IDEALS OF TRANSITIVE $B E$-ALGEBRAS

M. Bala Prabhakar, S. Kalesha Vali and M. Sambasiva Rao
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 03G25.
Keywords and phrases: $B E$-algebra, filter, ideal, semi-ideal, congruence, homomorphism.

Abstract

The notion of ideals is introduced in transitive $B E$-algebras. Some characterization theorems of ideals of transitive $B E$-algebras are derived. The notion of semi-ideals is introduced and studied a relationship between semi-ideals and ideals. Properties of ideals are studied with the help of homomorphisms and congruences.

1 Introduction

The concept of $B E$-algebras was introduced and extensively studied by H.S. Kim and Y.H. Kim in [6]. The class of $B E$-algebras was introduced as a generalization of the class of $B C K$ algebras of K. Iseki and S. Tanaka [5]. Some properties of filters of $B E$-algebras were studied by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [7]. In [10], A. Walendziak discussed some relationships between congruence relations and normal filters of a $B E$-algebra. In [9], P . Sun investigated homomorphism theorems via dual ideals of $B C K$-algebras.

In this work, the notion of ideals is introduced in transitive $B E$-algebras as a generalization of special type of down sets in many algebraic structures. Some necessary and sufficient conditions are derived for a non-empty subsets of $B E$-algebras to become ideals. The concepts of semiideals and strong semi-ideals are introduced and then some relations among these sets of ideals are studied. Some properties of ideals are derived in terms of homomorphisms and congruences.

2 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [1], [2], [3], [6], [7]and [8] for the ready reference.

Definition 2.1. [6] An algebra $(X, *, 1)$ of type $(2,0)$ is called a $B E$-algebra if it satisfies the following properties:
(1) $x * x=1$,
(2) $x * 1=1$,
(3) $1 * x=x$,
(4) $x *(y * z)=y *(x * z) \quad$ for all $x, y, z \in X$.

A $B E$-algebra X is called self-distributive if $x *(y * z)=(x * y) *(x * z)$ for all $x, y, z \in X$. A $B E$-algebra X is called transitive if $y * z \leq(x * y) *(x * z)$ for all $x, y, z \in X$. Every self-distributive $B E$-algebra is transitive. A $B E$-algebra X is called commutative if $(x * y) * y=$ $(y * x) * x$ for all $x, y \in X$. We introduce a relation \leq on X by $x \leq y$ if and only if $x * y=1$ for all $x, y \in X$. If X is commutative, then the relation \leq is a partial ordering on X.
Theorem 2.2. [7] Let X be a transitive BE-algebra and $x, y, z \in X$. Then
(1) $1 \leq x$ implies $x=1$,
(2) $y \leq z$ implies $x * y \leq x * z$.

Definition 2.3. [6] A non-empty subset F of a $B E$-algebra X is called a filter of X if, for all $x, y \in X$, it satisfies the following properties:
(1) $1 \in F$,
(2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

A $B E$-algebra X is called bounded [3], if there exists an element 0 satisfying $0 \leq x$ (or $0 * x=1$) for all $x \in X$. Define an unary operation N on a bounded $B E$-algebra X by $x N=x * 0$ for all $x \in X$.

Theorem 2.4. [3] Let X be a transitive BE-algebra and $x, y \in X$. Then
(1) $1 N=0$ and $0 N=1$,
(2) $x \leq x N N$,
(3) $x * y N=y * x N$.

An element x of a bounded $B E$-algebra X is called dense [8] if $x N=0$ and $\mathcal{D}(X)$ denotes the class of all dense elements of the $B E$-algebra X. Let X and Y be two bounded $B E$-algebras, then a homomorphism $f: X \rightarrow Y$ is called bounded [2] if $f(0)=0$. If f is a bounded homomorphism, then it is easily observed that $f(x N)=f(x) N$ for all $x \in X$.

Definition 2.5. [2] An element x of a bounded $B E$-algebra X is called an involutory element if $x N N=x$. If every element of a $B E$-algebra X is involutory, then X is called an involutory.

3 Ideals of Transitive BE-algebras

In this section, some properties of ideals of transitive $B E$-algebras are studied. Some characterization theorems of ideals are derived. The notions of semi-ideals and strong semi-ideals are introduced and obtained the relationship among the classes of ideals, semi-ideals and strong semi-ideals.

Definition 3.1. A non-empty subset I of a $B E$-algebra X is called an ideal of X if it satisfies the following conditions for all $x, y \in X$:
(I1) $0 \in I$,
(I2) $x \in I$ and $(x N * y N) N \in I$ imply that $y \in I$.
Obviously the single-ton set $\{0\}$ is an ideal of a $B E$-algebra X. For, suppose $x \in\{0\}$ and $(x N * y N) N \in\{0\}$ for $x, y \in X$. Then $x=0$ and $y N N=(0 N * y N) N \in\{0\}$. Hence $y \leq y N N=0 \in\{0\}$. Thus $\{0\}$ is an ideal of X. In the following example, we observe non-trivial ideals of a $B E$-algebra.

