IDEALS OF TRANSITIVE BE-ALGEBRAS

M. Bala Prabhakar, S. Kalesha Vali and M. Sambasiva Rao

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 03G25.

Keywords and phrases: BE-algebra, filter, ideal, semi-ideal, congruence, homomorphism.

Abstract. The notion of ideals is introduced in transitive *BE*-algebras. Some characterization theorems of ideals of transitive *BE*-algebras are derived. The notion of semi-ideals is introduced and studied a relationship between semi-ideals and ideals. Properties of ideals are studied with the help of homomorphisms and congruences.

1 Introduction

The concept of BE-algebras was introduced and extensively studied by H.S. Kim and Y.H. Kim in [6]. The class of BE-algebras was introduced as a generalization of the class of BCK-algebras of K. Iseki and S. Tanaka [5]. Some properties of filters of BE-algebras were studied by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [7]. In [10], A. Walendziak discussed some relationships between congruence relations and normal filters of a BE-algebra. In [9], P. Sun investigated homomorphism theorems via dual ideals of BCK-algebras.

In this work, the notion of ideals is introduced in transitive *BE*-algebras as a generalization of special type of down sets in many algebraic structures. Some necessary and sufficient conditions are derived for a non-empty subsets of *BE*-algebras to become ideals. The concepts of semi-ideals and strong semi-ideals are introduced and then some relations among these sets of ideals are studied. Some properties of ideals are derived in terms of homomorphisms and congruences.

2 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [1], [2], [3], [6], [7] and [8] for the ready reference.

Definition 2.1. [6] An algebra (X, *, 1) of type (2, 0) is called a *BE*-algebra if it satisfies the following properties:

(1) x * x = 1, (2) x * 1 = 1, (3) 1 * x = x, (4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

A *BE*-algebra X is called *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A *BE*-algebra X is called *transitive* if $y * z \le (x * y) * (x * z)$ for all $x, y, z \in X$. Every self-distributive *BE*-algebra is transitive. A *BE*-algebra X is called *commutative* if (x * y) * y = (y * x) * x for all $x, y \in X$. We introduce a relation \le on X by $x \le y$ if and only if x * y = 1 for all $x, y \in X$. If X is commutative, then the relation \le is a partial ordering on X.

Theorem 2.2. [7] Let X be a transitive BE-algebra and $x, y, z \in X$. Then

- (1) $1 \le x$ implies x = 1,
- (2) $y \leq z$ implies $x * y \leq x * z$.

Definition 2.3. [6] A non-empty subset F of a *BE*-algebra X is called a filter of X if, for all $x, y \in X$, it satisfies the following properties:

- (1) $1 \in F$,
- (2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

A *BE*-algebra X is called bounded [3], if there exists an element 0 satisfying $0 \le x$ (or 0 * x = 1) for all $x \in X$. Define an unary operation N on a bounded *BE*-algebra X by xN = x * 0 for all $x \in X$.

Theorem 2.4. [3] Let X be a transitive BE-algebra and $x, y \in X$. Then

- (1) 1N = 0 and 0N = 1,
- (2) $x \leq xNN$,
- $(3) \quad x * yN = y * xN.$

An element x of a bounded BE-algebra X is called *dense* [8] if xN = 0 and $\mathcal{D}(X)$ denotes the class of all dense elements of the BE-algebra X. Let X and Y be two bounded BE-algebras, then a homomorphism $f : X \to Y$ is called bounded [2] if f(0) = 0. If f is a bounded homomorphism, then it is easily observed that f(xN) = f(x)N for all $x \in X$.

Definition 2.5. [2] An element x of a bounded BE-algebra X is called an *involutory element* if xNN = x. If every element of a BE-algebra X is involutory, then X is called an *involutory*.

3 Ideals of Transitive BE-algebras

In this section, some properties of ideals of transitive BE-algebras are studied. Some characterization theorems of ideals are derived. The notions of semi-ideals and strong semi-ideals are introduced and obtained the relationship among the classes of ideals, semi-ideals and strong semi-ideals.

Definition 3.1. A non-empty subset *I* of a *BE*-algebra *X* is called an *ideal* of *X* if it satisfies the following conditions for all $x, y \in X$:

(I1) $0 \in I$, (I2) $x \in I$ and $(xN * yN)N \in I$ imply that $y \in I$.

Obviously the single-ton set $\{0\}$ is an ideal of a *BE*-algebra *X*. For, suppose $x \in \{0\}$ and $(xN * yN)N \in \{0\}$ for $x, y \in X$. Then x = 0 and $yNN = (0N * yN)N \in \{0\}$. Hence $y \leq yNN = 0 \in \{0\}$. Thus $\{0\}$ is an ideal of *X*. In the following example, we observe non-trivial ideals of a *BE*-algebra.

