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Abstract. In the present paper, we introduce the non-negative parametric variant of the
genuine Gupta-Srivastava operators, which preserve constant as well as linear functions. We
obtain the moments of the operators and then prove the basic convergence theorem. Next, the
Voronovskaja type asymptotic formula and some direct results for the above operators are dis-
cussed. Also, the rate of convergence and weighted approximation by these operators in terms
of modulus of continuity are studied. Then, we obtain pointwise estimates using the Lipschitz
type maximal function and two parameter Lipschitz-type space.

1 Introduction

In the field of mathematical analysis, Karl Weierstrass established an elegant theorem, the first
Weierstrass approximation theorem, in 1885. This theorem has specially a big role in polynomial
interpolation corresponding to every continuous function f(x) on interval [a, b]. The proof given
by Weierstrass was rigorous and difficult to understand. In 1912, Bernstein gave a simple proof of
this theorem by introducing the Bernstein polynomials with the aid of the binomial distribution,
hence for f ∈ C[0, 1], we have

Bn(f ;x) =
n∑
k=0

bn,k(x)f

(
k

n

)
, n ∈ N,

where bn,k(x) = (nk)x
k(1 − x)n−k x ∈ [0, 1] is the Bernstein basis function. Many mathemati-

cians researched in this direction and studied various modifications in several functional spaces
using different error optimization techniques.
In the year 2003, Srivastava and Gupta [30] introduced a general family of summation-integral
type operators {Gn,c} which includes some well-known operators as special cases. They ob-
tained the rate of convergence for functions of bounded variation.
For f ∈ Cγ [0,∞) := {f ∈ C[0,∞) : |f(t)| ≤ M(1 + t)γ for some M > 0, γ > 0}, Srivastava
and Gupta proposed a certain family of positive linear operators defined by

Gn,c(f ;x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f(t)dt+ pn,0(x, c)f(0), (1.1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)n,c(x) (1.2)

and

φn,c(x) =


e−nx, c = 0,
(1 + cx)−n/c, c ∈ N,
(1− x)−n, c = −1.
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Verma and Agrawal [32] introduced the generalized form of the operators (1.1) and studied some
of its approximation properties. Deo [3] gave a modification of these operators and established
the rate of convergence and Voronovskaja type asymptotic result. Recently, Acar et al. [1] intro-
duced Stancu type generalization of the operators (1.1) and obtained an estimate of the rate of
convergence for functions having derivatives of bounded variation and also studied the simulta-
neous approximation for these operators.
It is well-known that if operators preserve the linear function, one may get a better approx-
imation. In this direction very recently Gupta and Srivastava [7] proposed a general family
of positive linear operators, which preserve constant as well as linear functions for all c ∈
N ∪ {0} ∪ {−1}, which may be termed as Gupta-Srivastava operators and for all integers m
are defined as:

Ln,c(f ;x) = [n+ (m+ 1)c]
∞∑
k=1

pn+mc,k(x, c)

∫ ∞
0

pn+(m+2)c,k−1(t, c)f(t)dt

+pn+mc,0(x, c)f(0). (1.3)

Very recently, Pratap et al. [29] studied several interesting approximation properties of the oper-
ator (1.3).
It is very well known that the polynomial approximation of continuous functions has an impor-
tant role in numerical analysis. The Lagrange interpolating polynomials have a great practical
interest in approximation theory of continuous functions, but they do not provide always uniform
convergence of approximating sequences for any continuous function on a compact interval of
the real axis, no matter how the nodes are chosen.
In 1905, Borel proposed a way to obtain an approximation polynomial of a function f ∈ C[0, 1]
by using an interpolation polynomial having a similar form with the Lagrange ones and using the
nodes xn,k = k

n , k = 0, 1...n and with an appropriate selection of the basic polynomials pn,k(x).
In 1912, Bernstein had the wonderful idea to select pn,k(x) = (nk)x

k(1− x)n−k, inspired by the
binomial probability distribution. He considered the binomial probability distribution assuming
that the discrete random variable has the value f( kn) with probability pn,k(x) and then he cal-
culate the mean value. In 1969, [31], Stancu wanted to choose the nodes in another different
way, in order to obtain more flexibility. So, he considered the nodes such as, when n → ∞
the distance between two consecutive nodes and the distance between 0 and first node and also
between last node and 1 to tend all to zero. Thus, Stancu introduced the following linear positive
operators which are known as Bernstein-Stancu polynomials in literature