Example 3.2. Let $X=\{1, a, b, c, d, 0\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra. It can be easily verified that the set $I=\{0, c, d\}$ is an ideal of X. However, the set $J=\{0, a, b, d\}$ is not an ideal of X, because of $a \in J$ and $(a N * c N) N=(d * b) N=a N=d \in J$ but $c \notin J$.

Some properties of ideals of transitive $B E$-algebras are now observed. Here after, by a $B E-$ algebra X we mean a bounded $B E$-algebra $(X, *, 0,1)$ unless and otherwise mentioned. In the following lemma, we fist observe a few essential properties of transitive $B E$-algebras.

Lemma 3.3. Let X be a transitive $B E$-algebra. For any $x, y \in X$, we have
(1) $x N N N \leq x N$,
(2) $x * y \leq y N * x N$,
(3) $x * y N \leq x N N * y N$,
(4) $(x * y N N) N N \leq x * y N N$,
(5) $(x N * y N) N N \leq x N * y N$.

Proof. (1). Let $x \in X$. Then $1=(x * 0) *(x * 0)=x *((x * 0) * 0)=x * x N N \leq x * x N N N N=$ $x N N N * x N$. Hence $x N N N * x N=1$, which gives $x N N N \leq x N$.
(2). Let $x, y \in X$. Since X is transitive, we get $y N=y * 0 \leq(x * y) *(x * 0)=(x * y) * x N$. Hence $1=y N * y N \leq y N *((x * y) * x N)=(x * y) *(y N * x N)$. Thus, we get $(x * y) *(y N * x N)=1$. Therefore $x * y \leq y N * x N$.
(3). Let $x, y \in X$. Then, we get $x * y N=y * x N \leq y * x N N N=x N N * y N$.
(4). Let $x, y \in X$. Clearly $(x * y N N) N \leq(x * y N N) N N N$. Since X is transitive, we get $y N *(x * y N N) N \leq y N *(x * y N N) N N N$ and so $x *(y N *(x * y N N) N) \leq x *(y N *(x *$ $y N N) N N N)$. Hence, we get

$$
\begin{aligned}
1 & =(x * y N N) *(x * y N N) \\
& =x *((x * y N N) * y N N) \\
& =x *(y N *(x * y N N) N) \\
& \leq x *(y N *(x * y N N) N N N) \\
& =x *((x * y N N) N N * y N N \\
& =(x * y N N) N N *(x * y N N)
\end{aligned}
$$

Thus $(x * y N N) N N *(x * y N N)=1$. Therefore $(x * y N N) N N \leq(x * y N N)$.
(5). Form (4), it can be easily verified.

Proposition 3.4. Let I be an ideal of a transitive BE-algebra X. Then we have
(1) For any $x, y \in X, x \in I$ and $y \leq x$ imply $y \in I$,
(2) For any $x, y \in X, x N=y N, x \in I$ imply $y \in I$,
(3) For any $x \in X, x \in I$ if and only if $x N N \in I$,
(4) $I \cap \mathcal{D}(X) \neq \emptyset$ if and only if $I=X$.

Proof. (1). Let $x, y \in X$. Suppose $x \in I$ and $y \leq x$. Then $x N \leq y N$, which implies $x N * y N=$ 1. Hence $(x N * y N) N=0 \in I$. Since $x \in I$, we get $y \in I$.
(2). Let $x, y \in X$. Assume that $x N=y N$. Suppose $x \in I$. Then we get $(x N * y N) N=1 N=$ $0 \in I$. Since I is an ideal of X, we get $y \in I$.
(3). Let $x \in X$. Suppose $x \in I$. Then we get $(x N * x N N N) N=(x N N * x N N) N=1 N=$ $0 \in I$. Since $x \in I$, it yields $x N N \in I$. Conversely, let $x N N \in I$ for any $x \in X$. Since $x \leq x N N$, by property (1) we get that $x \in I$.
(4). Assume that $I \cap \mathcal{D}(X) \neq \emptyset$. Let $x \in I \cap \mathcal{D}(X)$. Then by condition (2), we get that $x N=0$ and $1=x N N \in I$. Hence by (1), we get that $I=X$. Conversely, assume that $I=X$. Therefore $1 \in I$ and so $I \cap \mathcal{D}(X) \neq \emptyset$.

Some equivalent condition are now derived for every non-empty subset of a transitive $B E$ algebra to become an ideal. For this purpose, we observe the essential properties of the relation \leq of bounded and transitive $B E$-algebras.

Lemma 3.5. Let X be a transitive BE-algebra X. For any $x, y, z \in X$, we have
(1) $x \leq y$ implies $y N \leq x N$,
(2) $x \leq y$ implies $y * z N \leq x * z N$.

Proof. (1). Let $x, y \in X$ be such that $x \leq y$. Then by Lemma 3.3(2), we get $1=x * y \leq y N * x N$. Hence $y N * x N=1$. Therefore $y N \leq x N$.
(2). Let $x, y \in X$ be such that $x \leq y$. Then by (1), we get $y N \leq x N$. Since X is transitive, we get $z * y N \leq z * x N$. Therefore $y * z N \leq x * z N$.