Example 3.2. Let $X = \{1, a, b, c, d, 0\}$. Define an operation * on X as follows:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1 1 1 1 1 1	1	1	1	1	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra. It can be easily verified that the set $I = \{0, c, d\}$ is an ideal of X. However, the set $J = \{0, a, b, d\}$ is not an ideal of X, because of $a \in J$ and $(aN * cN)N = (d * b)N = aN = d \in J$ but $c \notin J$.

Some properties of ideals of transitive BE-algebras are now observed. Here after, by a BE-algebra X we mean a bounded BE-algebra (X, *, 0, 1) unless and otherwise mentioned. In the following lemma, we fist observe a few essential properties of transitive BE-algebras.

Lemma 3.3. Let X be a transitive BE-algebra. For any $x, y \in X$, we have

(1) $xNNN \leq xN$,

(2) $x * y \le yN * xN$,

(3) $x * yN \le xNN * yN$,

- (4) $(x * yNN)NN \le x * yNN$,
- (5) $(xN*yN)NN \le xN*yN$.

Proof. (1). Let $x \in X$. Then $1 = (x*0)*(x*0) = x*((x*0)*0) = x*xNN \le x*xNNN = xNNN * xN$. Hence xNNN * xN = 1, which gives $xNNN \le xN$. (2). Let $x, y \in X$. Since X is transitive, we get $yN = y*0 \le (x*y)*(x*0) = (x*y)*xN$. Hence

(2). Let $x, y \in X$. Since X is transitive, we get $yN = y*0 \leq (x*y)*(x*0) = (x*y)*xN$. Thence $1 = yN*yN \leq yN*((x*y)*xN) = (x*y)*(yN*xN)$. Thus, we get (x*y)*(yN*xN) = 1. Therefore $x*y \leq yN*xN$.

(3). Let $x, y \in X$. Then, we get $x * yN = y * xN \le y * xNNN = xNN * yN$.

(4). Let $x, y \in X$. Clearly $(x * yNN)N \leq (x * yNN)NNN$. Since X is transitive, we get $yN * (x * yNN)N \leq yN * (x * yNN)NNN$ and so $x * (yN * (x * yNN)N) \leq x * (yN * (x * yNN)N)$. Hence, we get

$$1 = (x * yNN) * (x * yNN)$$

= $x * ((x * yNN) * yNN)$
= $x * (yN * (x * yNN)N)$
 $\leq x * (yN * (x * yNN)NNN)$
= $x * ((x * yNN)NN * yNN)$
= $(x * yNN)NN * (x * yNN)$

Thus (x * yNN)NN * (x * yNN) = 1. Therefore $(x * yNN)NN \le (x * yNN)$. (5). Form (4), it can be easily verified.

Proposition 3.4. Let I be an ideal of a transitive BE-algebra X. Then we have

- (1) For any $x, y \in X, x \in I$ and $y \leq x$ imply $y \in I$,
- (2) For any $x, y \in X, xN = yN, x \in I$ imply $y \in I$,
- (3) For any $x \in X, x \in I$ if and only if $xNN \in I$,
- (4) $I \cap \mathcal{D}(X) \neq \emptyset$ if and only if I = X.

Proof. (1). Let $x, y \in X$. Suppose $x \in I$ and $y \leq x$. Then $xN \leq yN$, which implies xN * yN = 1. Hence $(xN * yN)N = 0 \in I$. Since $x \in I$, we get $y \in I$.

(2). Let $x, y \in X$. Assume that xN = yN. Suppose $x \in I$. Then we get $(xN * yN)N = 1N = 0 \in I$. Since I is an ideal of X, we get $y \in I$.

(3). Let $x \in X$. Suppose $x \in I$. Then we get $(xN * xNNN)N = (xNN * xNN)N = 1N = 0 \in I$. Since $x \in I$, it yields $xNN \in I$. Conversely, let $xNN \in I$ for any $x \in X$. Since $x \leq xNN$, by property (1) we get that $x \in I$.

(4). Assume that $I \cap \mathcal{D}(X) \neq \emptyset$. Let $x \in I \cap \mathcal{D}(X)$. Then by condition (2), we get that xN = 0 and $1 = xNN \in I$. Hence by (1), we get that I = X. Conversely, assume that I = X. Therefore $1 \in I$ and so $I \cap \mathcal{D}(X) \neq \emptyset$.

Some equivalent condition are now derived for every non-empty subset of a transitive BE-algebra to become an ideal. For this purpose, we observe the essential properties of the relation \leq of bounded and transitive BE-algebras.

Lemma 3.5. Let X be a transitive BE-algebra X. For any $x, y, z \in X$, we have

- (1) $x \leq y$ implies $yN \leq xN$,
- (2) $x \le y$ implies $y * zN \le x * zN$.

Proof. (1). Let $x, y \in X$ be such that $x \leq y$. Then by Lemma 3.3(2), we get $1 = x * y \leq yN * xN$. Hence yN * xN = 1. Therefore $yN \leq xN$.