P (α,β)
n (f ;x) =

n∑
k=0

pn,k(x)f

(
k + α

n+ β

)
,

acting from C[0, 1] into C[0, 1], the space of all real valued continuous functions defined on
[0, 1], where n ∈ N , f ∈ C[0, 1], x ∈ [0, 1] and α, β are any two real numbers which satisfy the
condition that 0 ≤ α ≤ β.
In the recent years, Stancu type generalization of the certain operators introduced by several
researchers and obtained different type of approximation properties of many operators, we refer
some of the important papers in this direction as [1], [2], [9], [11], [15], [28] etc.
Inspired by the above work, we introduce the Stancu type generalization of the operators (1.3):

L(α,β)
n,c (f ;x) = [n+ (m+ 1)c]

∞∑
k=1

pn+mc,k(x, c)

∫ ∞
0

pn+(m+2)c,k−1(t, c)f

(
nt+ α

n+ β

)
dt

+pn+mc,0(x, c)f

(
α

n+ β

)
. (1.4)

For α = β = 0, we denote L(α,β)
n,c (f ;x) by Ln,c(f ;x).

The goal of the present paper is to study the basic convergence theorem, Voronovskaja type
asymptotic result, local approximation theorem, rate of convergence, weighted approximation
and pointwise estimation of the operators (1.4).
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2 Moment and central moment estimates

In approximation theory, moments play an important role in uniform approximation by linear
positive operators. The r-th order moment of an operator Ln(f, x) is given by Ln(er, x), where
er(t) = tr, r = 0, 1, 2, ... Additionally, the r-th order central moment of the operator Ln(f, x) is
represented as follows

Ln ((e1 − e0x)
r;x) = Ln ((t− x)r;x) .

Lemma 2.1. [7] For Ln,c(tm;x), m = 0, 1, 2, and c ∈ N ∪ {0} ∪ {−1}, we have

(i) Ln,c(1;x) = 1;

(ii) Ln,c(t;x) = x;

(iii) Ln,c(t2;x) = (n+(m+1)c)
(n+(m−1)c)x

2 + 2
(n+(m−1)c)x.

Lemma 2.2. For the operators L(α,β)
n,c (f ;x) as defined in (1.4), the following equalities hold:

(i) L(α,β)
n,c (1;x) = 1;

(ii) L(α,β)
n,c (t;x) = nx+α

n+β ;

(iii) L(α,β)
n,c (t2;x) =

{
n2(n+(m+1)c)

(n+β)2(n+(m−1)c)

}
x2 +

{
2n(n+α(n+(m−1)c)
(n+β)2(n+(m−1)c)

}
x+ α2

(n+β)2 .

Proof. For x ∈ [0,∞), in view of Lemma 2.1, we have

L(α,β)
n,c (1;x) = 1.

Next, for f(t) = t, again applying Lemma 2.1, we get

L(α,β)
n,c (t;x) =

n

n+ β
Ln,c(t;x) +

α

n+ β
=
nx+ α

n+ β
.

Proceeding similarly, we have

L(α,β)
n,c (t2;x) =

(
n

n+ β

)2

Ln,c(t
2;x) +

2nα
(n+ β)2Ln,c(t;x) +

(
α

n+ β

)2

=

{
n2(n+ (m+ 1)c)

(n+ β)2(n+ (m− 1)c)

}
x2 +

{
2n(n+ α(n+ (m− 1)c)
(n+ β)2(n+ (m− 1)c)

}
x+

α2

(n+ β)2 .

Lemma 2.3. For f ∈ CB[0,∞) (space of all bounded and continuous functions on [0,∞) en-
dowed with norm ‖ f ‖= sup{|f(x)| : x ∈ [0,∞)}), ‖ L(α,β)

n,c (f ;x) ‖≤‖ f ‖.

Proof. In view of (1.4) and Lemma 2.2, the proof of this lemma easily follows.

