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Abstract. The notion of ideals is introduced in transitive BE-algebras. Some characteri-
zation theorems of ideals of transitive BE-algebras are derived. The notion of semi-ideals is
introduced and studied a relationship between semi-ideals and ideals. Properties of ideals are
studied with the help of homomorphisms and congruences.

1 Introduction

The concept of BE-algebras was introduced and extensively studied by H.S. Kim and Y.H.
Kim in [6]. The class of BE-algebras was introduced as a generalization of the class of BCK-
algebras of K. Iseki and S. Tanaka [5]. Some properties of filters of BE-algebras were studied
by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [7]. In [10], A. Walendziak discussed
some relationships between congruence relations and normal filters of a BE-algebra. In [9], P.
Sun investigated homomorphism theorems via dual ideals of BCK-algebras.

In this work, the notion of ideals is introduced in transitive BE-algebras as a generalization of
special type of down sets in many algebraic structures. Some necessary and sufficient conditions
are derived for a non-empty subsets of BE-algebras to become ideals. The concepts of semi-
ideals and strong semi-ideals are introduced and then some relations among these sets of ideals
are studied. Some properties of ideals are derived in terms of homomorphisms and congruences.

2 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the
papers [1], [2], [3], [6], [7]and [8] for the ready reference.

Definition 2.1. [6] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if it satisfies the
following properties:

(1) x ∗ x = 1,
(2) x ∗ 1 = 1,
(3) 1 ∗ x = x,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X .

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X .
A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X . Every
self-distributive BE-algebra is transitive. A BE-algebra X is called commutative if (x∗y)∗y =
(y ∗ x) ∗ x for all x, y ∈ X . We introduce a relation ≤ on X by x ≤ y if and only if x ∗ y = 1 for
all x, y ∈ X . If X is commutative, then the relation ≤ is a partial ordering on X .

Theorem 2.2. [7] Let X be a transitive BE-algebra and x, y, z ∈ X . Then

(1) 1 ≤ x implies x = 1,
(2) y ≤ z implies x ∗ y ≤ x ∗ z.

Definition 2.3. [6] A non-empty subset F of a BE-algebra X is called a filter of X if, for all
x, y ∈ X , it satisfies the following properties:
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(1) 1 ∈ F ,
(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

A BE-algebra X is called bounded [3], if there exists an element 0 satisfying 0 ≤ x (or
0 ∗ x = 1) for all x ∈ X . Define an unary operation N on a bounded BE-algebra X by
xN = x ∗ 0 for all x ∈ X .

Theorem 2.4. [3] Let X be a transitive BE-algebra and x, y ∈ X . Then

(1) 1N = 0 and 0N = 1,
(2) x ≤ xNN ,
(3) x ∗ yN = y ∗ xN .

An element x of a bounded BE-algebra X is called dense [8] if xN = 0 and D(X) denotes
the class of all dense elements of theBE-algebraX . LetX and Y be two boundedBE-algebras,
then a homomorphism f : X → Y is called bounded [2] if f(0) = 0. If f is a bounded
homomorphism, then it is easily observed that f(xN) = f(x)N for all x ∈ X .

Definition 2.5. [2] An element x of a bounded BE-algebra X is called an involutory element if
xNN = x. If every element of a BE-algebra X is involutory, then X is called an involutory.

3 Ideals of Transitive BE-algebras

In this section, some properties of ideals of transitive BE-algebras are studied. Some charac-
terization theorems of ideals are derived. The notions of semi-ideals and strong semi-ideals are
introduced and obtained the relationship among the classes of ideals, semi-ideals and strong
semi-ideals.

Definition 3.1. A non-empty subset I of a BE-algebra X is called an ideal of X if it satisfies
the following conditions for all x, y ∈ X:

(I1) 0 ∈ I ,
(I2) x ∈ I and (xN ∗ yN)N ∈ I imply that y ∈ I .

Obviously the single-ton set {0} is an ideal of a BE-algebra X . For, suppose x ∈ {0} and
(xN ∗ yN)N ∈ {0} for x, y ∈ X . Then x = 0 and yNN = (0N ∗ yN)N ∈ {0}. Hence
y ≤ yNN = 0 ∈ {0}. Thus {0} is an ideal of X . In the following example, we observe
non-trivial ideals of a BE-algebra.

Example 3.2. Let X = {1, a, b, c, d, 0}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that the set I = {0, c, d}
is an ideal of X . However, the set J = {0, a, b, d} is not an ideal of X , because of a ∈ J and
(aN ∗ cN)N = (d ∗ b)N = aN = d ∈ J but c /∈ J .