(2). Let $x, y \in X$ be such that $x \leq y$. Then by (1), we get $yN \leq xN$. Since X is transitive, we get $z * yN \leq z * xN$. Therefore $y * zN \leq x * zN$.

Theorem 3.6. Let X be a transitive BE-algebra and $\emptyset \neq I \subseteq X$. Then I is an ideal of X if and only if it satisfies the following property:

$$xN \leq yN * zN$$
 implies that $z \in I$ for all $x, y \in I$ and $z \in X$.

Proof. Assume that I is an ideal of X. Let $x, y \in I$ and $z \in X$. Suppose $xN \leq yN * zN$. Then $xN \leq yN * zN \leq (yN * zN)NN$ and hence $(xN * (yN * zN)NN)N = 1N = 0 \in I$. Since $x \in I$ and I is an ideal of X, we get that $(yN * zN)N \in I$. Since $y \in I$, it yields that $z \in I$.

Conversely, assume that I satisfies the given condition. Since $I \neq \emptyset$, choose $x \in I$. Clearly $xN \leq 1 = xN * 0N$. Then by the given condition, we get $0 \in I$. Let $x, y \in X$ be such that $x \in I$ and $(xN * yN)N \in I$. By Lemma 3.3(5), we get $(xN * yN)NN \leq xN * yN$. Now, by Lemma 3.5(2), we get

$$(xN * yN) * yN \le (xN * yN)NN * yN.$$

Since X is transitive, the above consequence gives rise to

1 = (xN * yN) * (xN * yN)= xN * ((xN * yN) * yN) $\leq xN * ((xN * yN)NN * yN).$

Hence, we get $xN \le (xN * yN)NN * yN$. Since $x \in I$ and $(xN * yN)N \in I$, from the assumed condition, it gives $y \in I$. Therefore I is an ideal of X.

Theorem 3.7. Let I be a non-empty subset of a transitive BE-algebra X. Then I is an ideal of X if and only if it satisfies the following condition for all $x \in X$:

for all
$$a, b \in I$$
, $(aN * (bN * xN)NN)N = 0$ implies $x \in I$

Proof. Let $\emptyset \neq I \subseteq X$. Assume that I is an ideal of X. Let $a, b \in I$. Suppose $(aN * (bN * xN)NN)N = 0 \in I$. Since $a \in I$ and I is an ideal of X, we get that $(bN * xN)N \in I$. Since $b \in I$, we get that $x \in I$.

Conversely, assume that I satisfies the above condition. For any $x \in I$, we have (xN * (xN * 0N)NN)N = (xN * (xN * 1)NN)N = (xN * 1NN)N = 1N = 0. Hence by the given condition, we get $0 \in I$. Let $x, y \in X$. Suppose $x \in I$ and $(xN * yN)N \in I$. By Lemma 3.3(5), we get $(xN * yN)NN \leq xN * yN$. Now, Lemma 3.5(2), provides

$$(xN * yN) * yN \le (xN * yN)NN * yN.$$

Using Lemma 3.5(1) and the transitivity of X, we get the following consequence:

$$(xN*((xN*yN)NN*yN))N \leq (xN*((xN*yN)*yN))N$$
$$= ((xN*yN)*(xN*yN))N$$
$$= 1N$$
$$= 0$$

which means (xN * ((xN * yN)NN * yN))N = 0. Since $x \in I$ and $(xN * yN)N \in I$, by the assumed condition, we get $y \in I$. Therefore I is an ideal of X.

In [2], R. Borzooei and A.B. Saeid extensively studied the properties of involutory BE-algebras. For any x, y of an involutory BE-algebra, they proved that x * y = yN * xN. Hence the following proposition is straightforward:

Proposition 3.8. Let X be a transitive and involutory BE-algebra and $\emptyset \neq I \subseteq X$. Then I is an ideal of X if and only if it satisfies the following conditions:

- $(1) \ 0 \in I,$
- (2) for $x, y \in X$, $x \in I$ and $(y * x)N \in I$ imply $y \in I$.

In the following, the notion of semi-ideals is introduced in *BE*-algebras.

Definition 3.9. Let X be a *BE*-algebra and $\emptyset \neq I \subseteq X$. Then I is said to be a *semi-ideal* of X if it satisfies the following properties, for all $x \in X$:

(SI1) $0 \in I$, (SI2) $xNN \in I$ implies $x \in I$.

Clearly every ideal of a transitive BE-algebra is a semi-ideal but not the converse. If X is an involutory BE-algebra, then it is also observed that every subset containing 0 is a semi-ideal of X.

Example 3.10. Let $X = \{1, a, b, 0\}$. Define an operation * on X as follows:

*	1	a	b	0
1	1	a	b	0
a	1	1	1	a
b	1	a	1	0
0	1	1	1	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra. It can be easily verified that the set $I = \{0, a\}$ is a semi-ideal of X. I is not an ideal of X, because of $a \in I$ and $(aN * bN)N = (a * 0)N = aNN = a \in I$ but $b \notin I$.