Remark 2.4. For every x ≥ 0, we have

L(α,β)
n,c ((t− x);x) =

α− βx
n+ β

,

and

L(α,β)
n,c

(
(t− x)2;x

)
=

{
2n2c+ nβ2 + β2mc− β2c

(n+ β)2(n+ (m− 1)c)

}
x2

+

{
2n2 − 2αβn− 2αβmc+ 2αβc

(n+ β)2(n+ (m− 1)c)

}
x+

α2

(n+ β)2

= γ(α,β)n,c (x), (say).
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3 Main results

In this section, we prove the basic convergence theorem for the operators (1.4) by using Bohman-
Korovkin criterion. We have also found estimates of the rate of convergence involving modulus
of continuity and Lipschitz function. In addition, we have studied weighted approximation and
pointwise convergence of the operators (1.4). For the readers convenience we split up this section
in more subsections.
Let ei(t) = ti, i = 0, 1, 2.

Theorem 3.1. Let f ∈ CB[0,∞). Then lim
n→∞

L(α,β)
n,c (f ;x) = f(x), uniformly in each compact

subset of [0,∞).

Proof. In view of Lemma 2.2, we get

lim
n→∞

L(α,β)
n,c (ei;x) = xi, i = 0, 1, 2,

uniformly in each compact subset of [0,∞). Applying Bohman-Korovkin theorem, it follows
that lim

n→∞
L(α,β)
n,c (f ;x) = f(x), uniformly in each compact subset of [0,∞).

3.1 Voronovskaja type result

A general Voronovskaja type theorem for a sequence of linear positive operators (Ln)n, is a limit
of the form:

lim
n→∞

αn (Ln(f ;x)− f(x)) = E(x, f ′(x), f ′′, ...).

For classical operators of approximation the usual value for αn is αn = n.
Now, we prove Voronvoskaja type theorem for the operators L(α,β)

n,c .

Theorem 3.2. Let f be bounded and integrable on [0,∞) , second derivative of f exists at a fixed
point x ∈ [0,∞), then

lim
n→∞

n
(
L(α,β)
n,c (f ;x)− f(x)

)
= (α− βx)f ′(x) + x(1 + cx)f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. From the Taylor’s theorem, we may write

f(t) = f(x) + (t− x)f ′(x) + 1
2
f ′′(x)(t− x)2 + ξ(t, x)(t− x)2, (3.1)

where ξ(t, x) is the peano form of the remainder and lim
t→x

ξ(t, x) = 0.

Applying L(α,β)
n,c (f ;x) on both sides of (3.1), we have

n
(
L(α,β)
n,c (f ;x)− f(x)

)
= nf ′(x)L(α,β)

n,c ((t− x);x) +
1
2
nf ′′(x)L(α,β)

n,c

(
(t− x)2;x

)
+nL(α,β)

n,c

(
(t− x)2ξ(t, x);x

)
.

In view of Remark 2.4, we have

lim
n→∞

nL(α,β)
n,c ((t− x);x) = α− βx (3.2)

and

lim
n→∞

nL(α,β)
n,c

(
(t− x)2;x

)
= 2x(1 + cx). (3.3)

Now, we shall show that

lim
n→∞

nL(α,β)
n,c

(
ξ(t, x)(t− x)2;x

)
= 0.
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By using Cauchy-Schwarz inequality, we have

L(α,β)
n,c

(
ξ(t, x)(t− x)2;x

)
≤
√
L
(α,β)
n,c (ξ2(t, x);x)

√
L
(α,β)
n,c ((t− x)4;x). (3.4)

We observe that ξ2(x, x) = 0 and ξ2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

L(α,β)
n,c (ξ2(t, x);x) = ξ2(x, x) = 0. (3.5)

Now, from (3.4) and (3.5) we obtain

lim
n→∞

nL(α,β)
n,c

(
ξ(t, x)(t− x)2;x

)
= 0. (3.6)

From (3.2), (3.3) and (3.6), we get the required result.

3.2 Local approximation

For CB[0,∞), let us consider the following K-functional:

K2(f ; δ) = inf
x∈W 2

∞

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2
∞ = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. By p. 177, Theorem 2.4 in [4],

there exists an absolute constant M > 0 such that

K2(f ; δ) ≤Mω2(f ;
√
δ), (3.7)

where ω2(f ;
√
δ) is second order modulus of continuity defined by

ω2(f ;
√
δ) = sup

0<|h|≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) | .