Some properties of ideals of transitive BE-algebras are now observed. Here after, by a BE-
algebra X we mean a bounded BE-algebra (X, ∗, 0, 1) unless and otherwise mentioned.
In the following lemma, we fist observe a few essential properties of transitive BE-algebras.

Lemma 3.3. Let X be a transitive BE-algebra . For any x, y ∈ X , we have

(1) xNNN ≤ xN ,
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(2) x ∗ y ≤ yN ∗ xN ,
(3) x ∗ yN ≤ xNN ∗ yN ,
(4) (x ∗ yNN)NN ≤ x ∗ yNN ,
(5) (xN ∗ yN)NN ≤ xN ∗ yN .

Proof. (1). Let x ∈ X . Then 1 = (x∗0)∗(x∗0) = x∗((x∗0)∗0) = x∗xNN ≤ x∗xNNNN =
xNNN ∗ xN . Hence xNNN ∗ xN = 1, which gives xNNN ≤ xN .
(2). Let x, y ∈ X . SinceX is transitive, we get yN = y∗0 ≤ (x∗y)∗(x∗0) = (x∗y)∗xN . Hence
1 = yN ∗yN ≤ yN ∗((x∗y)∗xN) = (x∗y)∗(yN ∗xN). Thus, we get (x∗y)∗(yN ∗xN) = 1.
Therefore x ∗ y ≤ yN ∗ xN .
(3). Let x, y ∈ X . Then, we get x ∗ yN = y ∗ xN ≤ y ∗ xNNN = xNN ∗ yN .
(4). Let x, y ∈ X . Clearly (x ∗ yNN)N ≤ (x ∗ yNN)NNN . Since X is transitive, we get
yN ∗ (x ∗ yNN)N ≤ yN ∗ (x ∗ yNN)NNN and so x ∗ (yN ∗ (x ∗ yNN)N) ≤ x ∗ (yN ∗ (x ∗
yNN)NNN). Hence, we get

1 = (x ∗ yNN) ∗ (x ∗ yNN)

= x ∗ ((x ∗ yNN) ∗ yNN)

= x ∗ (yN ∗ (x ∗ yNN)N)

≤ x ∗ (yN ∗ (x ∗ yNN)NNN)

= x ∗ ((x ∗ yNN)NN ∗ yNN
= (x ∗ yNN)NN ∗ (x ∗ yNN).

Thus (x ∗ yNN)NN ∗ (x ∗ yNN) = 1. Therefore (x ∗ yNN)NN ≤ (x ∗ yNN).
(5). Form (4), it can be easily verified.

Proposition 3.4. Let I be an ideal of a transitive BE-algebra X . Then we have

(1) For any x, y ∈ X,x ∈ I and y ≤ x imply y ∈ I ,
(2) For any x, y ∈ X,xN = yN, x ∈ I imply y ∈ I ,
(3) For any x ∈ X,x ∈ I if and only if xNN ∈ I ,
(4) I ∩ D(X) 6= ∅ if and only if I = X .

Proof. (1). Let x, y ∈ X . Suppose x ∈ I and y ≤ x. Then xN ≤ yN , which implies xN ∗ yN =
1. Hence (xN ∗ yN)N = 0 ∈ I . Since x ∈ I , we get y ∈ I .
(2). Let x, y ∈ X . Assume that xN = yN . Suppose x ∈ I . Then we get (xN ∗ yN)N = 1N =
0 ∈ I . Since I is an ideal of X , we get y ∈ I .
(3). Let x ∈ X . Suppose x ∈ I . Then we get (xN ∗ xNNN)N = (xNN ∗ xNN)N = 1N =
0 ∈ I . Since x ∈ I , it yields xNN ∈ I . Conversely, let xNN ∈ I for any x ∈ X . Since
x ≤ xNN , by property (1) we get that x ∈ I .
(4). Assume that I ∩ D(X) 6= ∅. Let x ∈ I ∩ D(X). Then by condition (2), we get that xN = 0
and 1 = xNN ∈ I . Hence by (1), we get that I = X . Conversely, assume that I = X . Therefore
1 ∈ I and so I ∩ D(X) 6= ∅.

Some equivalent condition are now derived for every non-empty subset of a transitive BE-
algebra to become an ideal. For this purpose, we observe the essential properties of the relation
≤ of bounded and transitive BE-algebras.

Lemma 3.5. Let X be a transitive BE-algebra X . For any x, y, z ∈ X , we have

(1) x ≤ y implies yN ≤ xN ,
(2) x ≤ y implies y ∗ zN ≤ x ∗ zN .

