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Abstract. Strong convergence and △-convergence of an implicit Ishikawa type algorithm

associated with two nonexpansive mappings on a hyperbolic metric space is established.

1 Introduction

Almost all disciplines of science deal with nonlinear problems. Therefore, �nding nonlinear

versions of results on linear domain is very much essential.

Iterative construction of �xed points is extremely important [1]. Implicit algorithms provide

better approximation of �xed points than explicit algorithms [7, 17]. The number of steps of an

algorithm also plays an important role in iterative methods. The case of two maps has a direct

link with the minimization problem [21].

Let C be a nonempty subset of a metric space (X, d) and T : C → C be a mapping. Denote

the set of �xed points of T by F (T ) . T is nonexpansive if d (Tx, Ty) ≤ d (x, y) for x, y ∈ C.

The pioneering work of Xu and Ori [23] deals with weak convergence of one-step implicit

algorithm for a �nite family of nonexpansive mappings on a Hilbert space. They posed an

open question about necessary and suf�cient conditions required for strong convergence of the

algorithm.

Kirk [11] proved a �xed point theorem for Browder's type implicit algorithm (i.e., xt =
(1− t)x+ tT (xt)) in a complete CAT (0) space.

The well-known Mann [17] and Ishikawa [7] iterative procedures are well-de�ned in a vector

space through its in-built convexity. Several mathematicians have introduced notion of convexity

in a metric space [18, 20].

It is worth mentioning that introducing and analyzing a general iterative algorithm in more

general setup is a problem of interest in many aspects [1]. Khan et al. [10] proposed and

analyzed a two-step implicit algorithm for two �nite families of nonexpansive mappings on a

hyperbolic space in the sense of Kohlenbach [14]. Recently, Khan [9] has introduced and studied

an Ishikawa algorithm of two mappings on a hyperbolic space (via Menger convexity).

In this paper, we study strong convergence and △-convergence of an implicit Ishikawa type

algorithm associated with a pair of nonexpansive mappings on a hyperbolic metric space, equipped

with Menger convexity [18].

2 Menger convexity in metric spaces

Let (X, d) be a metric space. Assume that for any x and y in X , there exists a unique metric

segment [x, y], which is an isometric copy of the real line interval [0, d(x, y)]. Denote this family

of metric segments in X by F . If for any β ∈ [0, 1], there exists a unique point z ∈ [x, y] in F
such that

d(x, z) = (1− β)d(x, y), and d(z, y) = βd(x, y),

then we denote this point z by βx ⊕ (1 − β)y. Metric spaces having this property are usually

called convex metric spaces [18]. Moreover, if we have

d
(
αp⊕ (1− α)x, αq ⊕ (1− α)y

)
≤ αd(p, q) + (1− α)d(x, y),
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for all p, q, x, y in X, and α ∈ [0, 1], then X is said to be a hyperbolic space. For q = y, the
hyperbolic inequality reduces to the convex structure inequality of Takahashi [20].

An example of linear hyperbolic space is a normed space. Hadamard manifolds [2], the

Hilbert open unit ball equipped with the hyperbolic metric [6], and CAT(0) spaces [12] are

examples of nonlinear hyperbolic spaces which play a major role in metric �xed point theory. A

subset C of a hyperbolic space X is said to be convex if [x, y] ⊂ C, whenever x, y ∈ C.

Lemma 2.1. Let X be a hyperbolic space. Suppose that α, β ∈ [0, 1] and x, y ∈ X . If z =
αx⊕ (1− α)y and w = βx⊕ (1− β)y, then d(z, w) = |α− β|d(x, y).

Proof. Without loss of generality, we assume 0 < β < α < 1 (otherwise the conclusion is

trivial). As z, w ∈ [x, y] and d(x, z) < d(x,w), so z ∈ [x,w].
Moreover, d(z, w) = d(x,w)−d(x, z) = (1−β)d(x, y)−(1−α)d(x, y) = (α−β)d(x, y).

Proposition 2.2. Let X be a hyperbolic space, {xn}, {yn} be sequences in X which converge,

respectively, to x and y, and {αn} be a sequence in [0, 1] converging to α. Then αnxn ⊕ (1 −
αn)yn converges to αx⊕ (1− α)y.

Proof. d(αnxn⊕(1−αn)yn, αx⊕(1−α)y) ≤ d(αnxn⊕(1−αn)yn, αnx⊕(1−αn)y)+d(αnx⊕
(1− αn)y, αx⊕ (1− α)y). Using Lemma 2.1 we get, d(αnxn ⊕ (1− αn)yn, αx⊕ (1− α)y) ≤
αnd(xn, x)+(1−αn)d(yn, y)+ |αn−α|d(xn.yn). Hence, limn→∞ d(αnxn⊕ (1−αn)yn, αx⊕
(1− α)y) = 0.