Theorem 3.6. Let X be a transitive $B E$-algebra and $\emptyset \neq I \subseteq X$. Then I is an ideal of X if and only if it satisfies the following property:

$$
x N \leq y N * z N \text { implies that } z \in I \text { for all } x, y \in I \text { and } z \in X
$$

Proof. Assume that I is an ideal of X. Let $x, y \in I$ and $z \in X$. Suppose $x N \leq y N * z N$. Then $x N \leq y N * z N \leq(y N * z N) N N$ and hence $(x N *(y N * z N) N N) N=1 N=0 \in I$. Since $x \in I$ and I is an ideal of X, we get that $(y N * z N) N \in I$. Since $y \in I$, it yields that $z \in I$.

Conversely, assume that I satisfies the given condition. Since $I \neq \emptyset$, choose $x \in I$. Clearly $x N \leq 1=x N * 0 N$. Then by the given condition, we get $0 \in I$. Let $x, y \in X$ be such that $x \in I$ and $(x N * y N) N \in I$. By Lemma 3.3(5), we get $(x N * y N) N N \leq x N * y N$. Now, by Lemma 3.5(2), we get

$$
(x N * y N) * y N \leq(x N * y N) N N * y N
$$

Since X is transitive, the above consequence gives rise to

$$
\begin{aligned}
1 & =(x N * y N) *(x N * y N) \\
& =x N *((x N * y N) * y N) \\
& \leq x N *((x N * y N) N N * y N)
\end{aligned}
$$

Hence, we get $x N \leq(x N * y N) N N * y N$. Since $x \in I$ and $(x N * y N) N \in I$, from the assumed condition, it gives $y \in I$. Therefore I is an ideal of X.

Theorem 3.7. Let I be a non-empty subset of a transitive BE-algebra X. Then I is an ideal of X if and only if it satisfies the following condition for all $x \in X$:

$$
\text { for all } a, b \in I, \quad(a N *(b N * x N) N N) N=0 \text { implies } x \in I
$$

Proof. Let $\emptyset \neq I \subseteq X$. Assume that I is an ideal of X. Let $a, b \in I$. Suppose $(a N *(b N *$ $x N) N N) N=0 \in I$. Since $a \in I$ and I is an ideal of X, we get that $(b N * x N) N \in I$. Since $b \in I$, we get that $x \in I$.

Conversely, assume that I satisfies the above condition. For any $x \in I$, we have $(x N *(x N *$ $0 N) N N) N=(x N *(x N * 1) N N) N=(x N * 1 N N) N=1 N=0$. Hence by the given condition, we get $0 \in I$. Let $x, y \in X$. Suppose $x \in I$ and $(x N * y N) N \in I$. By Lemma 3.3(5), we get $(x N * y N) N N \leq x N * y N$. Now, Lemma 3.5(2), provides

$$
(x N * y N) * y N \leq(x N * y N) N N * y N
$$

Using Lemma 3.5(1) and the transitivity of X, we get the following consequence:

$$
\begin{aligned}
(x N *((x N * y N) N N * y N)) N & \leq(x N *((x N * y N) * y N)) N \\
& =((x N * y N) *(x N * y N)) N \\
& =1 N \\
& =0
\end{aligned}
$$

which means $(x N *((x N * y N) N N * y N)) N=0$. Since $x \in I$ and $(x N * y N) N \in I$, by the assumed condition, we get $y \in I$. Therefore I is an ideal of X.

In [2], R. Borzooei and A.B. Saeid extensively studied the properties of involutory $B E-$ algebras. For any x, y of an involutory $B E$-algebra, they proved that $x * y=y N * x N$. Hence the following proposition is straightforward:

Proposition 3.8. Let X be a transitive and involutory BE-algebra and $\emptyset \neq I \subseteq X$. Then I is an ideal of X if and only if it satisfies the following conditions:
(1) $0 \in I$,
(2) for $x, y \in X, x \in I$ and $(y * x) N \in I$ imply $y \in I$.

In the following, the notion of semi-ideals is introduced in $B E$-algebras.

Definition 3.9. Let X be a $B E$-algebra and $\emptyset \neq I \subseteq X$. Then I is said to be a semi-ideal of X if it satisfies the following properties, for all $x \in X$:
(SI1) $0 \in I$,
(SI2) $x N N \in I$ implies $x \in I$.
Clearly every ideal of a transitive $B E$-algebra is a semi-ideal but not the converse. If X is an involutory $B E$-algebra, then it is also observed that every subset containing 0 is a semi-ideal of X.

Example 3.10. Let $X=\{1, a, b, 0\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	0
1	1	a	b	0
a	1	1	1	a
b	1	a	1	0
0	1	1	1	1

Clearly $(X, *, 0,1)$ is a bounded $B E$-algebra. It can be easily verified that the set $I=\{0, a\}$ is a semi-ideal of $X . I$ is not an ideal of X, because of $a \in I$ and $(a N * b N) N=(a * 0) N=$ $a N N=a \in I$ but $b \notin I$.