Proof. (1). Let x, y ∈ X be such that x ≤ y. Then by Lemma 3.3(2), we get 1 = x∗y ≤ yN∗xN .
Hence yN ∗ xN = 1. Therefore yN ≤ xN .
(2). Let x, y ∈ X be such that x ≤ y. Then by (1), we get yN ≤ xN . Since X is transitive, we
get z ∗ yN ≤ z ∗ xN . Therefore y ∗ zN ≤ x ∗ zN .
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Theorem 3.6. Let X be a transitive BE-algebra and ∅ 6= I ⊆ X . Then I is an ideal of X if and
only if it satisfies the following property:

xN ≤ yN ∗ zN implies that z ∈ I for all x, y ∈ I and z ∈ X .

Proof. Assume that I is an ideal of X . Let x, y ∈ I and z ∈ X . Suppose xN ≤ yN ∗ zN . Then
xN ≤ yN ∗ zN ≤ (yN ∗ zN)NN and hence (xN ∗ (yN ∗ zN)NN)N = 1N = 0 ∈ I . Since
x ∈ I and I is an ideal of X , we get that (yN ∗ zN)N ∈ I . Since y ∈ I , it yields that z ∈ I .

Conversely, assume that I satisfies the given condition. Since I 6= ∅, choose x ∈ I . Clearly
xN ≤ 1 = xN ∗0N . Then by the given condition, we get 0 ∈ I . Let x, y ∈ X be such that x ∈ I
and (xN ∗ yN)N ∈ I . By Lemma 3.3(5), we get (xN ∗ yN)NN ≤ xN ∗ yN . Now, by Lemma
3.5(2), we get

(xN ∗ yN) ∗ yN ≤ (xN ∗ yN)NN ∗ yN.

Since X is transitive, the above consequence gives rise to

1 = (xN ∗ yN) ∗ (xN ∗ yN)

= xN ∗ ((xN ∗ yN) ∗ yN)

≤ xN ∗ ((xN ∗ yN)NN ∗ yN).

Hence, we get xN ≤ (xN ∗yN)NN ∗yN . Since x ∈ I and (xN ∗yN)N ∈ I , from the assumed
condition, it gives y ∈ I . Therefore I is an ideal of X .

Theorem 3.7. Let I be a non-empty subset of a transitive BE-algebra X . Then I is an ideal of
X if and only if it satisfies the following condition for all x ∈ X:

for all a, b ∈ I , (aN ∗ (bN ∗ xN)NN)N = 0 implies x ∈ I

Proof. Let ∅ 6= I ⊆ X . Assume that I is an ideal of X . Let a, b ∈ I . Suppose (aN ∗ (bN ∗
xN)NN)N = 0 ∈ I . Since a ∈ I and I is an ideal of X , we get that (bN ∗ xN)N ∈ I . Since
b ∈ I , we get that x ∈ I .

Conversely, assume that I satisfies the above condition. For any x ∈ I , we have (xN ∗ (xN ∗
0N)NN)N = (xN ∗ (xN ∗ 1)NN)N = (xN ∗ 1NN)N = 1N = 0. Hence by the given
condition, we get 0 ∈ I . Let x, y ∈ X . Suppose x ∈ I and (xN ∗ yN)N ∈ I . By Lemma 3.3(5),
we get (xN ∗ yN)NN ≤ xN ∗ yN . Now, Lemma 3.5(2), provides

(xN ∗ yN) ∗ yN ≤ (xN ∗ yN)NN ∗ yN.

Using Lemma 3.5(1) and the transitivity of X , we get the following consequence:

(xN ∗ ((xN ∗ yN)NN ∗ yN))N ≤ (xN ∗ ((xN ∗ yN) ∗ yN))N

= ((xN ∗ yN) ∗ (xN ∗ yN))N

= 1N

= 0

which means (xN ∗ ((xN ∗ yN)NN ∗ yN))N = 0. Since x ∈ I and (xN ∗ yN)N ∈ I , by the
assumed condition, we get y ∈ I . Therefore I is an ideal of X .

In [2], R. Borzooei and A.B. Saeid extensively studied the properties of involutory BE-
algebras. For any x, y of an involutory BE-algebra, they proved that x ∗ y = yN ∗ xN . Hence
the following proposition is straightforward:

Proposition 3.8. Let X be a transitive and involutory BE-algebra and ∅ 6= I ⊆ X . Then I is an
ideal of X if and only if it satisfies the following conditions:

(1) 0 ∈ I ,
(2) for x, y ∈ X , x ∈ I and (y ∗ x)N ∈ I imply y ∈ I .

In the following, the notion of semi-ideals is introduced in BE-algebras.
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Definition 3.9. Let X be a BE-algebra and ∅ 6= I ⊆ X . Then I is said to be a semi-ideal of X
if it satisfies the following properties, for all x ∈ X:

(SI1) 0 ∈ I ,
(SI2) xNN ∈ I implies x ∈ I .

