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Abstract. In this paper the results obtained in [7] are extended in three directions: they are
extended for a wider class of numerical sequences, are obtained sharper degrees of approxima-
tion, and are used some recent new means.

1 Introduction

Letp: R — [1,00) be a measurable 27 periodic function. Denote by LP(*) = LP(#)(]0,27]) the
set of all measurable 2 periodic functions f such that m,(uf) < oo for pp = pu(f) > 0, where

nMﬁ:A”mmea

L*(*) becomes a Banach space with respect to the norm

Hfm@ﬁﬂﬁ{u>0m%(f>gl}
"

If the function p(z) = p is a constant one (1 < p < o0), then the space LP(@) jg isometrically
isomorphic to the Lebesgue space LP.
Moreover, if the function p satisfies

1 <p_:=ess inf p(x), py:=ess sup p(z) < oo, (1.1)
x€[0,2n] z€[0,27]
then the function (@)
/ y4¢Y
€T =
p ( ) p(w) 1

is well defined and satisfies (1.1) itself.
The space LP(#) consists of all measurable 27 periodic functions f such that

[ gt < o
0

for all measurable functions g with m,/(g) < 1.
Denote by M(f) the Hardy-Littlewood maximal operator, defined for f € L! by

mezwﬁﬂmw,mmm,

where the supremum is taken over all intervals with z € I.
It was proved in [6] that if the function p(z) satisfies (1.1) and the condition

c 1
Ip(z) — p(y)| < 0<l|e—yl <3, (1.2)

T —Injz—y|’
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then the maximal operator M ( f) is bounded on LP(*), that s,
1M ()l pez) < Allfllpa) (1.3)

forall f € LP(*), where A is a constant depending only on p.

The set of all measurable 27 periodic functions p : R — [0, co) satisfies the conditions (1.1)
and (1.2) will be denoted by M.

Letp € M and f € L(*). The modulus of continuity of the function f is defined by equality

QP(I)(-f’ 5) = Sup ”Th(f)Hp(m)v 5 > 07
[h]<8

where
1 h
T(fia) =1 [ 15 +0) - fla)lae

The modulus of continuity Q,,(f,d) and the classical integral modulus of continuity w,(f,d)
in the Lebesgue space L are equivalent (for details see [8]).
Let f € L has the Fourier series

o0

flz) ~ % + Z:(a;C cos kxz + by sin kx) (1.4)
=1

with its n—th partial sums at the point

n

Sa(frz) = Un(f;a),

k=0

where
ag

Uo(f;x) = ?Q

Let (pn)22, be a sequence of positive real numbers. We consider the so-called Norlund means
of the sums S, (f; ) defined by

Ur(f;z) :=arcoskx + by sinkz, k=1,2,....

" m=0

where P, := 3" _ pm,p_1 := P_; := 0. Inthe case p,, = 1 forall m > 0, the means N,,(f; z)
reduced to the Cesaro mean given by equality

1 n
on(fiz) = e Z Sm(fsz).
m=0

The approximation properties of the mean o, (f; x) in classes Lip(c,p), 1 <p < +00,0 < a <
1 were established first by E. S. Quade [13]. His results are generalized by R. N. Mohapatra and
D. C. Russell [11], P. Chandra [2]-[5] and L. Leindler [9].

Letp € Mand 0 < o < 1. Very recently, A. Guven and D. Israfilov [7] defined the Lipschitz
class Lip(a, p(z)) as

Lip(a, p(x)) = {f € 1/ : Q,,)(£,6) = 0(6), 5> 0},

and gave Lple) counterparts of the results obtained by L. Leindler [9] and P. Chandra [5].
Before we write their results we need first to recall some known notions.
A sequence of positive real numbers (p,,)5° is called almost monotone decreasing (increas-
ing) if there exists a constant K, depending only on (p,,)3° such that for all n > m the inequality

Pn < Kpm (pn > Kpr,)

holds. Such sequences will be denoted by (p,,)q° € AMDS ((pn)g° € AMIS).
Among others they have proved the following.
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Theorem 1.1 ([7]). Letp € M, 0 < a < 1, f € Lip(o,p(x)) and let (p,,);°, be a sequence of
positive real numbers. If

or
(pn)2o € AMIS and (n+ 1)p, = O(P,),
then
”f - Nn(f)”p(T) = O(nia)'
holds.

Theorem 1.2 ([7]). Let p € M, f € Lip(1,p(x)) and let (p,)2°, be a sequence of positive real

numbers. If
n—1
> k| Apk| = O(Py)
k=1

or
n—1
P,
n
k=1
then

”f - N"(f)“p(at) = O(nil)'
holds forn =1,2,....