Definition 3.11. Let X be a $B E$-algebra and $\emptyset \neq I \subseteq X$. Then I is said to be a strong semi-ideal of X if it satisfies the following properties:
(SI3) $0 \in I$,
(SI4) $x \in I$ implies $(y N * x N) N \in I$ for all $x, y \in X$.
Proposition 3.12. Every ideal of a transitive BE-algebra is a strong semi-ideal.
Proof. Let I be an ideal of a transitive $B E$-algebra X. Let $x, y \in X$. Suppose $x \in I$. Clearly $y N * x N \leq(y N * x N) N N$. Then by Lemma 3.5(1), we get

$$
\begin{aligned}
(x N *(y N * x N) N N) N & \leq(x N *(y N * x N)) N \\
& =(y N *(x N * x N)) N \\
& =(y N * 1) N \\
& =1 N \\
& =0
\end{aligned}
$$

which concludes that $(x N *(y N * x N) N N) N=0 \in I$. Since $x \in I$ and I is an ideal of X, we get $(y N * x N) N \in I$. Therefore I is a strong semi-ideal of X.

Example 3.13. In the bounded $B E$-algebra given in Example 3.2, it is easy to check that the set $J=\{0, a, b, d\}$ is a strong semi-ideal of X. But J is not an ideal of X, because of $a \in J$ and $(a N * c N) N=d \in J$ but $c \notin J$.

Theorem 3.14. A semi-ideal I of a transitive BE-algebra X is an ideal of X if and only if it satisfies the following properties:
(1) $x \in I$ implies $(y N * x N) N \in I$,
(2) $x \in I$ and $y \leq x$ imply $y \in I$,
(3) $a, b \in I$ implies $((a N *(b N * x N)) * x N) N \in I$
for all $x, y \in X$.
Proof. Let I be a semi-ideal of X. Assume that I is an ideal of X. Let $x \in I$ and $y \in X$. Clearly $y N * x N \leq(y N * x N) N N$. Then by Lemma 3.5(1), we get that $(x N *(y N * x N) N N) N \leq$ $(x N *(y N * x N)) N=(y N *(x N * x N)) N=(y N * 1) N=1 N=0 \in I$. Hence $(x N *$ $(y N * x N) N N) N \in I$. Since $x \in I$, we get $(y N * x N) N \in I$. Condition (2) is obtained by

Proposition 3.4(1).
Let $a, b \in I$. Then by putting $b N * x N=t$, we get

$$
\begin{aligned}
(a N *((a N * t N N) N N * t N N) N N) N & \leq(a N *((a N * t N N) N N * t N N)) N \\
& \leq(a N *((a N * t N N) * t N N)) N \\
& =((a N * t N N) *(a N * t N N)) N \\
& =1 N \\
& =0
\end{aligned}
$$

which yields $(a N *((a N * t N N) N N * t N N) N N) N=0 \in I$. Since $a \in I$, we get $((a N *$ $t N N) N N * t N N) N \in I$. By Lemma 3.3(5) and Lemma 3.5(1), we get

$$
\begin{aligned}
(b N *((a N * t N N) N N * x N) N N) N & \leq(b N *((a N * t N N) N N * x N)) N \\
& =((a N * t N N) N N *(b N * x N)) N \\
& \leq((a N * t N N) N N *(b N * x N) N N) N \\
& =((a N * t N N) N N * t N N) N \in I
\end{aligned}
$$

which gives $(b N *((a N * t N N) N N * x N) N N) N \in I$. Since $b \in I$, we get $((a N * t N N) N N *$ $x N) N \in I$. Now, we observe

$$
\begin{aligned}
((a N * t) * x N) N & \leq((a N * t N N) * x N) N \\
& \leq((a N * t N N) N N * x N) N \in I
\end{aligned}
$$

which concludes that $((a N *(b N * x N)) * x N) N=((a N * t) * x N) N \in I$.
Conversely, assume that I satisfies the given conditions. By taking $x=y$ in the condition (1), it can be seen that $0 \in I$. Let $x, y \in X$. Suppose that $x \in I$ and $(x N * y N) N \in I$. Then we have the consequence condition (3):

$$
\begin{aligned}
y N N & =(1 * y N) N \\
& =(((x N * y N) *(x N * y N)) * y N) N \\
& =((x N *((x N * y N) * y N)) * y N) N \\
& \leq((x N *((x N * y N) N N * y N)) * y N) N \in I
\end{aligned}
$$

because of since $x \in I$ and $(x N * y N) N \in I$. By condition (2), we obtain $y N N \in I$. Since I is a semi-ideal, it yields $y \in I$. Thus I is an ideal of X.

Corollary 3.15. A strong semi-ideal I of a transitive BE-algebra X is an ideal of X if and only if it satisfies the following conditions for any $x, y \in X$:
(1) $x \in I$ and $y \leq x$ imply $y \in I$,
(2) $a, b \in I$ implies $((a N *(b N * x N)) * x N) N \in I$.

Proposition 3.16. The set-theoretic intersection of ideals (strong semi-ideals) of a transitive BEalgebra is again an ideal (strong semi-ideal).

