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Abstract. There are many relations between number theory and matrix theory. In this paper,

our aim is to obtain some relationships between the Padovan, Perrin and Tribonacci numbers and

upper Hessenberg matrices.

1 Introduction

Determinants and permanents are two basic parameters for matrices. Let A = [aij ] be an n× n
matrix and Sn be a symmetric group, which denotes the group of permutations over the set

{1, 2, ..., n} . The determinant of matrix A is de�ned by [1]

detA =
∑
σϵSn

sgn(σ)
n∏

i=1

aiσ(i),

where the sum ranges over all the permutations of the integers 1, 2, ..., n. It can be denoted by

sgn(σ) = ±1 the signature of σ, equal to+1 if σ is the product an even number of transposition,

and −1 otherwise. Similarly, the permanent of the matrix is de�ned by

perA =
∑
σϵSn

n∏
i=1

aiσ(i).

In natural sciences, determinant and permanent calculations are very important issues es-

pecially in mathematics and physics. There are various methods to compute determinant and

permanent in the literature. In this paper, we use the contraction method de�ned by Brualdi et

al. [2].

Let A = [aij ] be an m× n matrix with row vectors r1, r2, . . . , rm. We call A contractible on

column k, if column k contains exactly two non zero elements. Suppose that A is contractible on

column k with aik ̸= 0, ajk ̸= 0 and i ̸= j. Then the (m−1)×(n−1)matrixAij:k obtained from

A replacing row i with ajkri + aikrj and deleting row j and column k is called the contraction

of A on column k relative to rows i and j. If A is contractible on row k with aki ̸= 0, akj ̸= 0

and i ̸= j, then the matrix Ak:ij = [AT
ij:k]

T is called the contraction of A on row k relative to

columns i and j. We know that if A is a nonnegative matrix and B is a contraction of A, then we
have [2]

perA = perB. (1.1)

Padovan, Tribonacci and Perrin sequences which are popular, are recursively de�ned as fol-

low

Pn = Pn−2 + Pn−3, P0 = P1 = P2 = 1,

Tn = Tn−1 + Tn−2 + Tn−3, T0 = T1 = 0, T2 = 1,

Rn = Rn−2 +Rn−3, R0 = 3, R1 = 0, R2 = 2,
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for n > 2. The �rst few values of the sequences are shown below.

n 0 1 2 3 4 5 6 7 8 9

Pn 1 1 1 2 2 3 4 5 7 9

Tn 0 0 1 1 2 4 7 13 24 44

Rn 3 0 2 3 2 5 5 7 10 12

Previous studies pointed out that determinant and permanent of matrices and well-known

number sequences have common relations. For example, the authors in [3] derived some rela-

tionships between the Fibonacci and Lucas numbers and determinants of matrices. The authors

in [8] de�ned two Hessenberg matrices whose determinants are Pell and Perrin numbers. In [9],

the authors de�ned two upper Hessenberg matrices and they showed that permanents of these

matrices are Pell-Lucas and Jacobsthal numbers, respectively. In [5], Lee de�ned the matrix

En =



1 0 1 0 · · · 0

1 1 1 0 · · · 0

0 1 1 1
...

0 0 1 1
. . . 0

...
...

. . .
. . . 1

0 0 · · · 0 1 1


and showed that

per(En) = Ln−1,

where Ln is the nth Lucas number.

In [6], the authors found (0, 1,−1) tridiagonal matrices whose determinants and permanents

are negatively subscripted Fibonacci and Lucas numbers. Also, they give an n×n (1,−1)matrix

S, such that

perA = det(A ◦ S), (1.2)

where A◦S denotes Hadamard product of A and S. Let S be a (1,−1)matrix of order n, de�ned
with

S =



1 1 ... 1 1

−1 1 ... 1 1

1 −1 ... 1 1
...

...
. . .

...
...

1 1 ... −1 1

 . (1.3)

In [4], the author investigated general tridiagonal matrix determinants and permanents. Also

he showed that the permanent of tridiagonal matrix based on {ai} , {bi} , {ci} is equal to the

determinant of matrix based on {−ai} , {bi} , {ci}. In [7], the authors gave some determinantal

and permanental representations of k-generalized Fibonacci and Lucas numbers.

2 Main Results

In this paper our aim is to make a contribution to the subject mentioned above concerning per-

manents. In the following part of this study, upper Hessenberg matrices are introduced and per-

manents of these matrices are Padovan, Tribonacci and Perrin numbers are shown, respectively.

In the rest of the work, rth contraction of Mn is shown as M
(r)
n .

Let Wn = [wij ]n×n be an n−square Hessenberg matrix in which w11 = 2 ,w24 = 1/2 and

w(i,i+1) = 1 for i = 1, 2, . . . , n− 1 and w(i+1,i) = 1 for i = 1, 2, . . . , n− 1 and w(k,k+2) = 1 for

k = 3, 4, . . . , n− 2 and otherwise 0. That is,
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Wn =



2 1 0 0 0

1 0 1 1

2

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


. (2.1)

Theorem 2.1. Let Wn be an n-square matrix as in (2.1), then

perWn = perW (n−2)
n = Pn,

where Pn is the nth Padovan number.