Clearly every ideal of a transitive BE-algebra is a semi-ideal but not the converse. If X is an
involutory BE-algebra, then it is also observed that every subset containing 0 is a semi-ideal of
X .

Example 3.10. Let X = {1, a, b, 0}. Define an operation ∗ on X as follows:

∗ 1 a b 0
1 1 a b 0
a 1 1 1 a

b 1 a 1 0
0 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that the set I = {0, a} is
a semi-ideal of X . I is not an ideal of X , because of a ∈ I and (aN ∗ bN)N = (a ∗ 0)N =
aNN = a ∈ I but b /∈ I .

Definition 3.11. Let X be a BE-algebra and ∅ 6= I ⊆ X . Then I is said to be a strong semi-ideal
of X if it satisfies the following properties:

(SI3) 0 ∈ I ,
(SI4) x ∈ I implies (yN ∗ xN)N ∈ I for all x, y ∈ X .

Proposition 3.12. Every ideal of a transitive BE-algebra is a strong semi-ideal.

Proof. Let I be an ideal of a transitive BE-algebra X . Let x, y ∈ X . Suppose x ∈ I . Clearly
yN ∗ xN ≤ (yN ∗ xN)NN . Then by Lemma 3.5(1), we get

(xN ∗ (yN ∗ xN)NN)N ≤ (xN ∗ (yN ∗ xN))N

= (yN ∗ (xN ∗ xN))N

= (yN ∗ 1)N

= 1N

= 0

which concludes that (xN ∗ (yN ∗ xN)NN)N = 0 ∈ I . Since x ∈ I and I is an ideal of X , we
get (yN ∗ xN)N ∈ I . Therefore I is a strong semi-ideal of X .

Example 3.13. In the bounded BE-algebra given in Example 3.2, it is easy to check that the set
J = {0, a, b, d} is a strong semi-ideal of X . But J is not an ideal of X , because of a ∈ J and
(aN ∗ cN)N = d ∈ J but c /∈ J .

Theorem 3.14. A semi-ideal I of a transitive BE-algebra X is an ideal of X if and only if it
satisfies the following properties:

(1) x ∈ I implies (yN ∗ xN)N ∈ I ,
(2) x ∈ I and y ≤ x imply y ∈ I ,
(3) a, b ∈ I implies ((aN ∗ (bN ∗ xN)) ∗ xN)N ∈ I

for all x, y ∈ X .

Proof. Let I be a semi-ideal of X . Assume that I is an ideal of X . Let x ∈ I and y ∈ X . Clearly
yN ∗ xN ≤ (yN ∗ xN)NN . Then by Lemma 3.5(1), we get that (xN ∗ (yN ∗ xN)NN)N ≤
(xN ∗ (yN ∗ xN))N = (yN ∗ (xN ∗ xN))N = (yN ∗ 1)N = 1N = 0 ∈ I . Hence (xN ∗
(yN ∗ xN)NN)N ∈ I . Since x ∈ I , we get (yN ∗ xN)N ∈ I . Condition (2) is obtained by
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Proposition 3.4(1).
Let a, b ∈ I . Then by putting bN ∗ xN = t, we get

(aN ∗ ((aN ∗ tNN)NN ∗ tNN)NN)N ≤ (aN ∗ ((aN ∗ tNN)NN ∗ tNN))N

≤ (aN ∗ ((aN ∗ tNN) ∗ tNN))N

= ((aN ∗ tNN) ∗ (aN ∗ tNN))N

= 1N

= 0

which yields (aN ∗ ((aN ∗ tNN)NN ∗ tNN)NN)N = 0 ∈ I . Since a ∈ I , we get ((aN ∗
tNN)NN ∗ tNN)N ∈ I . By Lemma 3.3(5) and Lemma 3.5(1), we get

(bN ∗ ((aN ∗ tNN)NN ∗ xN)NN)N ≤ (bN ∗ ((aN ∗ tNN)NN ∗ xN))N

= ((aN ∗ tNN)NN ∗ (bN ∗ xN))N

≤ ((aN ∗ tNN)NN ∗ (bN ∗ xN)NN)N

= ((aN ∗ tNN)NN ∗ tNN)N ∈ I

which gives (bN ∗ ((aN ∗ tNN)NN ∗xN)NN)N ∈ I . Since b ∈ I , we get ((aN ∗ tNN)NN ∗
xN)N ∈ I . Now, we observe