Proof. Let $\left\{I_{\alpha}\right\}_{\alpha \in \Delta}$ be a family of ideals of X. Clearly $0 \in I_{\alpha}$ for each $\alpha \in \Delta$. Hence $0 \in \bigcap_{\alpha \in \Delta} I_{\alpha}$.
Let $x \in \bigcap_{\alpha \in \Delta} I_{\alpha}$ and $(x N * y N) N \in \bigcap_{\alpha \in \Delta} I_{\alpha}$. Then $x \in I_{\alpha}$ and $(x N * y N) N \in I_{\alpha}$ for each $\alpha \in \Delta$.
Since each I_{α} is an ideal of X, we get $y \in I_{\alpha}$ for each $\alpha \in \Delta$. Hence $y \in \bigcap_{\alpha \in \Delta} I_{\alpha}$. Therefore $\bigcap_{\alpha \in \Delta} I_{\alpha}$ is an ideal of X.

Example 3.17. Let $X=\{1, a, b, c, d, 0\}$. Define an operation $*$ on X as follows:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	b	c	d	b
b	1	a	1	c	c	a
c	1	1	b	1	b	d
d	1	1	1	1	1	c
0	1	1	1	1	1	1

Clearly $(X, *, 0,1)$ is a transitive $B E$-algebra. It is easy to check that $I_{1}=\{0, a, b\}$ and $I_{2}=$ $\{0, b, d\}$ are ideals of X. The set $I=I_{1} \cup I_{2}=\{0, a, b, d\}$ is not an ideal of X, because of $a \in I$ and $(a N * c N) N=d \in I$ but $c \notin I$.

As a generalization of Proposition 3.16, we can derive that the set-theoretic union of ideals (semi-ideals) of a transitive $B E$-algebra is again an ideal (semi-ideal) when ever the family of ideals form a chain (totally ordered set).

A homomorphism $f: X \rightarrow Y$ of bounded $B E$-algebras is called bounded if $f(0)=0$. If f is bounded, then $f(x N)=f(x * 0)=f(x) * f(0)=f(x) * 0=(f(x)) N$ for all $x \in X$. For any bounded homomorphism $f: X \rightarrow Y$, define the dual kernel of the homomorphism f as $\operatorname{Dker}(f)=\{x \in X \mid f(x)=0\}$. It is easy to check that $\operatorname{Dker}(f)=\{0\}$ whenever f is an injective homomorphism.

Lemma 3.18. Let X and Y be two bounded BE-algebras. For any bounded homomorphism $f: X \rightarrow Y$, the dual kernel is an ideal of X.

Proof. Clearly $0 \in \operatorname{Dker}(f)$. Let $x \in \operatorname{Dker}(f)$ and $(x N * y N) N \in \operatorname{Der}(f)$. Then $f(x)=0$ and $(f(x) N * f(y) N) N=f((x N * y N)) N=0$. Thus $f(y) N N=0$ and so $f(y) \leq f(y N N)=$ $f(y) N N=0$. Hence $f(y)=0$ and so $y \in \operatorname{Dker}(f)$. Therefore $\operatorname{Dker}(f)$ is an ideal of X.

Proposition 3.19. Let X and Y be two BE-algebras and $f: X \rightarrow Y$ a bounded homomorphism. Then $f^{-1}(I)$ is an ideal of X for any ideal I of Y.

Proof. Let $f: X \rightarrow Y$ be a bounded homomorphism. Suppose I is an ideal of Y. Let $x, y \in X$ be such that $x \in f^{-1}(I)$ and $(x N * y N) N \in f^{-1}(I)$. Then $f(x) \in I$ and $(f(x) N * f(y) N) N=$ $f((x N * y N) N) \in I$. Since $f(x) \in I$ and I is an ideal, we get $f(y) \in I$. Hence $y \in f^{-1}(I)$. Thus $f^{-1}(I)$ is an ideal of X.

For any filter F of a self-distributive $B E$-algebra X, it was observed in [11] that θ_{F} defined by $(x, y) \in \theta_{F} \Leftrightarrow x * y \in F$ and $y * x \in F$ is the unique congruence whose kernel is F. If X is bounded, then the quotient algebra $X / F=\left\{F_{x} \mid x \in X\right\}$ (where F_{x} is the congruence class of x) is also a bounded $B E$-algebra with smallest element F_{0} in which $F_{x} * F_{y}=F_{x * y}$ and $\left(F_{x}\right) N=F_{x N}$ for all $x, y \in X$.

Proposition 3.20. For any filter F of a self-distributive $B E$-algebra X, the congruence class F_{0} is an ideal of X.

Proof. Let F be a filter of X. Since X is self-distributive, θ_{F} is a congruence on X. Clearly $0 \in F_{0}$. Let $x \in F_{0}$ and $(x N * y N) N \in F_{0}$. Hence $x N=x * 0 \in F$ and $(x N * y N) N N=$ $(x N * y N) N * 0 \in F$. Since $(x N * y N) N N \leq x N * y N$, we get $x N * y N \in F$. Since $x N \in F$, we get $y * 0=y N \in F$. Since $0 * y=1 \in F$, we get $(y, 0) \in \theta_{F}$. Hence $y \in F_{0}$. Therefore F_{0} is an ideal of X.

4 Homomorphism theorems

In this section, we introduced a congruence on $B E$-algebras with the help of ideals. Some homomorphism theorems are derived with the help of these congruences, ideal and cartesian products of quotient algebras.