The usual modulus of smoothness (or simply modulus of continuity of first order) for f ∈
CB[0,∞) gives the maximum oscillation of f in any interval of length not exceeding δ > 0
and is defined as

ω(f, δ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) | .

Theorem 3.3. Let f ∈ CB[0,∞). Then, for every x ∈ [0,∞), we have

| L(α,β)
n,c (f ;x)− f(x) | ≤ Cω2

(
f, δ(α,β)n,c (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
,

where C is an absolute constant and

δ(α,β)n,c (x) =

(
L(α,β)
n,c ((t− x)2;x) +

(
α− βx
n+ β

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators L
(α,β)
n,c defined by

L
(α,β)
n,c (f ;x) = L(α,β)

n,c (f ;x)− f
(
nx+ α

n+ β

)
+ f(x). (3.8)

From Lemma 2.2, we observe that the operators L
(α,β)
n,c are linear and reproduce the linear func-

tions.
Hence

L
(α,β)
n,c ((t− x);x) = 0. (3.9)
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Let g ∈W 2
∞. By Taylor’s theorem, we have

g(t) = g(x) + (t− x)g′(x) +
∫ t

x

(t− v)g′′(v)dv, t ∈ [0,∞).

Applying L
(α,β)
n,c on both sides of the above equation and using (3.9), we have

L
(α,β)
n,c (g;x) = g(x) + L

(α,β)
n,c

(∫ t

x

(t− v)g′′(v)dv;x
)
.

Thus, by (3.8) we get
|L(α,β)
n,c (g;x)− g(x)|

≤ L(α,β)
n,c

(∣∣∣∣ ∫ t

x

(t− v)g
′′
(v)dv

∣∣∣∣;x)+

∣∣∣∣ ∫ nx+α
n+β

x

(
nx+ α

n+ β
− v
)
g

′′
(v)dv

∣∣∣∣
≤ L(α,β)

n,c

(∫ t

x

|t− v||g
′′
(v)|dv;x

)
+

∫ nx+α
n+β

x

∣∣∣∣nx+ α

n+ β
− v
∣∣∣∣|g′′

(v)|dv

≤
[
L(α,β)
n,c ((t− x)2;x) +

(
α− βx
n+ β

)2]
‖ g

′′
‖

≤
(
δ(α,β)n,c (x)

)2
‖ g

′′
‖ . (3.10)

On other hand, by (3.8) and Lemma 2.3, we have

|L(α,β)
n,c (f ;x)| ≤ ‖ f ‖ . (3.11)

Using (3.10) and (3.11) in (3.8), we obtain

|L(α,β)
n,c (f ;x)− f(x)| ≤ |L(α,β)

n,c (f − g;x)|+ |(f − g)(x)|+ |L(α,β)
n,c (g;x)− g(x)|

+

∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
δ(α,β)n,c (x)

)2
‖ g′′ ‖ +

∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣.
Hence, taking infimum on the right hand side over all g ∈W 2

∞, we get

| L(α,β)
n,c (f ;x)− f(x) | ≤ K2

(
f, (δ(α,β)n,c (x))2

)
+ ω

(
f,
|α− βx|
n+ β

)
.

In view of (3.7), we get

| L(α,β)
n,c (f ;x)− f(x) | ≤ Cω2

(
f, δ(α,β)n,c (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
.

Hence, the proof is completed.

3.3 Rate of convergence

Let ωb(f, δ) denote the modulus of continuity of f on the closed interval [0, b], b > 0, and defined
as

ωb(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,b]

|f(t)− f(x)|.

We observe that for a function f ∈ CB[0,∞), the modulus of continuity ωb(f, δ) tends to zero.
Now, we give a rate of convergence theorem for the operators L(α,β)

n,c .
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Theorem 3.4. Let f ∈ CB[0,∞) and ωb+1(f, δ) be its modulus of continuity on the finite interval
[0, b+ 1] ⊂ [0,∞), where b > 0. Then, we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ 4Mf (1 + b2)γ(α,β)n,c (x) + 2ωb+1

(
f,

√
γ
(α,β)
n,c (x)

)
,

where γ(α,β)n,c (x) is defined in Remark 2.4 and Mf is a constant depending only on f.