((aN ∗ t) ∗ xN)N ≤ ((aN ∗ tNN) ∗ xN)N

≤ ((aN ∗ tNN)NN ∗ xN)N ∈ I

which concludes that ((aN ∗ (bN ∗ xN)) ∗ xN)N = ((aN ∗ t) ∗ xN)N ∈ I .
Conversely, assume that I satisfies the given conditions. By taking x = y in the condition (1),

it can be seen that 0 ∈ I . Let x, y ∈ X . Suppose that x ∈ I and (xN ∗ yN)N ∈ I . Then we have
the consequence condition (3):

yNN = (1 ∗ yN)N

= (((xN ∗ yN) ∗ (xN ∗ yN)) ∗ yN)N

= ((xN ∗ ((xN ∗ yN) ∗ yN)) ∗ yN)N

≤ ((xN ∗ ((xN ∗ yN)NN ∗ yN)) ∗ yN)N ∈ I

because of since x ∈ I and (xN ∗ yN)N ∈ I . By condition (2), we obtain yNN ∈ I . Since I is
a semi-ideal, it yields y ∈ I . Thus I is an ideal of X .

Corollary 3.15. A strong semi-ideal I of a transitive BE-algebra X is an ideal of X if and only
if it satisfies the following conditions for any x, y ∈ X:

(1) x ∈ I and y ≤ x imply y ∈ I ,
(2) a, b ∈ I implies ((aN ∗ (bN ∗ xN)) ∗ xN)N ∈ I .

Proposition 3.16. The set-theoretic intersection of ideals (strong semi-ideals) of a transitiveBE-
algebra is again an ideal (strong semi-ideal).

Proof. Let {Iα}α∈∆ be a family of ideals ofX . Clearly 0 ∈ Iα for each α ∈ ∆. Hence 0 ∈
⋂
α∈∆

Iα.

Let x ∈
⋂
α∈∆

Iα and (xN ∗ yN)N ∈
⋂
α∈∆

Iα. Then x ∈ Iα and (xN ∗ yN)N ∈ Iα for each α ∈ ∆.

Since each Iα is an ideal of X , we get y ∈ Iα for each α ∈ ∆. Hence y ∈
⋂
α∈∆

Iα. Therefore⋂
α∈∆

Iα is an ideal of X .
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Example 3.17. Let X = {1, a, b, c, d, 0}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 b c d b

b 1 a 1 c c a

c 1 1 b 1 b d

d 1 1 1 1 1 c

0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a transitive BE-algebra. It is easy to check that I1 = {0, a, b} and I2 =
{0, b, d} are ideals of X . The set I = I1 ∪ I2 = {0, a, b, d} is not an ideal of X , because of a ∈ I
and (aN ∗ cN)N = d ∈ I but c /∈ I .

As a generalization of Proposition 3.16, we can derive that the set-theoretic union of ideals
(semi-ideals) of a transitive BE-algebra is again an ideal (semi-ideal) when ever the family of
ideals form a chain (totally ordered set).

A homomorphism f : X → Y of bounded BE-algebras is called bounded if f(0) = 0.
If f is bounded, then f(xN) = f(x ∗ 0) = f(x) ∗ f(0) = f(x) ∗ 0 = (f(x))N for all x ∈ X .
For any bounded homomorphism f : X → Y , define the dual kernel of the homomorphism f
as Dker(f) = {x ∈ X | f(x) = 0}. It is easy to check that Dker(f) = {0} whenever f is an
injective homomorphism.

Lemma 3.18. Let X and Y be two bounded BE-algebras. For any bounded homomorphism
f : X → Y , the dual kernel is an ideal of X .

Proof. Clearly 0 ∈ Dker(f). Let x ∈ Dker(f) and (xN ∗ yN)N ∈ Dker(f). Then f(x) = 0
and (f(x)N ∗f(y)N)N = f((xN ∗yN))N = 0. Thus f(y)NN = 0 and so f(y) ≤ f(yNN) =
f(y)NN = 0. Hence f(y) = 0 and so y ∈ Dker(f). Therefore Dker(f) is an ideal of X .

Proposition 3.19. LetX and Y be twoBE-algebras and f : X → Y a bounded homomorphism.
Then f−1(I) is an ideal of X for any ideal I of Y .

Proof. Let f : X → Y be a bounded homomorphism. Suppose I is an ideal of Y . Let x, y ∈ X
be such that x ∈ f−1(I) and (xN ∗ yN)N ∈ f−1(I). Then f(x) ∈ I and (f(x)N ∗ f(y)N)N =
f((xN ∗ yN)N) ∈ I . Since f(x) ∈ I and I is an ideal, we get f(y) ∈ I . Hence y ∈ f−1(I).
Thus f−1(I) is an ideal of X .