Definition 4.1. Let I be an ideal of a $B E$-algebra X. For any $x, y \in X$, define a relation θ_{I} on X as follows:

$$
(x, y) \in \theta_{I} \text { if and only if }(x * y) N \in I \text { and }(y * x) N \in I
$$

Proposition 4.2. If X is a transitive $B E$-algebra and I an ideal of X, then the above relation θ_{I} is an equivalence relation on X.

Proof. Clearly θ_{I} is reflexive and symmetric. Let $(x, y),(y, z) \in \theta_{I}$. Then $(x * y) N \in I,(y *$ $x) N \in I$ and $(y * z) N \in I,(z * y) N \in I$. By Lemma 3.3(2), we get

$$
y * z \leq(x * y) *(x * z) \leq(x * y) N N *(x * z) N N
$$

Hence $((x * y) N N *(x * z) N N) N \leq(y * z) N$. Since $(y * z) N \in I$, we get that $((x * y) N N *(x *$ $z) N N) N \in I$. Since $(x * y) N \in I$, we get $(x * z) N \in I$. Similarly, we can obtain $(z * x) N \in I$. Hence $(x, z) \in \theta_{I}$. Therefore θ_{I} is an equivalence relation on X.

Theorem 4.3. If X is a transitive $B E$-algebra and I an ideal of X, then the above relation θ_{I} is a congruence on X. Moreover θ_{I} is a unique congruence such that $I_{0}=I$, where I_{0} is the congruence class of 0 with respect to θ_{I}.

Proof. Let $(x, y) \in \theta_{I}$ and $(u, v) \in \theta_{I}$. Then $(x * y) N \in I,(y * x) N \in I,(u * v) N \in I$ and $(v * u) N \in I$. Since X is transitive, we get $x * y \leq(u * x) *(u * y)$ and so $((u * x) *(u *$ $y)) N \leq(x * y) N$. Since $(x * y) N \in I$, we get $((u * x) *(u * y)) N \in I$. Similarly, we can get $((u * y) *(u * x)) N \in I$ because of $(y * x) N \in I$. Hence both together provide us $(u * x, u * y) \in \theta_{I}$. Again, since X is transitive, we get $v * y \leq(u * v) *(u * y)$. Thus we get the following:

$$
u * v \leq(v * y) *(u * y) \leq((v * y) *(u * y)) N N
$$

Hence $((v * y) *(u * y)) N \leq(u * v) N$. Since $(u * v) N \in I$, we get $((v * y) *(u * y)) N \in I$. Similarly, we can obtain $((u * y) *(v * y)) N \in I$ because of $(v * u) N \in I$. Thus we get $(u * y, v * y) \in \theta_{I}$. Therefore θ_{I} is a congruence on X. Now, let $x \in I_{0}$. Then $x N N=(x * 0) N \in I$. Since $x \leq x N N$, we get $x \in I$. Therefore $I_{0} \subseteq I$. Again, let $x \in I$. Then $(x * 0) N=x N N \in I$. Clearly $(0 * x) N=1 N=0 \in I$. Hence $(x, 0) \in \theta_{I}$, which implies $x \in I_{0}$. Thus $I \subseteq I_{0}$. Therefore $I_{0}=I$.

From the above result, it is easy to see that the quotient algebra $X / I=\left\{I_{x} \mid x \in X\right\}$ (where I_{x} is the congruence class of x modulo θ_{I}) is a bounded $B E$-algebra in which the binary operation $*$ is defined as $I_{x} * I_{y}=I_{x * y}$ for $x, y \in X$. Moreover, the quotient algebra X / I contains the smallest element I_{0}. For any ideal I of a transitive $B E$-algebra X, it is natural to obtain the epimorphism $\nu: X \rightarrow X / I$ given by $\nu(x)=I_{x}$.
Theorem 4.4. The following are equivalent in a commutative BE-algebra.
(1) X has a unique dense element;
(2) for $x, y \in X,(x * y) N=0$ and $(y * x) N=0$ imply that $x=y$;
(3) X isomorphic to $X / \theta_{\{0\}}$.

Proof. (1) \Rightarrow (2): Assume that X has a unique dense element, precisely 1. Then $\mathcal{D}(X)=\{1\}$. Let $x, y \in X$. Suppose that $(x * y) N=0$ and $(y * x) N=0$. Then, we get $x * y \in \mathcal{D}(X)=\{1\}$ and $y * x \in \mathcal{D}(X)=\{1\}$. Hence $x \leq y$ and $y \leq x$. Since X is commutative, it concludes that $x=y$.
$(2) \Rightarrow(3)$: Assume that the condition (2) holds. We know that the natural map $\nu: X \rightarrow X / \theta_{\{0\}}$ defined by $\nu(x)=\{0\}_{x}$, for all $x \in X$, is an epimorphism. Let $\nu(x)=\nu(y)$ for $x, y \in X$. Then $\{0\}_{x}=\{0\}_{y}$. Thus, it immediately infers that $(x * y) N \in\{0\}$ and $(y * x) N \in\{0\}$. Hence by condition (2), we get $x=y$. Therefore ν is an injective and so X is isomorphic to $X / \theta_{\{0\}}$.
$(3) \Rightarrow(1)$: Assume that X is isomorphic to $X / \theta_{\{0\}}$. Let $a \neq 1$ and $a \in \mathcal{D}(X)$. Then we get $(1 * a) N=a N=0 \in\{0\}$ and $(a * 1) N=1 N=0 \in\{0\}$. Hence $(a, 1) \in \theta_{\{0\}}$, which implies $\nu(a)=\{0\}_{a}=\{0\}_{1}=\nu(1)$. Since ν is injective, we get $a=1$, which is a contradiction. Therefor X has a unique dense element.