Definition 3.11. Let X be a *BE*-algebra and $\emptyset \neq I \subseteq X$. Then I is said to be a strong semi-ideal of X if it satisfies the following properties:

(SI3)
$$0 \in I$$
,
(SI4) $x \in I$ implies $(yN * xN)N \in I$ for all $x, y \in X$.

Proposition 3.12. Every ideal of a transitive BE-algebra is a strong semi-ideal.

Proof. Let I be an ideal of a transitive BE-algebra X. Let $x, y \in X$. Suppose $x \in I$. Clearly $yN * xN \le (yN * xN)NN$. Then by Lemma 3.5(1), we get

$$(xN * (yN * xN)NN)N \leq (xN * (yN * xN))N$$
$$= (yN * (xN * xN))N$$
$$= (yN * 1)N$$
$$= 1N$$
$$= 0$$

which concludes that $(xN * (yN * xN)NN)N = 0 \in I$. Since $x \in I$ and I is an ideal of X, we get $(yN * xN)N \in I$. Therefore I is a strong semi-ideal of X.

Example 3.13. In the bounded *BE*-algebra given in Example 3.2, it is easy to check that the set $J = \{0, a, b, d\}$ is a strong semi-ideal of *X*. But *J* is not an ideal of *X*, because of $a \in J$ and $(aN * cN)N = d \in J$ but $c \notin J$.

Theorem 3.14. A semi-ideal I of a transitive BE-algebra X is an ideal of X if and only if it satisfies the following properties:

(1) $x \in I$ implies $(yN * xN)N \in I$,

(2) $x \in I$ and $y \leq x$ imply $y \in I$,

(3) $a, b \in I$ implies $((aN * (bN * xN)) * xN)N \in I$

for all $x, y \in X$.

Proof. Let *I* be a semi-ideal of *X*. Assume that *I* is an ideal of *X*. Let $x \in I$ and $y \in X$. Clearly $yN * xN \le (yN * xN)NN$. Then by Lemma 3.5(1), we get that $(xN * (yN * xN)NN)N \le (xN * (yN * xN))N = (yN * (xN * xN))N = (yN * 1)N = 1N = 0 \in I$. Hence $(xN * (yN * xN)NN)N \in I$. Since $x \in I$, we get $(yN * xN)N \in I$. Condition (2) is obtained by

Proposition 3.4(1). Let $a, b \in I$. Then by putting bN * xN = t, we get

$$\begin{aligned} (aN*((aN*tNN)NN*tNN)NN) &\leq & (aN*((aN*tNN)NN*tNN))N\\ &\leq & (aN*((aN*tNN)*tNN))N\\ &= & ((aN*tNN)*(aN*tNN))N\\ &= & 1N\\ &= & 0 \end{aligned}$$

which yields $(aN * ((aN * tNN)NN * tNN)NN)N = 0 \in I$. Since $a \in I$, we get $((aN * tNN)NN * tNN)N \in I$. By Lemma 3.3(5) and Lemma 3.5(1), we get

$$(bN * ((aN * tNN)NN * xN)NN)N \leq (bN * ((aN * tNN)NN * xN))N$$

= $((aN * tNN)NN * (bN * xN))N$
 $\leq ((aN * tNN)NN * (bN * xN)NN)N$
= $((aN * tNN)NN * tNN)N \in I$

which gives $(bN * ((aN * tNN)NN * xN)NN)N \in I$. Since $b \in I$, we get $((aN * tNN)NN * xN)N \in I$. Now, we observe

$$((aN*t)*xN)N \leq ((aN*tNN)*xN)N \\ \leq ((aN*tNN)NN*xN)N \in I$$

which concludes that $((aN * (bN * xN)) * xN)N = ((aN * t) * xN)N \in I.$

Conversely, assume that I satisfies the given conditions. By taking x = y in the condition (1), it can be seen that $0 \in I$. Let $x, y \in X$. Suppose that $x \in I$ and $(xN * yN)N \in I$. Then we have the consequence condition (3):

because of since $x \in I$ and $(xN * yN)N \in I$. By condition (2), we obtain $yNN \in I$. Since I is a semi-ideal, it yields $y \in I$. Thus I is an ideal of X.

Corollary 3.15. A strong semi-ideal I of a transitive BE-algebra X is an ideal of X if and only if it satisfies the following conditions for any $x, y \in X$:

- (1) $x \in I$ and $y \leq x$ imply $y \in I$,
- (2) $a, b \in I$ implies $((aN * (bN * xN)) * xN)N \in I$.

Proposition 3.16. The set-theoretic intersection of ideals (strong semi-ideals) of a transitive BEalgebra is again an ideal (strong semi-ideal).