Let F be an infinite subset of the set of natural numbers N and I as the range of strictly
increasing sequence of positive integers, say F = (\(n))>2,. The Cesaro submethod C) is
defined by

(C,\x Zxk, n:1,2,...),

where (x1,)%°, is a sequence of real or complex numbers.

The C)-method yields a subsequence of the Cesaro method C and thus it is regular for any
A. A very important fact to point out here is that C'\-method is obtained by deleting a set of rows
from Cesaro matrix. An interested reader could find basic properties of C'y-method in [1] and
[12].

Next we shall consider trigonometric polynomials N (f; x) defined by (see [10])

N’\fx

Jx),

where P,\(n) = Zin(ig)pm, p_1 := P_1 := 0. In the case p,, = 1 for all m > 0, the means

N)(f:z) reduced to the A\-Cesaro mean given by equality

on(fiz) = +IZS (f;z),

where

2 sin(m + 1/2)t

1
Sm(fiw) = | f@+O)Dm(t)dt and  Dr, Zsmﬂ’_ 2sin(t/2)

Motivated from [14] we introduce two new classes of numerical sequences.

Let By k = Grripre zjg)(n)fkpi. If (Bynyx) € AMDS ((By(nyx) € AMIS), then it

is said that (py,) is an A\-almost monotone decreasing (increasing) upper mean sequence, briefly
(pr) EX—AMDUMS ((pr) € A — AMIUMS).
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Remark 1.3. Note that in particular cases for A(n) = n, n = 1,2,..., we obtain classes
A—AMDUMS = AMDUMS and A — AMIUMS = AMIUMS defined in [14]. So, the
classes A\ — AMDUMS and A — AMIUM S are generalizations of the classes AM DU M S and

AMIUM S respectively.

The main object of this paper is to prove the Theorems 1.1 and 1.2 using new means N, (f; x)
and considering new classes A — AMIUMS and A — AMIUM S, which give better degrees of

approximations than those means that are considered previously by others.

2 Helpful Lemmas

To achieve the aim, which we mentioned above, we need some helpful statements given below.

Lemma 2.1 ([7]). Let p € M. Then the estimate
lon(f) = Su(Pllp@y = O (n71), n=1,2,...,
holds for every f € Lip(1,p(x)).
Lemma 2.2 ([7]). Let p € M and 0 < o < 1. Then the estimate
1f = Su(Pllp) =0 (™), n=12,...,
holds for every f € Lip(a, p(z)).

Lemma 2.3. Let (p,,) be a positive sequence so that
(i) (pn) € \— AMDUMS oy,
(ii) (pn) € A— AMIUMS, and (\(n) + 1)py) = O(Pyn))

are satisfied. Then

>

(n)
DA(n)—k Pyn)
A= 22k o (A
2 Gine —© (o)

holds for all 0 < o < 1.

Proof. Let r = [A(n)/2] be the integer part of A(n)/2. Then under assumptions of the lemma,

then applying the summation by parts and using the inequality

G+1P -7 <pjPl, for jeN and 0<p<1,

we have
r An)
A < > (Z/\Ti)’l + (r—i—ll)“ kglp,\(n)fk
- k:; {(k +1 e (ka)a} gm”)—i * (r+11)a ;pw‘k 1
- b (e o s *
< Py ;_; alfi(g))i - (r+21) .
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If (p,) € \— AMDUMS, then

B r—1

1 2
A <
< B | 0Bre.r 2 (k+2)° M
_p o Al L2
< n pi
A (r 1) Py v (k+2)* " (r+1)
i N A(n) 1 ’
< Py |7 2P (r+ 1)+
- Aln) (’I“ + I)Px(n) ;p (7“ ) (’I" + 1)0‘

CaPrn) < CaPx(n)
(r+ 1)~ = (AMn)+ 1)’

where C,, is a positive constant that depends only on a.
If (pn) € A= AMIUMS and (X(n) + 1)px(n) = O(Py(,)), We obtain

r—1 1 )

A < Py |aBym), +
M| A”Okz:(:)(wrz)a (r+ 1)e

r—1

_Oépx(n) 1 n 2
(k+2)  (r+1)~

IN
2
E

Pxm) =5

[ aDAn)
L Prx(n)

< Py

(rt 1)l g2 } <

The proof of the lemma is completed. O

Next section will be devoted to the main results.

3 Main Results

First we verify the following statement.