For any filter F of a self-distributive BE-algebra X , it was observed in [11] that θF defined
by (x, y) ∈ θF ⇔ x ∗ y ∈ F and y ∗ x ∈ F is the unique congruence whose kernel is F . If X
is bounded, then the quotient algebra X/F = {Fx | x ∈ X}(where Fx is the congruence class
of x) is also a bounded BE-algebra with smallest element F0 in which Fx ∗ Fy = Fx∗y and
(Fx)N = FxN for all x, y ∈ X .

Proposition 3.20. For any filter F of a self-distributive BE-algebra X , the congruence class F0
is an ideal of X .

Proof. Let F be a filter of X . Since X is self-distributive, θF is a congruence on X . Clearly
0 ∈ F0. Let x ∈ F0 and (xN ∗ yN)N ∈ F0. Hence xN = x ∗ 0 ∈ F and (xN ∗ yN)NN =
(xN ∗ yN)N ∗ 0 ∈ F . Since (xN ∗ yN)NN ≤ xN ∗ yN , we get xN ∗ yN ∈ F . Since xN ∈ F ,
we get y ∗ 0 = yN ∈ F . Since 0 ∗ y = 1 ∈ F , we get (y, 0) ∈ θF . Hence y ∈ F0. Therefore F0
is an ideal of X .

4 Homomorphism theorems

In this section, we introduced a congruence on BE-algebras with the help of ideals. Some
homomorphism theorems are derived with the help of these congruences, ideal and cartesian
products of quotient algebras.
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Definition 4.1. Let I be an ideal of a BE-algebra X . For any x, y ∈ X , define a relation θI on
X as follows:

(x, y) ∈ θI if and only if (x ∗ y)N ∈ I and (y ∗ x)N ∈ I .

Proposition 4.2. If X is a transitive BE-algebra and I an ideal of X , then the above relation θI
is an equivalence relation on X .

Proof. Clearly θI is reflexive and symmetric. Let (x, y), (y, z) ∈ θI . Then (x ∗ y)N ∈ I, (y ∗
x)N ∈ I and (y ∗ z)N ∈ I, (z ∗ y)N ∈ I . By Lemma 3.3(2), we get

y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) ≤ (x ∗ y)NN ∗ (x ∗ z)NN

Hence ((x∗y)NN ∗(x∗z)NN)N ≤ (y ∗z)N . Since (y ∗z)N ∈ I , we get that ((x∗y)NN ∗(x∗
z)NN)N ∈ I . Since (x ∗ y)N ∈ I , we get (x ∗ z)N ∈ I . Similarly, we can obtain (z ∗ x)N ∈ I .
Hence (x, z) ∈ θI . Therefore θI is an equivalence relation on X .

Theorem 4.3. If X is a transitive BE-algebra and I an ideal of X , then the above relation θI
is a congruence on X . Moreover θI is a unique congruence such that I0 = I , where I0 is the
congruence class of 0 with respect to θI .

Proof. Let (x, y) ∈ θI and (u, v) ∈ θI . Then (x ∗ y)N ∈ I, (y ∗ x)N ∈ I, (u ∗ v)N ∈ I and
(v ∗ u)N ∈ I . Since X is transitive, we get x ∗ y ≤ (u ∗ x) ∗ (u ∗ y) and so ((u ∗ x) ∗ (u ∗
y))N ≤ (x ∗ y)N . Since (x ∗ y)N ∈ I , we get ((u ∗ x) ∗ (u ∗ y))N ∈ I . Similarly, we can get
((u∗y)∗(u∗x))N ∈ I because of (y∗x)N ∈ I . Hence both together provide us (u∗x, u∗y) ∈ θI .
Again, since X is transitive, we get v ∗ y ≤ (u ∗ v) ∗ (u ∗ y). Thus we get the following:

u ∗ v ≤ (v ∗ y) ∗ (u ∗ y) ≤ ((v ∗ y) ∗ (u ∗ y))NN

Hence ((v∗y)∗(u∗y))N ≤ (u∗v)N . Since (u∗v)N ∈ I , we get ((v∗y)∗(u∗y))N ∈ I . Similarly,
we can obtain ((u ∗ y) ∗ (v ∗ y))N ∈ I because of (v ∗ u)N ∈ I . Thus we get (u ∗ y, v ∗ y) ∈ θI .
Therefore θI is a congruence on X . Now, let x ∈ I0. Then xNN = (x ∗ 0)N ∈ I . Since
x ≤ xNN , we get x ∈ I . Therefore I0 ⊆ I . Again, let x ∈ I . Then (x ∗ 0)N = xNN ∈ I .
Clearly (0 ∗ x)N = 1N = 0 ∈ I . Hence (x, 0) ∈ θI , which implies x ∈ I0. Thus I ⊆ I0.
Therefore I0 = I .