Proof. Let $\{I_{\alpha}\}_{\alpha \in \Delta}$ be a family of ideals of X. Clearly $0 \in I_{\alpha}$ for each $\alpha \in \Delta$. Hence $0 \in \bigcap_{\alpha \in \Delta} I_{\alpha}$. Let $x \in \bigcap_{\alpha \in \Delta} I_{\alpha}$ and $(xN * yN)N \in \bigcap_{\alpha \in \Delta} I_{\alpha}$. Then $x \in I_{\alpha}$ and $(xN * yN)N \in I_{\alpha}$ for each $\alpha \in \Delta$. Since each I_{α} is an ideal of X, we get $y \in I_{\alpha}$ for each $\alpha \in \Delta$. Hence $y \in \bigcap_{\alpha \in \Delta} I_{\alpha}$. Therefore $\bigcap_{\alpha \in \Delta} I_{\alpha}$ is an ideal of X. **Example 3.17.** Let $X = \{1, a, b, c, d, 0\}$. Define an operation * on X as follows:

*	1	a	b	c	d	0
1	1 1 1 1	a	b	c	d	0
a	1	1	b	c	d	b
b	1	a	1	c	c	a
c	1	1	b	1	b	d
d	1	1	1	1	1	c
0	1	1	1	1	1	1

Clearly (X, *, 0, 1) is a transitive *BE*-algebra. It is easy to check that $I_1 = \{0, a, b\}$ and $I_2 = \{0, b, d\}$ are ideals of X. The set $I = I_1 \cup I_2 = \{0, a, b, d\}$ is not an ideal of X, because of $a \in I$ and $(aN * cN)N = d \in I$ but $c \notin I$.

As a generalization of Proposition 3.16, we can derive that the set-theoretic union of ideals (semi-ideals) of a transitive *BE*-algebra is again an ideal (semi-ideal) when ever the family of ideals form a chain (totally ordered set).

A homomorphism $f : X \to Y$ of bounded *BE*-algebras is called *bounded* if f(0) = 0. If f is bounded, then f(xN) = f(x * 0) = f(x) * f(0) = f(x) * 0 = (f(x))N for all $x \in X$. For any bounded homomorphism $f : X \to Y$, define the *dual kernel* of the homomorphism f as $Dker(f) = \{x \in X \mid f(x) = 0\}$. It is easy to check that $Dker(f) = \{0\}$ whenever f is an injective homomorphism.

Lemma 3.18. Let X and Y be two bounded BE-algebras. For any bounded homomorphism $f: X \to Y$, the dual kernel is an ideal of X.

Proof. Clearly $0 \in Dker(f)$. Let $x \in Dker(f)$ and $(xN * yN)N \in Dker(f)$. Then f(x) = 0 and (f(x)N * f(y)N)N = f((xN * yN))N = 0. Thus f(y)NN = 0 and so $f(y) \leq f(yNN) = f(y)NN = 0$. Hence f(y) = 0 and so $y \in Dker(f)$. Therefore Dker(f) is an ideal of X. \Box

Proposition 3.19. Let X and Y be two BE-algebras and $f : X \to Y$ a bounded homomorphism. Then $f^{-1}(I)$ is an ideal of X for any ideal I of Y.

Proof. Let $f: X \to Y$ be a bounded homomorphism. Suppose I is an ideal of Y. Let $x, y \in X$ be such that $x \in f^{-1}(I)$ and $(xN * yN)N \in f^{-1}(I)$. Then $f(x) \in I$ and $(f(x)N * f(y)N)N = f((xN * yN)N) \in I$. Since $f(x) \in I$ and I is an ideal, we get $f(y) \in I$. Hence $y \in f^{-1}(I)$. Thus $f^{-1}(I)$ is an ideal of X.

For any filter F of a self-distributive BE-algebra X, it was observed in [11] that θ_F defined by $(x, y) \in \theta_F \Leftrightarrow x * y \in F$ and $y * x \in F$ is the unique congruence whose kernel is F. If X is bounded, then the quotient algebra $X/F = \{F_x \mid x \in X\}$ (where F_x is the congruence class of x) is also a bounded BE-algebra with smallest element F_0 in which $F_x * F_y = F_{x*y}$ and $(F_x)N = F_{xN}$ for all $x, y \in X$.

Proposition 3.20. For any filter F of a self-distributive BE-algebra X, the congruence class F_0 is an ideal of X.

Proof. Let *F* be a filter of *X*. Since *X* is self-distributive, θ_F is a congruence on *X*. Clearly $0 \in F_0$. Let $x \in F_0$ and $(xN * yN)N \in F_0$. Hence $xN = x * 0 \in F$ and $(xN * yN)NN = (xN * yN)N * 0 \in F$. Since $(xN * yN)NN \leq xN * yN$, we get $xN * yN \in F$. Since $xN \in F$, we get $y * 0 = yN \in F$. Since $0 * y = 1 \in F$, we get $(y, 0) \in \theta_F$. Hence $y \in F_0$. Therefore F_0 is an ideal of *X*.

4 Homomorphism theorems

In this section, we introduced a congruence on *BE*-algebras with the help of ideals. Some homomorphism theorems are derived with the help of these congruences, ideal and cartesian products of quotient algebras.

