}} \in S^{-1} \sqrt{(N: M)}=\sqrt{\left(S^{-1} N: S^{-1} M\right)}$ or $\frac{\hat{a}_{i}}{s_{i}} \frac{m}{l} \in S^{-1} N$ for some $1 \leq i \leq n$. Thus $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$.
(2) Assume $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$ such that $Z d(M / N) \cap S=$ \emptyset. Let $a_{1} \ldots a_{n} m \in N$ for some $a_{1}, \ldots, a_{n} \in R$ and $m \in M$. Then $\frac{a_{1} \ldots a_{n} m}{1} \in S^{-1} N$ and $S^{-1} N$ is an n-absorbing primary submodule of $S^{-1} M$. Therefore either $\frac{a_{1} \ldots a_{n}}{1} \in \sqrt{\left(S^{-1} N: S^{-1} M\right)}$ or $\frac{\hat{a}_{i} m}{1} \in S^{-1} N$ for some $1 \leq i \leq n$. If $\frac{a_{1} \ldots a_{n}}{1} \in \sqrt{\left(S^{-1} N: S^{-1} M\right)}=S^{-1} \sqrt{(N: M)}$, then there exists $s \in S$ such that $\left(s a_{1} \ldots a_{n}\right)^{k} M \subseteq N$ for some positive integer k, that is, $s^{k}\left(a_{1} \ldots a_{n}\right)^{k} M \subseteq N$. As $Z d(M / N) \cap S=\emptyset$, this implies $\left(a_{1} \ldots a_{n}\right)^{k} M \subseteq N$ and we are done. If $\frac{\hat{a}_{i} m}{1} \in S^{-1} N$ for some $1 \leq i \leq n$, then there exists $t \in S$ such that $t \hat{a_{i}} m \in N$ for some $1 \leq i \leq n$, which gives that $\hat{a_{i}} m \in N$ for some $1 \leq i \leq n$. Hence N is an n-absorbing primary submodule of M.

References

[1] Anderson, D. F., Badawi, A. On n-absorbing ideals of commutative rings, Commun. Algebra 39(5), 16461672 (2011).
[2] Atiyah, M. F.; Macdonald, I. G. Introduction to Commutative Algebra, Levant Books (2007).
[3] Azizi, A. On prime and weakly prime submodules, Vietnam Journal of mathematics, Vol. 36, No. 3 pp. 315-325 (2008).
[4] Badawi, A. On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc. 75(3), 417-429 (2007).
[5] Badawi, A.; Tekir, U.; and Yetkin, E. On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51(4), 1163-1173 (2014).
[6] Becker, A. E. Results on n-absorbing ideals of commutative rings, M. S. thesis, University of WisconsinMilwaukee, Milwaukee, U. S. A. (2015).
[7] Darani, A.; Soheilnia, F. 2-Absorbing and Weakly 2-Absorbing Submodules, Thai Journal of Mathematics, Vol. 9, No. 3, pp. 577-584 (2011).
[8] Darani, A.; Soheilnia, F. On n-Absorbing Submodules, Math. Commun. Vol. 17, pp. 547-557 (2012).
[9] Dubey, M. K.; Aggarwal, P. On 2-absorbing primary submodules of modules over commutative ring with unity, Asian-European Journal of Mathematics, Vol. 8, No. 4 (2015).

Author information

Nilofer I. Shaikh, Department of Mathematics, University of Mumbai, Mumbai-400098, Maharashtra, India. E-mail: shaikhnilofer23@gmail.com

Rajendra P. Deore, Department of Mathematics, University of Mumbai, Mumbai-400098, Maharashtra, India. E-mail: rpdeore@gmail.com

Received: May 06, 2020
Accepted: October 17, 2020