From the above result, it is easy to see that the quotient algebraX/I = {Ix | x ∈ X}(where Ix
is the congruence class of x modulo θI ) is a bounded BE-algebra in which the binary operation
∗ is defined as Ix ∗ Iy = Ix∗y for x, y ∈ X . Moreover, the quotient algebra X/I contains the
smallest element I0. For any ideal I of a transitive BE-algebra X , it is natural to obtain the
epimorphism ν : X → X/I given by ν(x) = Ix.

Theorem 4.4. The following are equivalent in a commutative BE-algebra.

(1) X has a unique dense element;
(2) for x, y ∈ X , (x ∗ y)N = 0 and (y ∗ x)N = 0 imply that x = y;
(3) X isomorphic to X/θ{0}.

Proof. (1)⇒ (2): Assume that X has a unique dense element, precisely 1. Then D(X) = {1}.
Let x, y ∈ X . Suppose that (x ∗ y)N = 0 and (y ∗ x)N = 0. Then, we get x ∗ y ∈ D(X) = {1}
and y ∗ x ∈ D(X) = {1}. Hence x ≤ y and y ≤ x. Since X is commutative, it concludes that
x = y.
(2)⇒ (3): Assume that the condition (2) holds. We know that the natural map ν : X → X/θ{0}
defined by ν(x) = {0}x, for all x ∈ X , is an epimorphism. Let ν(x) = ν(y) for x, y ∈ X . Then
{0}x = {0}y. Thus, it immediately infers that (x ∗ y)N ∈ {0} and (y ∗ x)N ∈ {0}. Hence by
condition (2), we get x = y. Therefore ν is an injective and so X is isomorphic to X/θ{0}.
(3) ⇒ (1): Assume that X is isomorphic to X/θ{0}. Let a 6= 1 and a ∈ D(X). Then we get
(1 ∗ a)N = aN = 0 ∈ {0} and (a ∗ 1)N = 1N = 0 ∈ {0}. Hence (a, 1) ∈ θ{0}, which implies
ν(a) = {0}a = {0}1 = ν(1). Since ν is injective, we get a = 1, which is a contradiction.
Therefor X has a unique dense element.

Theorem 4.5. Let X be a transitive BE-algebra and I is an ideal of X . Then the quotient
algebra X/θI contains an unique dense element.
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Proof. Since X is transitive, it is cleared that X/θI is a transitive BE-algebra. Always I1 is a
dense element of X/θI . For 1 6= x ∈ X , suppose IxN = (Ix)N = I0. Then (xN, 0) ∈ θI . Hence
xN ≤ xNNN = (0N ∗ xNN)N ∈ I . Thus (1 ∗ x)N ∈ I and (x ∗ 1)N ∈ I . Hence (1, x) ∈ θI ,
which implies that Ix = I1. Therefore I1 is the unique dense element of X/θI .

Theorem 4.6. Let I, J be two ideals of a transitive BE-algebra X . Then

I ∨ J = {x ∈ X | aN ∗ (bN ∗ xN) = 1 for some a ∈ I and b ∈ J }

is the smallest ideal of X which is containing both I and J .

Proof. Clearly, 0 ∈ I ∨ J . Let x ∈ I ∨ J and (xN ∗ yN)N ∈ I ∨ J . Then there exists a, c ∈ I
and b, d ∈ J such that aN ∗ (bN ∗ xN) = 1 and cN ∗ (dN ∗ (xN ∗ yN)NN) = 1. Then by
Lemma 3.3(4), we deduce that

1 = cN ∗ (dN ∗ (xN ∗ yN)NN) ≤ cN ∗ (dN ∗ (xN ∗ yN)) = xN ∗ (cN ∗ (dN ∗ yN)).

Hence xN ≤ cN ∗ (dN ∗ yN). Since X is transitive, we get

1 = aN ∗ (bN ∗ xN) ≤ aN ∗ (bN ∗ (cN ∗ (dN ∗ yN))) = aN ∗ (cN ∗ (bN ∗ (dN ∗ yN))).

Hence aN ∗ (cN ∗ (bN ∗ (dN ∗ yN))) = 1. Thus by Lemma 3.3(4), we get

(aN ∗ (cN ∗ (bN ∗ (dN ∗ yN)NN)NN)NN)N ≤ (aN ∗ (cN ∗ (bN ∗ (dN ∗ yN))))N

= 1N

= 0 ∈ I

Hence (aN ∗ (cN ∗ (bN ∗ (dN ∗ yN)NN)NN)NN)N ∈ I where a, c ∈ I and b, d ∈ J . Since
a, c ∈ I , we get (bN ∗ (dN ∗ yN)NN)N ∈ I . Put f = (bN ∗ (dN ∗ yN)NN)N . Then
fN = (bN ∗ (dN ∗ yN)NN)NN . By Lemma 3.3(5), we have

fN = (bN ∗ (dN ∗ yN)NN)NN ≤ bN ∗ (dN ∗ yN)NN ≤ bN ∗ (dN ∗ yN).