Theorem 4.5. Let X be a transitive $B E$-algebra and I is an ideal of X. Then the quotient algebra X / θ_{I} contains an unique dense element.

Proof. Since X is transitive, it is cleared that X / θ_{I} is a transitive $B E$-algebra. Always I_{1} is a dense element of X / θ_{I}. For $1 \neq x \in X$, suppose $I_{x N}=\left(I_{x}\right) N=I_{0}$. Then $(x N, 0) \in \theta_{I}$. Hence $x N \leq x N N N=(0 N * x N N) N \in I$. Thus $(1 * x) N \in I$ and $(x * 1) N \in I$. Hence $(1, x) \in \theta_{I}$, which implies that $I_{x}=I_{1}$. Therefore I_{1} is the unique dense element of X / θ_{I}.

Theorem 4.6. Let I, J be two ideals of a transitive BE-algebra X. Then

$$
I \vee J=\{x \in X \mid a N *(b N * x N)=1 \text { for some } a \in I \text { and } b \in J\}
$$

is the smallest ideal of X which is containing both I and J.
Proof. Clearly, $0 \in I \vee J$. Let $x \in I \vee J$ and $(x N * y N) N \in I \vee J$. Then there exists $a, c \in I$ and $b, d \in J$ such that $a N *(b N * x N)=1$ and $c N *(d N *(x N * y N) N N)=1$. Then by Lemma 3.3(4), we deduce that

$$
1=c N *(d N *(x N * y N) N N) \leq c N *(d N *(x N * y N))=x N *(c N *(d N * y N)) .
$$

Hence $x N \leq c N *(d N * y N)$. Since X is transitive, we get

$$
1=a N *(b N * x N) \leq a N *(b N *(c N *(d N * y N)))=a N *(c N *(b N *(d N * y N))) .
$$

Hence $a N *(c N *(b N *(d N * y N)))=1$. Thus by Lemma 3.3(4), we get

$$
\begin{aligned}
(a N *(c N *(b N *(d N * y N) N N) N N) N N) N & \leq(a N *(c N *(b N *(d N * y N)))) N \\
& =1 N \\
& =0 \in I
\end{aligned}
$$

Hence $(a N *(c N *(b N *(d N * y N) N N) N N) N N) N \in I$ where $a, c \in I$ and $b, d \in J$. Since $a, c \in I$, we get $(b N *(d N * y N) N N) N \in I$. Put $f=(b N *(d N * y N) N N) N$. Then $f N=(b N *(d N * y N) N N) N N$. By Lemma 3.3(5), we have

$$
f N=(b N *(d N * y N) N N) N N \leq b N *(d N * y N) N N \leq b N *(d N * y N) .
$$

Hence $b N *(d N *(f N * y N))=f N *(b N *(d N * y N))=1$. Thus, we get

$$
(b N *(d N *(f N * y N))) N=0 \in J
$$

Hence $(b N *(d N *(f N * y N) N N) N N) N \leq(b N *(d N *(f N * y N))) N \in J$. Since $b, d \in J$, we get $(f N * y N) N \in J$. Put $g=(f N * y N) N$. Then $g N=(f N * y N) N N \leq f N * y N$. Hence

$$
1=(f N * y N) *(f N * y N) \leq g N *(f N * y N)=f N *(g N * y N)
$$

Since $f \in I, g \in J$, we get $y \in I \vee J$. Therefore $I \vee J$ is an ideal of X. Let $x \in I$. Clearly $x N *(0 N * x N)=x N * x N=1$. Since $0 \in J$, we get $x \in I \vee J$. Hence $I \subseteq I \vee J$. Similarly, we get $J \subseteq I \vee J$.

Let K be an ideal of X such that $I \subseteq K$ and $J \subseteq K$. Let $x \in I \vee J$. Then there exists $a \in I \subseteq K$ and $b \in J \subseteq K$ such that $a N *(b N * x N)=1$. Hence $a N *(b N * x N) N N=1$, which implies $(a N *(b N * x N) N N) N=0 \in K$. Since $a \in K$, we get $(b N * x N) N \in K$. Since $b \in K$, we get $x \in K$. Hence $I \vee J \subseteq K$. Therefore $I \vee J$ is the smallest ideal which contains both I and J.

Since the intersection of ideals is again an ideal, the following is direct:
Corollary 4.7. For any transitive BE-algebra X, the set $\mathcal{I}(X)$ of all ideals of X forms a complete lattice.