Proof. By de�nition of the matrix Wn, it can be contracted on �rst column If r = 1, then

W (1)
n =



1 2 1 0 0

1 0 1 1

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


.

Due to contractions of W
(1)
n is performed based on the �rst column, it can be written

W (2)
n =



2 2 1 0 0

1 0 1 1

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


.

If this method is applied continously to the rth step, the rth contraction is obtained by

W (r)
n =



Pr+1 Pr+2 Pr 0 0

1 0 1 1

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


,
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where 1 ≤ r ≤ n− 4. Hence

W (n−3)
n =

 Pn−2 Pn−1 Pn−3

1 0 1

0 1 0

 ,

which by contraction of W
(n−3)
n on �rst column,

W (n−2)
n =

[
Pn−1 Pn

1 0

]
.

By (1.1), we have

perWn = perW (n−2)
n = Pn.

Let Un = [uij ] be an n-square matrix with u21 = 1 and u(i,i) = 1 for i = 1, 2, . . . , n and

u(i+1,i) = 1 for i = 3, 4, . . . , n − 1 and u(i,i+1) = 1 for i = 2, 3, ..., n − 1 and u(i,i+2) = 1 for

i = 1, 2, ..., n− 2 and otherwise 0. Clearly

Un =



1 0 1 0 0

1 1 1 1

0 0 1 1 1

1 1 1 1

. . .
. . .

. . .
. . .

1 1 1 1 0

1 1 1 1

1 1 1

0 0 1 1


. (2.2)

Theorem 2.2. If Un is an n-square matrix as in (2.2), then we have that

perUn = perU (n−3)
n = Tn,

where Tn is the nth Tribonacci number.

Proof. By de�nition of the matrix Un, it can be contracted on last row. If r = 1, then

U (1)
n =



1 0 1 0 0

1 1 1 1

0 0 1 1 1

1 1 1 1

. . .
. . .

. . .
. . .

1 1 1 1 0

1 1 1 1

1 1 2

0 0 1 2


.
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U
(1)
n also can be contracted according to the last row

U (2)
n =



1 0 1 0 0

1 1 1 1

0 0 1 1 1

1 1 1 1

. . .
. . .

. . .
. . .

1 1 1 1 0

1 1 1 2

1 1 3

0 0 1 4


.

With applying the same process, we have

U (r)
n =



1 0 1 0 0

1 1 1 1

0 0 1 1 1

1 1 1 1

. . .
. . .

. . .
. . .

1 1 1 1 0

1 1 1 Tr+2

1 1 Tr+1 + Tr+2

0 0 1 Tr+3


,

where 1 ≤ r ≤ n− 4. Hence

U (n−3)
n =

 1 0 Tn−1

1 1 Tn−2 + Tn−1

0 0 Tn

 .

In this matrix if we consider the Laplace expansion according to third row, we obtain

perUn = perU (n−3)
n = per

 1 0 Tn−1

1 1 Tn−2 + Tn−1

0 0 Tn

 = Tn.

Let Vn = [vij ] be an n-square upper Hessenberg matrix with v11 = v13 = 1, v21 = 2 and

v(i,i+1) = 1 for i = 1, 2, . . . , n and v(i+1,i) = 1 for i = 2, 3, . . . , n − 1 and v(i,i+2) = 1 for

i = 3, 4, ..., n− 2 and otherwise 0. Clearly

Vn =



1 1 1 0 0

2 0 1 0

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


. (2.3)
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Theorem 2.3. If Vn is an n-square matrix as in (2.3), then

perVn = perV (n−2)
n = Rn,

where Rn is nth Perrin number.

Proof. By de�nition of the matrix Vn, it can be contracted on �rst column. That is,

V (1)
n =



2 3 0 0 0

1 0 1 1

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


.

V
(1)
n also can be contracted on the �rst column. With applying the same process, in rth step, we

obtain

V (r)
n =



Rr+1 Rr+2 Rr 0 0

1 0 1 1

0 1 0 1 1

1 0 1 1

. . .
. . .

. . .
. . .

1 0 1 1 0

1 0 1 1

1 0 1

0 0 1 0


for 1 ≤ r ≤ n− 4. Hence

V (n−3)
n =

 Rn−2 Rn−1 Rn−3

1 0 1

0 1 0

 ,

which by contraction of V
(n−3)
n on �rst column gives

V (n−2)
n =

[
Rn−1 Rn

1 0

]
.

By applying (1.1) we have perVn = perV
(n−2)
n = Rn.

Corollary 2.4. For the matrices An = Wn ◦ S, Bn = Un ◦ S and Cn = Vn ◦ S we have

detAn = Pn,

detBn = Tn,

detCn = Rn.
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