Definition 4.1. Let *I* be an ideal of a *BE*-algebra *X*. For any $x, y \in X$, define a relation θ_I on *X* as follows:

$$(x, y) \in \theta_I$$
 if and only if $(x * y)N \in I$ and $(y * x)N \in I$.

Proposition 4.2. If X is a transitive BE-algebra and I an ideal of X, then the above relation θ_I is an equivalence relation on X.

Proof. Clearly θ_I is reflexive and symmetric. Let $(x, y), (y, z) \in \theta_I$. Then $(x * y)N \in I, (y * x)N \in I$ and $(y * z)N \in I, (z * y)N \in I$. By Lemma 3.3(2), we get

$$y * z \le (x * y) * (x * z) \le (x * y)NN * (x * z)NN$$

Hence $((x*y)NN*(x*z)NN)N \leq (y*z)N$. Since $(y*z)N \in I$, we get that $((x*y)NN*(x*z)NN)N \in I$. Since $(x*y)N \in I$, we get $(x*z)N \in I$. Similarly, we can obtain $(z*x)N \in I$. Hence $(x, z) \in \theta_I$. Therefore θ_I is an equivalence relation on X.

Theorem 4.3. If X is a transitive BE-algebra and I an ideal of X, then the above relation θ_I is a congruence on X. Moreover θ_I is a unique congruence such that $I_0 = I$, where I_0 is the congruence class of 0 with respect to θ_I .

Proof. Let $(x, y) \in \theta_I$ and $(u, v) \in \theta_I$. Then $(x * y)N \in I, (y * x)N \in I, (u * v)N \in I$ and $(v * u)N \in I$. Since X is transitive, we get $x * y \leq (u * x) * (u * y)$ and so $((u * x) * (u * y))N \leq (x * y)N$. Since $(x * y)N \in I$, we get $((u * x) * (u * y))N \in I$. Similarly, we can get $((u*y)*(u*x))N \in I$ because of $(y*x)N \in I$. Hence both together provide us $(u*x, u*y) \in \theta_I$. Again, since X is transitive, we get $v * y \leq (u * v) * (u * y)$. Thus we get the following:

$$u * v \le (v * y) * (u * y) \le ((v * y) * (u * y))NN$$

Hence $((v*y)*(u*y))N \leq (u*v)N$. Since $(u*v)N \in I$, we get $((v*y)*(u*y))N \in I$. Similarly, we can obtain $((u*y)*(v*y))N \in I$ because of $(v*u)N \in I$. Thus we get $(u*y, v*y) \in \theta_I$. Therefore θ_I is a congruence on X. Now, let $x \in I_0$. Then $xNN = (x*0)N \in I$. Since $x \leq xNN$, we get $x \in I$. Therefore $I_0 \subseteq I$. Again, let $x \in I$. Then $(x*0)N = xNN \in I$. Clearly $(0*x)N = 1N = 0 \in I$. Hence $(x,0) \in \theta_I$, which implies $x \in I_0$. Thus $I \subseteq I_0$. Therefore $I_0 = I$.

From the above result, it is easy to see that the quotient algebra $X/I = \{I_x \mid x \in X\}$ (where I_x is the congruence class of x modulo θ_I) is a bounded *BE*-algebra in which the binary operation * is defined as $I_x * I_y = I_{x*y}$ for $x, y \in X$. Moreover, the quotient algebra X/I contains the smallest element I_0 . For any ideal I of a transitive *BE*-algebra X, it is natural to obtain the epimorphism $\nu : X \to X/I$ given by $\nu(x) = I_x$.

Theorem 4.4. The following are equivalent in a commutative BE-algebra.

- (1) X has a unique dense element;
- (2) for $x, y \in X$, (x * y)N = 0 and (y * x)N = 0 imply that x = y;
- (3) X isomorphic to $X/\theta_{\{0\}}$.

Proof. (1) \Rightarrow (2): Assume that X has a unique dense element, precisely 1. Then $\mathcal{D}(X) = \{1\}$. Let $x, y \in X$. Suppose that (x * y)N = 0 and (y * x)N = 0. Then, we get $x * y \in \mathcal{D}(X) = \{1\}$ and $y * x \in \mathcal{D}(X) = \{1\}$. Hence $x \leq y$ and $y \leq x$. Since X is commutative, it concludes that x = y.

 $(2) \Rightarrow (3)$: Assume that the condition (2) holds. We know that the natural map $\nu : X \to X/\theta_{\{0\}}$ defined by $\nu(x) = \{0\}_x$, for all $x \in X$, is an epimorphism. Let $\nu(x) = \nu(y)$ for $x, y \in X$. Then $\{0\}_x = \{0\}_y$. Thus, it immediately infers that $(x * y)N \in \{0\}$ and $(y * x)N \in \{0\}$. Hence by condition (2), we get x = y. Therefore ν is an injective and so X is isomorphic to $X/\theta_{\{0\}}$.