Theorem 3.1. The following properties hold true:
(i) If (pm) € AMDS, then (py,) € A\ — AMIUMS,
(ii) If (pm) € AMIS, then (p,,) € A — AMDUMS,

0 25 (3£5)] = . e 2551 ) =0 (o).
1

. Aln)—1 . : Aln)—2

(iv) IfZi:(l) v ’A (%@))’ = O (1), then Zz‘:(0> ‘A (B/\(n),i)’ =0 (W)

Proof. () If (py,) € AM DS, then Kp,, > p, for m < £. For m = ¢ the implication (i) is true.
Let m < £. Then

A(n) A(n) A(n)
C+1) > po= (m+1) Y pi+(l—m) > p
i=A(n)—m i=A(n)—m i=\(n)—m
A(n)
< (m+1) Z pi + K(£ —m)prtm)—m
Li=A(n)—m
A(n) A(n)—m—1
< (m+D| Y m+K D> p
Li=A(n)—m i=A(n)—4
A(n)
< max{l,K?}(m+1) Z Di-

i=A(n)—¢
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Multiplying the above inequality by Py, we clearly obtain
Bi(n)m < max {1, K*} By(,)

(ii) If (pym) € AMIS, then p,,, < Kpy for m < £. For m = £ the implication (ii) is true. Let
m < {. Then

A(n)
(€+ ) Z bi = (m+1) Z pi + ) Z Dbi
i=A(n i=A(n)—m i=\(n)—m
[ A(n) )
> (m+1) Z pi+ E(E — M)PA(m)—m
Li=A(n)—m
[ An) 1 A(n)—m—1
> (m+1)| > pi+ e pi
Li=A(n)—m i=X(n)—¢
1 A(n)
> mln{l Kz}(m+1) Z Di
i=X(n)—¢
Multiplying the above inequality by Py, we clearly obtain
1
Bx(n),m = Bam),e-
min {1, 25 }
(iii) After some calculations we have
)\(nz)l 1 A(n)—1 1 A(n) A(n)
A (Bamai)| = ey X | +2) pi—(i+1) pi
i=0 Pxm) = i+ 1)(+2) J=A(n)—i J=A(n)—i—1
! A(n)—1 1 A(n)
= . pi— (i+ D)pr@ (3.1)
Paw & GHDG+D) | & ( A(n)
On the other side we have
Z pj— (i + Dprmy—ic1 = Z(j + 1) (®Pam)—j — Pa(n)—j—1) (3.2)
o , =
forany 0 < k < n.
Now using (3.1) and (3.2) we obtain
A(n)—1 A(n)—1 i
Z |A (B)\(n),z)‘ = ’L ¥ 2) Z(] + 1)(]))\(77,)7] - p)\(n)fjfl)
i=0 Y —— j=
1 A(n)—1 1 [
< _ )
=~ PA(n) g (Z+ 1)(Z+2) Z_:( ’p)\ p)\(n)fgfl‘
1 A(n)—1 00 1
< i+ 1) |Pa(n)—i — PA(n)—i—1] X TN LA
Py(n) 2:3‘( s A== ;(J+1)(J+2)
1 A(n)—1
= P Z ’p)\(n)fi _p/\(n)7i71| —pil -
An) 2o =0

Therefore, if 7~ ’A (%{n))’ =0 (ﬁ), then we also have Z?:(’S)_l |A (Bany)| =

O(ﬁ)



90 Xhevat Z. Krasniqi

(iv) Let r = [A(n)/2]. Taking into consideration (3.2) we get

A(n)—2 A(n)—2 :
; |A (Bamyi)| < . go ) Z+2) j:O(j+1)‘p)\(n)7j—pA<n)7j71|

r—1

1 1 N
~ Py g‘ (i+1)(i+2) JZ::O(J D IPan— = a1

1 A(n)—2

1 7
E : E 1 o ,
P 2o (it 1)(i+2) j:o(j FDIPreo=s = Pre-ic]

= Ji+ .