De�nition 2.3. Let (X, d) be a hyperbolic space. For any r > 0, a ∈ X and ε > 0, set

δ(r, ε) = inf
{
1− 1

r
d
(1
2
x⊕ 1

2
y, a

)
; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

}
.

If δ(r, ε) > 0, then X is said to be uniformly convex.

Throughout this paper we assume that if X is a uniformly convex hyperbolic space, then for

every s ≥ 0 and ε > 0, there exists η(s, ε) > 0 such that

δ(r, ε) > η(s, ε) > 0 for any r > s.

In a hyperbolic space X , an implicit Ishikawa type algorithm for nonexpansive mappings S and

T is de�ned as:

xn = αnxn−1 ⊕ (1− αn)Syn,

yn = βnxn−1 ⊕ (1− βn)Txn,
(2.1)

where {αn} and {βn} are sequences in [0, 1].

If βn = 0 and T = I (the identity mapping), then (2.1) reduces to an implicit Mann type

algorithm:

xn = αnxn−1 ⊕ (1− αn)Sxn, (2.2)

where {αn} is a sequence in [0, 1].

In order to establish that (2.1) exists, we de�ne a mapping G1 : C → C by: G1(x) =
α1x0 ⊕ (1− α1)Sy, where y = β1x0 ⊕ (1− β1) Tx. For a given x0 ∈ C, the existence of x1 is
guaranteed if G1 has a �xed point. Now for any u, v ∈ C, we have
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d(G1(u), G1(ν) =d(α1x0 ⊕ (1− α1)S(β1x0 ⊕ (1− β1) Tu),

α1x0 ⊕ (1− α1)S(β1x0 ⊕ (1− β1) Tν))

≤ (1− α1) d (S (β1x0 ⊕ (1− β1) Tu) , S (β1x0 ⊕ (1− β1) Tν))

≤ (1− α1) d (β1x0 ⊕ (1− β1) Tu , β1x0 ⊕ (1− β1) Tν )

≤ (1− α1) (1− β1) d( Tu , Tν )

≤ (1− α1) (1− β1) d( u , ν ).

Since (1− α1) (1− β1) < 1, therefore G1 is a contraction. By Banach contraction principle, G1

has a unique �xed point. Thus the existence of x1 is established. Continuing in this way, we can
establish the existence of x2, x3 and so on. Thus the implicit algorithm (2.1) is well-de�ned.

Remark 2.4. Let (X, d) be a hyperbolic space. Let C be a nonempty closed convex subset ofX.

Let S, T : C → C be nonexpansive mappings. We assume that F = F (S) ∩ F (T ) ̸= ϕ. Let
x0 ∈ C and p ∈ F . Set r = d(x0, p). Then

C(x0) = C ∩B(p, r) = {x ∈ C; d(p, x) ≤ r}

is nonempty and invariant under both S and T . So in the sequel, we assume that C is bounded

provided S and T have a common �xed point.

Lemma 2.5. Let C be a nonempty closed convex subset of a hyperbolic space X. Let S, T :

C → C be nonexpansive mappings. If {xn} is de�ned by (2.1), then lim
n→∞

d(xn, p) exists for any

p ∈ F .

Proof.

d (xn, p) =d (αnxn−1 ⊕ (1− αn)Syn, p)

≤αnd (xn−1, p) + (1− αn) d (Syn, p)

≤αnd (xn−1, p) + (1− αn) d (yn, p)

=αnd (xn−1, p) + (1− αn) d (βnxn−1 ⊕ (1− βn)Txn, p)

≤αnd (xn−1, p) + (1− αn) [βnd ( xn−1, p) + (1− βn) d (Txn, p)]

≤αnd (xn−1, p) + (1− αn) [βnd ( xn−1, p) + (1− βn) d ( xn, p)] ,

(2.3)

or,

[αn + (1− αn)βn] d ( xn, p) ≤ [αn + (1− αn)βn] d ( xn−1, p)

hence,

d (xn, p) ≤ d (xn−1, p) . (2.4)

This proves that {d(xn, p)} is decreasing which implies that lim
n→∞

d(xn, p) exists.

Let {xn} be a bounded sequence in a metric space X and C be a nonempty subset of X.

De�ne r (., {xn}) : C → [0,∞), by:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius ρC of {xn} with respect to C is given by

ρC = inf
{
r(x, {xn}) : x ∈ C

}
.