Proof. For x ∈ [0, b] and t > b+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤Mf (2 + t2 + x2) ≤Mf (t− x)2(2 + 2x+ 2x2) ≤ 4Mf (1 + b2)(t− x)2.

For x ∈ [0, b] and t ≤ b+ 1, we have

|f(t)− f(x)| ≤ ωb+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωb+1(f, δ), δ > 0.

From the above, we have

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωb+1(f, δ), δ > 0.

Thus, by applying Cauchy-Schwarz inequality, we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ 4Mf (1 + b2)(L(α,β)

n,c (t− x)2;x)

+ωb+1(f, δ)

(
1 +

1
δ
(L∗(α,β)n,c (t− x)2;x)

1
2

)

≤ 4Mf (1 + b2)γ(α,β)n,c (x) + 2ωb+1

(
f,

√
γ
(α,β)
n,c (x)

)
,

on choosing δ =
√
γ
(α,β)
n,c (x). This completes the proof of the theorem.

3.4 Weighted approximation.

Since the uniform norm is not valid to estimate the rate of convergence in the case of unbounded
function defined on the non-compact interval [0,∞), in this section we study the approximation
properties of the operators (1.4) in the weighted spaces of continuous and boundless functions
defined on the internal [0,∞).

Let Cν be the space of all continuous functions on [0,∞) with the norm ‖ f ‖ν= sup
x∈[0,∞)

|f(x)|
ν(x)

and C∗ν = {f ∈ Cν : lim
x→∞

|f(x)|
ν(x)

<∞}, where ν(x) is a weight function.

In what follows we consider ν(x) = 1 + x2.

Theorem 3.5. For each f ∈ C∗ν , we have

lim
n→∞

‖ L(α,β)
n,c (f)− f ‖ν= 0.

Proof. From [5], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖ L(α,β)
n,c (tk;x)− xk ‖ν= 0, k = 0, 1, 2. (3.12)

Since L(α,β)
n,c (1;x) = 1, the condition in (3.12) holds for k = 0.



870 Alok Kumar, Dakshita

By Lemma 2.2, we have

‖ L(α,β)
n,c (t;x)− x) ‖ν = sup

x∈[0,∞)

|L(α,β)
n,c (t;x)− x|

1 + x2

≤ β

n+ β
sup

x∈[0,∞)

x

1 + x2 +
α

n+ β
sup

x∈[0,∞)

1
1 + x2

≤ α+ β

n+ β
,

which implies that the condition in (3.12) holds for k = 1.
Similarly, we have

‖ L(α,β)
n,c (t2;x)− x2 ‖ν = sup

x∈[0,∞)

|L(α,β)
n,c (t2;x)− x2|

1 + x2

≤
∣∣∣∣ n2(n+ (m+ 1)c)
(n+ β)2(n+ (m− 1)c)

− 1
∣∣∣∣+ ∣∣∣∣2n(n+ α(n+ (m− 1)c))

(n+ β)2(n+ (m− 1)c)

∣∣∣∣
+

α2

(n+ β)2 ,

which implies that lim
n→∞

‖ L(α,β)
n,c (t2;x)− x2 ‖ν= 0, the equation (3.12) holds for k = 2.

This completes the proof of theorem.

3.5 Pointwise Estimates

In this section, we establish some pointwise estimates of the rate of convergence of the operators
L
(α,β)
n,c . First, we give the relationship between the local smoothness of f and local approxima-

tion.
We know that a function f ∈ C[0,∞) is in LipM (α) on E, α ∈ (0, 1], E⊂ [0,∞) if it satisfies
the condition

|f(t)− f(x)| ≤M |t− x|α, t ∈ [0,∞) and x ∈ E,
where M is a constant depending only on α and f .

Theorem 3.6. Let f ∈ C[0,∞) ∩ LipM (α), E ⊂ [0,∞) and α ∈ (0, 1]. Then, we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ M

((
γ(α,β)n,c (x)

)α/2
+ 2dα(x,E)

)
, x ∈ [0,∞),

where M is a constant depending on α and f and d(x,E) is the distance between x and E defined
as

d(x,E) = inf{|t− x| : t ∈ E}.
Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point x0 ∈ E such that

d(x,E) = |x− x0|.