Theorem 4.8. Let I and J be two ideals of a transitive BE-algebra X. Then the mapping $f: X \rightarrow(X / I) \times(X / J)$ defined by $f(x)=\left(I_{x}, J_{x}\right)$ for all $x \in X$ is a homomorphism. Moreover, the following hold:
(1) If f is injective, then $I \cap J=\{0\}$,
(2) If f is surjective, then $I \vee J=X$.

Proof. Clearly f is well-defined. Let $x, y \in X$. Then $f(x * y)=\left(I_{x * y}, J_{x * y}\right)=\left(I_{x} * I_{y}, J_{x} *\right.$ $\left.J_{y}\right)=\left(I_{x}, J_{x}\right) *\left(I_{y}, J_{y}\right)=f(x) * f(y)$. Therefore f is a homomorphism.
(1). Suppose f is injective. Then clearly $D k e r f=\{0\}$. Now

$$
\begin{aligned}
x \in D \operatorname{ker}(f) & \Leftrightarrow f(x)=\overline{0}, \text { the smallest element in }(X / I) \times(X / J) \\
& \Leftrightarrow\left(I_{x}, J_{x}\right)=\left(I_{0}, J_{0}\right) \\
& \Leftrightarrow I_{x}=I_{0} \text { and } J_{x}=J_{0} \\
& \Leftrightarrow x N N \in I \text { and } x N N \in J \\
& \Leftrightarrow x \in I \text { and } x \in J \quad \text { since } x \leq x N N \\
& \Leftrightarrow x \in I \cap J
\end{aligned}
$$

Thus $\operatorname{Dker}(f)=I \cap J$. Therefore $I \cap J=\{0\}$ whenever f is injective.
(2). Assume that f is surjective. Clearly $\left(I_{0}, J_{1}\right) \in(X / I) \times(X / J)$. Since f is surjective, there exists $x \in X$ such that $f(x)=\left(I_{0}, J_{1}\right)$. Hence

$$
\begin{aligned}
f(x)=\left(I_{0}, J_{1}\right) & \Leftrightarrow\left(I_{x}, J_{x}\right)=\left(I_{0}, J_{1}\right) \\
& \Leftrightarrow I_{x}=I_{0} \text { and } J_{x}=J_{1} \\
& \Leftrightarrow x N N \in I \text { and } x N \in J \\
& \Leftrightarrow x \in I \text { and } x N \in J
\end{aligned}
$$

Clearly $x N *(x N N * 1 N)=x N * x N N N=1$. Since $x \in I$ and $x N \in J$, it imply that $1 \in I \vee J$. Therefore $I \vee J=X$ whenever f is surjective.

The following is an extension of the above theorem.
Corollary 4.9. Let $I^{i}, i=1,2,3, \ldots, n$ be the ideals of a transitive $B E$-algebra X. Then the mapping $f: X \rightarrow\left(X / I^{1}\right) \times\left(X / I^{2}\right) \times\left(X / I^{3}\right) \times \cdots \times\left(X / I^{n}\right)$ defined by $f(x)=\left(I_{x}^{1}, I_{x}^{2}, I_{x}^{3}, \ldots, I_{x}^{n}\right)$ for all $x \in X$ is a homomorphism. Moreover,
(1) If f is injective, then $\bigcap_{i=1}^{n} I^{i}=\{0\}$,
(2) If f is surjective, then $I^{i} \vee I^{j}=X$ for $i \neq j$.

References

[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean. Math. Soc., 27, no.2, 233-242 (2012).
[2] R. Borzooei and A.B. Saeid, Involutory BE - algebras, Journal of Mathematics and App., 37, 13-26 (2014).
[3] Z. Ciloglu and Y. Ceven, Commutative and bounded $B E$-algebras, Algebra, Volume 2013, Article ID 473714, 5 pages (2013).
[4] J. Gispert and A. Torrens, Boolean representation of bounded BCK-algebras, Soft Comput., 12, 941-954 (2008).
[5] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23, no.1, 1-26 (1979).
[6] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn., 66, no.1, 1299-1302 (2006).
[7] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon, Online, 105-111, e-2010.
[8] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome, 53(101), no. 1, 11-24 (2010).
[9] P. Sun, Homomorphism theorems on dual ideals in BCK-algebras, Soo. J. Math., 26, no.3, 309-316 (2000).
[10] A. Walendziak, On normal filters and congruence relations in BE-algebras, Commentationes Mathematicae, 52, 199-205 (2012).
[11] Y.H. Yon, S.M. Lee and K.H. Kim, On congruences and $B E$-relations in $B E$-algebras, Int. Math. Forum, 5, no.46, 2263-2270 (2010).

Author information

M. Bala Prabhakar, Department of Mathematics, Aditya Engineering College, Surampalem, East Godavari, Andhra Pradesh, 533 437, India.
E-mail: prabhakar_mb@yahoo.co.in
S. Kalesha Vali, Department of Mathematics, JNTUK University College of Engineering, Vizianagaram, Andhra Pradesh, 535 003, India.
E-mail: valijntuv@gmail.com
M. Sambasiva Rao, Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, 535 005, India.
E-mail: mssraomaths35@rediffmail.com
Received: August 15, 2020
Accepted: December 29, 2020