Hence bN ∗ (dN ∗ (fN ∗ yN)) = fN ∗ (bN ∗ (dN ∗ yN)) = 1. Thus, we get

(bN ∗ (dN ∗ (fN ∗ yN)))N = 0 ∈ J.

Hence (bN ∗ (dN ∗ (fN ∗ yN)NN)NN)N ≤ (bN ∗ (dN ∗ (fN ∗ yN)))N ∈ J . Since b, d ∈ J ,
we get (fN ∗ yN)N ∈ J . Put g = (fN ∗ yN)N . Then gN = (fN ∗ yN)NN ≤ fN ∗ yN .
Hence

1 = (fN ∗ yN) ∗ (fN ∗ yN) ≤ gN ∗ (fN ∗ yN) = fN ∗ (gN ∗ yN)

Since f ∈ I, g ∈ J , we get y ∈ I ∨ J . Therefore I ∨ J is an ideal of X . Let x ∈ I . Clearly
xN ∗ (0N ∗ xN) = xN ∗ xN = 1. Since 0 ∈ J , we get x ∈ I ∨ J . Hence I ⊆ I ∨ J . Similarly,
we get J ⊆ I ∨ J .

Let K be an ideal of X such that I ⊆ K and J ⊆ K. Let x ∈ I ∨ J . Then there exists
a ∈ I ⊆ K and b ∈ J ⊆ K such that aN ∗ (bN ∗ xN) = 1. Hence aN ∗ (bN ∗ xN)NN = 1,
which implies (aN ∗ (bN ∗xN)NN)N = 0 ∈ K. Since a ∈ K, we get (bN ∗xN)N ∈ K. Since
b ∈ K, we get x ∈ K. Hence I ∨ J ⊆ K. Therefore I ∨ J is the smallest ideal which contains
both I and J .

Since the intersection of ideals is again an ideal, the following is direct:

Corollary 4.7. For any transitive BE-algebra X , the set I(X) of all ideals of X forms a com-
plete lattice.

Theorem 4.8. Let I and J be two ideals of a transitive BE-algebra X . Then the mapping
f : X → (X/I) × (X/J) defined by f(x) = (Ix, Jx) for all x ∈ X is a homomorphism.
Moreover, the following hold:

(1) If f is injective, then I ∩ J = {0},
(2) If f is surjective, then I ∨ J = X .
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Proof. Clearly f is well-defined. Let x, y ∈ X . Then f(x ∗ y) = (Ix∗y, Jx∗y) = (Ix ∗ Iy, Jx ∗
Jy) = (Ix, Jx) ∗ (Iy, Jy) = f(x) ∗ f(y). Therefore f is a homomorphism.
(1). Suppose f is injective. Then clearly Dker f = {0}. Now

x ∈ Dker(f) ⇔ f(x) = 0, the smallest element in (X/I)× (X/J)

⇔ (Ix, Jx) = (I0, J0)

⇔ Ix = I0 and Jx = J0

⇔ xNN ∈ I and xNN ∈ J
⇔ x ∈ I and x ∈ J since x ≤ xNN
⇔ x ∈ I ∩ J

Thus Dker(f) = I ∩ J . Therefore I ∩ J = {0} whenever f is injective.
(2). Assume that f is surjective. Clearly (I0, J1) ∈ (X/I)× (X/J). Since f is surjective, there
exists x ∈ X such that f(x) = (I0, J1). Hence

f(x) = (I0, J1) ⇔ (Ix, Jx) = (I0, J1)

⇔ Ix = I0 and Jx = J1

⇔ xNN ∈ I and xN ∈ J
⇔ x ∈ I and xN ∈ J

Clearly xN ∗(xNN ∗1N) = xN ∗xNNN = 1. Since x ∈ I and xN ∈ J , it imply that 1 ∈ I∨J .
Therefore I ∨ J = X whenever f is surjective.

The following is an extension of the above theorem.

Corollary 4.9. Let Ii, i = 1, 2, 3, . . . , n be the ideals of a transitive BE-algebra X . Then the
mapping f : X → (X/I1)×(X/I2)×(X/I3)×· · ·×(X/In) defined by f(x) = (I1

x, I
2
x, I

3
x, . . . , I

n
x )

for all x ∈ X is a homomorphism. Moreover,

(1) If f is injective, then
n⋂
i=1

Ii = {0},

(2) If f is surjective, then Ii ∨ Ij = X for i 6= j.
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