By our hypothesis and the monotonicity of L(α,β)
n,c , we get

|L(α,β)
n,c (f ;x)− f(x)| ≤ L(α,β)

n,c (|f(t)− f(x0)|;x) + L(α,β)
n,c (|f(x)− f(x0)|;x)

≤ M
(
L(α,β)
n,c (|t− x0|α;x) + |x− x0|α

)
≤ M

(
L(α,β)
n,c (|t− x|α;x) + 2|x− x0|α

)
.
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Now, applying Hölder’s inequality with p =
2
α

and
1
q
= 1− 1

p
, we obtain

|L(α,β)
n,c (f ;x)− f(x)| ≤M

(
{L(α,β)

n,c (|t− x|2;x)}α/2 + 2dα(x,E)
)
,

from which the desired result immediate.

Next, we obtain the local direct estimate of the operators defined in (1.4), using the Lipschitz-
type maximal function of order α introduced by B. Lenze [18] as

ω̃α(f, x) = sup
t 6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|α

, x ∈ [0,∞) and α ∈ (0, 1]. (3.13)

Theorem 3.7. Let f ∈ CB[0,∞) and 0 < α ≤ 1. Then, for all x ∈ [0,∞) we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ ω̃α(f, x)

(
γ(α,β)n,c (x)

)α/2
.

Proof. From the equation (3.13), we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ ω̃α(f, x)L(α,β)

n,c (|t− x|α;x).

Applying the Hölder’s inequality with p =
2
α

and
1
q
= 1− 1

p
, we get

|L(α,β)
n,c (f ;x)− f(x)| ≤ ω̃α(f, x)L(α,β)

n,c ((t− x)2;x)
α
2 ≤ ω̃α(f, x)

(
γ(α,β)n,c (x)

)α/2
.

Thus, the proof is completed.

For a, b > 0, Özarslan and Aktuğlu [26] consider the Lipschitz-type space with two parame-
ters:

Lip
(a,b)
M (α) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|α

(t+ ax2 + bx)α/2 ; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < α ≤ 1.

Theorem 3.8. For f ∈ Lip(a,b)M (α). Then, for all x > 0, we have

|L(α,β)
n,c (f ;x)− f(x)| ≤M

(
γ
(α,β)
n,c (x)

ax2 + bx

)α/2

.

Proof. First we prove the theorem for α = 1. Then, for f ∈ Lip
(a,b)
M (1), and x ∈ [0,∞), we

have

|L(α,β)
n,c (f ;x)− f(x)| ≤ L(α,β)

n,c (|f(t)− f(x)|;x)

≤ ML(α,β)
n,c

(
|t− x|

(t+ ax2 + bx)1/2 ;x
)

≤ M

(ax2 + bx)1/2L
(α,β)
n,c (|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|L(α,β)
n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)1/2

(
L(α,β)
n,c ((t− x)2;x)

)1/2

≤ M

(
γ
(α,β)
n,c (x)

ax2 + bx

)1/2

.



872 Alok Kumar, Dakshita

Thus the result holds for α = 1.
Now, we prove that the result is true for 0 < α < 1. Then, for f ∈ Lip(a,b)M (α), and x ∈ [0,∞),
we get

|L(α,β)
n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)α/2L
(α,β)
n,c (|t− x|α;x).

Taking p = 1
α and q = p

p−1 , applying the Hölders inequality, we have

|L(α,β)
n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)α/2

(
L(α,β)
n,c (|t− x|;x)

)α
.

Finally by Cauchy-Schwarz inequality, we get

|L(α,β)
n,c (f ;x)− f(x)| ≤ M

(
γ
(α,β)
n,c (x)

ax2 + bx

)α/2

.

Thus, the proof is completed.

4 Conclusion

In this paper, we introduce the Stancu type generalization of the operators defined in (1.3). For
α = β = 0, reduced results are proved in [29]. The results of our lemmas and theorems are more
general rather than the results of any other previous proved lemmas and theorems, which will be
enrich the literate of classical approximation theory. The researchers and professionals working
or intend to work in areas of analysis and its applications will find this research article to be
quite useful. Consequently, the results so established may be found useful in several interesting
situation appearing in the literature on Mathematical Analysis and Applied Mathematics.
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