 $(3) \Rightarrow (1)$: Assume that X is isomorphic to $X/\theta_{\{0\}}$. Let $a \neq 1$ and $a \in \mathcal{D}(X)$. Then we get $(1 * a)N = aN = 0 \in \{0\}$ and $(a * 1)N = 1N = 0 \in \{0\}$. Hence $(a, 1) \in \theta_{\{0\}}$, which implies $\nu(a) = \{0\}_a = \{0\}_1 = \nu(1)$. Since ν is injective, we get a = 1, which is a contradiction. Therefor X has a unique dense element.

Theorem 4.5. Let X be a transitive BE-algebra and I is an ideal of X. Then the quotient algebra X/θ_I contains an unique dense element.

Proof. Since X is transitive, it is cleared that X/θ_I is a transitive *BE*-algebra. Always I_1 is a dense element of X/θ_I . For $1 \neq x \in X$, suppose $I_{xN} = (I_x)N = I_0$. Then $(xN, 0) \in \theta_I$. Hence $xN \leq xNNN = (0N * xNN)N \in I$. Thus $(1 * x)N \in I$ and $(x * 1)N \in I$. Hence $(1, x) \in \theta_I$, which implies that $I_x = I_1$. Therefore I_1 is the unique dense element of X/θ_I .

Theorem 4.6. Let I, J be two ideals of a transitive BE-algebra X. Then

$$I \lor J = \{x \in X \mid aN * (bN * xN) = 1 \text{ for some } a \in I \text{ and } b \in J \}$$

is the smallest ideal of X which is containing both I and J.

Proof. Clearly, $0 \in I \lor J$. Let $x \in I \lor J$ and $(xN * yN)N \in I \lor J$. Then there exists $a, c \in I$ and $b, d \in J$ such that aN * (bN * xN) = 1 and cN * (dN * (xN * yN)NN) = 1. Then by Lemma 3.3(4), we deduce that

$$1 = cN * (dN * (xN * yN)NN) \le cN * (dN * (xN * yN)) = xN * (cN * (dN * yN)).$$

Hence $xN \leq cN * (dN * yN)$. Since X is transitive, we get

$$1 = aN * (bN * xN) \le aN * (bN * (cN * (dN * yN))) = aN * (cN * (bN * (dN * yN))).$$

Hence aN * (cN * (bN * (dN * yN))) = 1. Thus by Lemma 3.3(4), we get

$$(aN * (cN * (bN * (dN * yN)NN)NN)NN) \leq (aN * (cN * (bN * (dN * yN))))N$$
$$= 1N$$
$$= 0 \in I$$

Hence $(aN * (cN * (bN * (dN * yN)NN)NN)N \in I$ where $a, c \in I$ and $b, d \in J$. Since $a, c \in I$, we get $(bN * (dN * yN)NN)N \in I$. Put f = (bN * (dN * yN)NN)N. Then fN = (bN * (dN * yN)NN)NN. By Lemma 3.3(5), we have

$$fN = (bN * (dN * yN)NN)NN \le bN * (dN * yN)NN \le bN * (dN * yN).$$

Hence bN * (dN * (fN * yN)) = fN * (bN * (dN * yN)) = 1. Thus, we get

$$(bN * (dN * (fN * yN)))N = 0 \in J.$$

Hence $(bN * (dN * (fN * yN)NN)NN)N \le (bN * (dN * (fN * yN)))N \in J$. Since $b, d \in J$, we get $(fN * yN)N \in J$. Put g = (fN * yN)N. Then $gN = (fN * yN)NN \le fN * yN$. Hence

$$1 = (fN * yN) * (fN * yN) \le gN * (fN * yN) = fN * (gN * yN)$$

Since $f \in I, g \in J$, we get $y \in I \lor J$. Therefore $I \lor J$ is an ideal of X. Let $x \in I$. Clearly xN * (0N * xN) = xN * xN = 1. Since $0 \in J$, we get $x \in I \lor J$. Hence $I \subseteq I \lor J$. Similarly, we get $J \subseteq I \lor J$.

Let K be an ideal of X such that $I \subseteq K$ and $J \subseteq K$. Let $x \in I \lor J$. Then there exists $a \in I \subseteq K$ and $b \in J \subseteq K$ such that aN * (bN * xN) = 1. Hence aN * (bN * xN)NN = 1, which implies $(aN * (bN * xN)NN)N = 0 \in K$. Since $a \in K$, we get $(bN * xN)N \in K$. Since $b \in K$, we get $x \in K$. Hence $I \lor J \subseteq K$. Therefore $I \lor J$ is the smallest ideal which contains both I and J.

Since the intersection of ideals is again an ideal, the following is direct:

Corollary 4.7. For any transitive BE-algebra X, the set $\mathcal{I}(X)$ of all ideals of X forms a complete lattice.