Under assumption of the theorem we have

r—1 0o
1
7 . 1 —i i— TN AN
1S Py, ;(H— )|px(n) DA(n)— 1|;( T +2)
| A(n)—1
= i1 Z |Pi — Dit1]
A A (m)—r
2 ! s Ao |
S NP i|Api| < <5 iA]y:O()_
Now we write
1 Aln) =2 r—1
h= Pyn) ; (i + z+2 jzo D [Pat)-5 = Pat—j—1]
1 A(n)—2 i
GrDary =V t! =70 4+ 2.
+P>\(n) ; (z‘+1)(i+2) ;j+ ) [Pam)—5 = PAm)—j-1| = +J;

Then we have

A(n)—2 r—1
(1) ! ! A(n)
J S " ’pk n Px 1|
2 Py(n) ; (i +1)2n par (r)=
A(n)—1 A(n)—1
1 An)—r—1 1
< . )
- P r+l 2 I = Py > |on
J=A(n)—r J=A(n)—r
)\( ) A(n)—1 A(n)—1
= |Ap;| < | Ap;|
APy ’j=A%:> T AP j=§:) ’
2 A(n)—1
< i|Ap;| =0 ()
NP = 1enl =05
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and
A(n)—2 ;
(2) 1 1 A
" S ) Px 1
2 Prn) g (i+1%ﬂ>§ | (n)—j—1|
1 A(n)=2 4
<
>~ PA(n) (7‘ + 1) P jzz; ’pk(n)_J pA(n)—]_1|
A(nz):_z A(n)—r
SIS pj = pj+l
P 1
A (T + 1) & -
M A(n)—r
: An) —r—1
S Pt Anl =B Ty 2 1o
P)\(n) (T + 1) ; ; J PA(n)(T -+ 1) JZI j
1 AMn)—1 ) A(n)—1 .
: Apil < Sevp ilM)-l-O().

Inserting Jz(l) and Jz(z) into J, we obtain J, = O (ﬁ) which along with J; = O (ﬁ) we

clearly find that Zj:(g)_z |A (Brny,i)| = (—) The proof of the lemma is completed. O
Theorem 3.2. Let p € M, f € Lip(a, p(x)), 0 < a < 1, and (pn)22, be a sequence of positive

real numbers. Let
(pn)9 € \— AMDUMS or

A\ B 1
holds for all n € N U {0}.

then

Proof. Since

then we can write

f(@) = N\ (f32)

m{f = Su(fix)}.

Whence, using Lemma 2.2, Lemma 2.3, and conditions (3.3) we get

A(n)
1F = N2 (Pllpa) <

: <:: e
(G

CER) )—O(M)'

Next theorem gives the same degree of approximation with different conditions from those
of Theorem 3.1, considering the case o = 1.

O
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Theorem 3.3. Let p € M, f € Lip(1,p(z)) and let (p,)}°, be a sequence of positive real
numbers. If

Z | Bx(n),m — Ba(n m+1|_0<)\(1n)>7

then forn =1,2,... the estimate

1
Hf - Nf}(f)”p(z) =0 (A(n))
holds.

Proof. According to the definition of N (f;z) the following equality is true

Ep(fi2) = Ny(fiz) - n)-m{Sm (f32) = f(2)}.

Applying the summation by parts twice we get

ENfix) = > (Sm(fiz) = Smi(fiz)) —i+ S (fi2) = f()

m=0
A(n)—1
= - (m 4+ 1) Uny1(f32) Batn),m + Sam) (f32) — f(x)
m=0
A(n)—2 m
= - (Ba(n),m — Ban),m+1 ZJ+1 i+1(fi )
m=0 7=0
1 Aln)  A(n)—1
NP ;pl ; (G + DUjsa (f12) + Samy (F32) = f(2).
Thus,
A(n)=2 m-1
||E7>L\(f)H;D(w) < Z ‘Bz\(n),m_B)\(n),m-&-l’ Z]Uj(f)
m=0 j=1 (@)
1 A(n)
B p(z)

Based on Lemma 2.1 and the equality

> iU (f2) = (A1) + 1)(Sa) (f12) = ar (f32)),
j=1

we have

—0().

p(z)

Hence, using Lemma 2.2 and the latter estimation we get

A(n)—2
1
HEn(f)Hp(a:) = O ( Z |BA(n)’m — B)\(n),m+1‘> + O (A(n)) )

m=0
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Finally, if the condition Z;\rfzz)_z | Bx(n),m — Ba(nym+1]| = O (ﬁ) is satisfied, then we obtain

1
A —
IV = £l =0 (5757)-
The proof of theorem is completed. O

Remark 3.4.If A\(n) =n,n = 1,2,..., then Theorems 3.2 and 3.3 reduce to Theorems 1.1 and
1.2, respectively. Moreover, for the same sequence Theorem 4 from [14] is an immediate result
of Theorem 3.1.

Remark 3.5. Since (A(n))™* < n~* for 0 < « < 1, then Theorems 3.2 and 3.3 give shaper
estimates than those of Theorems 1.1 and 1.2.
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