Theorem 4.8. Let I and J be two ideals of a transitive BE-algebra X. Then the mapping $f : X \to (X/I) \times (X/J)$ defined by $f(x) = (I_x, J_x)$ for all $x \in X$ is a homomorphism. Moreover, the following hold:

- (1) If f is injective, then $I \cap J = \{0\}$,
- (2) If f is surjective, then $I \lor J = X$.

Proof. Clearly f is well-defined. Let $x, y \in X$. Then $f(x * y) = (I_{x*y}, J_{x*y}) = (I_x * I_y, J_x * J_y) = (I_x, J_x) * (I_y, J_y) = f(x) * f(y)$. Therefore f is a homomorphism. (1). Suppose f is injective. Then clearly $Dker f = \{0\}$. Now

$$\begin{aligned} x \in Dker(f) &\Leftrightarrow f(x) = \overline{0}, \text{ the smallest element in } (X/I) \times (X/J) \\ &\Leftrightarrow (I_x, J_x) = (I_0, J_0) \\ &\Leftrightarrow I_x = I_0 \text{ and } J_x = J_0 \\ &\Leftrightarrow xNN \in I \text{ and } xNN \in J \\ &\Leftrightarrow x \in I \text{ and } x \in J \qquad \text{since } x \leq xNN \\ &\Leftrightarrow x \in I \cap J \end{aligned}$$

Thus $Dker(f) = I \cap J$. Therefore $I \cap J = \{0\}$ whenever f is injective. (2). Assume that f is surjective. Clearly $(I_0, J_1) \in (X/I) \times (X/J)$. Since f is surjective, there exists $x \in X$ such that $f(x) = (I_0, J_1)$. Hence

$$f(x) = (I_0, J_1) \quad \Leftrightarrow \quad (I_x, J_x) = (I_0, J_1)$$
$$\Leftrightarrow \quad I_x = I_0 \text{ and } J_x = J_1$$
$$\Leftrightarrow \quad xNN \in I \text{ and } xN \in J$$
$$\Leftrightarrow \quad x \in I \text{ and } xN \in J$$

Clearly xN * (xNN * 1N) = xN * xNNN = 1. Since $x \in I$ and $xN \in J$, it imply that $1 \in I \lor J$. Therefore $I \lor J = X$ whenever f is surjective.

The following is an extension of the above theorem.

n

Corollary 4.9. Let I^i , i = 1, 2, 3, ..., n be the ideals of a transitive BE-algebra X. Then the mapping $f : X \to (X/I^1) \times (X/I^2) \times (X/I^3) \times \cdots \times (X/I^n)$ defined by $f(x) = (I_x^1, I_x^2, I_x^3, ..., I_x^n)$ for all $x \in X$ is a homomorphism. Moreover,

(1) If f is injective, then
$$\bigcap_{i=1}^{n} I^i = \{0\}$$

(2) If f is surjective, then $I^i \vee I^j = X$ for $i \neq j$.

References

- S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative *BE*-algebras, *Commun. Korean. Math. Soc.*, 27, no.2, 233–242 (2012).
- [2] R. Borzooei and A.B. Saeid, Involutory BE algebras, Journal of Mathematics and App., 37, 13–26 (2014).
- [3] Z. Ciloglu and Y. Ceven, Commutative and bounded *BE*-algebras, *Algebra*, Volume 2013, Article ID 473714, 5 pages (2013).
- [4] J. Gispert and A. Torrens, Boolean representation of bounded BCK-algebras, Soft Comput., 12, 941–954 (2008).
- [5] K. Iseki and S. Tanaka, An introduction to the theory of *BCK*-algebras, *Math. Japon.*, 23, no.1, 1–26 (1979).
- [6] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn., 66, no.1, 1299–1302 (2006).
- [7] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon, Online, 105-111, e-2010.
- [8] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome, 53(101), no. 1, 11–24 (2010).
- [9] P. Sun, Homomorphism theorems on dual ideals in BCK-algebras, Soo. J. Math., 26, no.3, 309–316 (2000).
- [10] A. Walendziak, On normal filters and congruence relations in *BE*-algebras, *Commentationes Mathematicae*, 52, 199–205 (2012).
- [11] Y.H. Yon, S.M. Lee and K.H. Kim, On congruences and *BE*-relations in *BE*-algebras, *Int. Math. Forum*, 5, no.46, 2263–2270 (2010).

Author information

M. Bala Prabhakar, Department of Mathematics, Aditya Engineering College, Surampalem, East Godavari, Andhra Pradesh, 533 437, India. E-mail: prabhakar_mb@yahoo.co.in

S. Kalesha Vali, Department of Mathematics, JNTUK University College of Engineering, Vizianagaram, Andhra Pradesh, 535 003, India. E-mail: valijntuv@gmail.com

M. Sambasiva Rao, Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, 535 005, India. E-mail: mssraomaths35@rediffmail.com

Received: August 15, 2020 Accepted: December 29, 2020