The asymptotic radius of {xn}with respect toX will be denoted by ρ. A point ξ ∈ C is said to be

an asymptotic center of {xn} with respect to C if r(ξ, {xn}) = r(C, {xn}) = min{r(x, {xn}) :
x ∈ C}. We denote by A(C, {xn}), the set of asymptotic centers of {xn} with respect to C.
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When C = X, we call ξ an asymptotic center of {xn} and simply use the notation A ({xn}). In
general, the set A(C, {xn}) of asymptotic centers of a bounded sequence {xn} may be empty or

may even contain in�nitely many points.

The D−convergence, introduced several years ago independently by Kuczumow [15] and

Lim [16], behaves in CAT (0) spaces as weak convergence in Banach spaces.

De�nition 2.6. A bounded sequence {xn} inX is said to D−converge to x ∈ X if x is the unique

asymptotic center of every subsequence {un} of {xn}. Symbolically, xn
D→ x.

We study strong convergence of the algorithm (2.1) in strictly convex hyperbolic spaces and

its D−convergence in uniformly convex hyperbolic spaces. It is remarked that Takahashi and

Tamura [22] have required the domain of mappings to be a Banach space satisfying Opial's con-

dition or whose norm is Fréchet differentiable to get their weak convergence results. Incidently,

neither these concepts are de�ned nor we need in our results on a nonlinear domain.

We need the following known results.

Lemma 2.7. [4] Let C be a nonempty closed and convex subset of a complete uniformly convex

space X. Then every bounded sequence {xn} in X has a unique asymptotic center with respect

to C.

Lemma 2.8. [3] If {xn} is a bounded sequence in a complete uniformly convex space X with

A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and the sequence

{d(xn, u)} converges, then x = u.

Remark 2.9. If (X, d) is uniformly convex, then (X, d) is strictly convex, i.e., whenever

d
(
αx⊕ (1− α)y, a

)
= d(x, a) = d(y, a)

for α ∈ (0, 1) and x, y, a ∈ X, then we must have x = y.

Lemma 2.10. [8] Let (X, d) be a uniformly convex hyperbolic space. Let R ∈ [0,+∞) be such
that lim sup

n→∞
d(xn, a) ≤ R, lim sup

n→∞
d(yn, a) ≤ R, and

lim
n→∞

d
(
a, αnxn ⊕ (1− αn)yn

)
= R,

where αn ∈ [a, b], with 0 < a ≤ b < 1. Then we have

lim
n→∞

d(xn, yn) = 0.

A subset C of a metric space X is Chebyshev if for every x ∈ X, there exists c0 ∈ C such

that d (c0, x) < d (c, x) for all c ∈ C, c ̸= c0. In other words, for each point of the space, there

is a well-de�ned nearest point of C . So we de�ne the nearest point projection P : X → C by

sending x to c0.

Lemma 2.11. [8] Let (X, d) be a complete uniformly convex hyperbolic space. LetC be nonempty

convex and closed subset of X . Let x ∈ X be such that d(x,C) < ∞. Then there exists a unique

best approximant of x in C, i.e., there exists a unique c0 ∈ C such that

d(x, c0) = d(x,C) = inf{d(x, c); c ∈ C},

i.e., C is Chebyshev.

3 Convergence in strictly convex hyperbolic spaces

In this section, X is a strictly convex hyperbolic space.

Theorem 3.1. Let C be a nonempty bounded closed and convex subset of X . Let S, T : C → C
be nonexpansive mappings. Assume that F ̸= ∅. Let x0 ∈ C and {xn} be given by (2.1). Then

the following holds:

If αn and βn ∈ [a, b], with 0 < a ≤ b < 1, then xni → y implies y ∈ F . In this case, we have

xn → y.
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Proof. Assume that xni → y. Let p ∈ F . Without loss of generality, we may assume lim
n→∞

αni =

α and lim
n→∞

βni = β. By Lemma 2.5, limn→∞ d (xn, p) exists. Hence,

lim
n→∞

d (xn, p) = lim
n→∞

d (xni , p) = d(y, p).

The inequalities (2.3) and (2.4) and the conclusion of Proposition 2.1 imply:

d(y, p) = d(αy ⊕ (1− α)S(βy ⊕ (1− β)Ty), p) (3.1)

= αd(y, p) + (1− α)d(S(βy ⊕ (1− β)Ty), p) (3.2)

= αd(y, p) + (1− α)d(βy ⊕ (1− β)Ty, p) (3.3)

= αd(y, p) + (1− α)[βd( y, p) + (1− β)d(Ty, p)]. (3.4)

Set r = d(y, p). Without loss of generality, we may assume r > 0 (otherwise the conclusion

is trivial).

From (3.4),

r = αr + (1− α)[βr + (1− β)d(Ty, p)],

hence,

d(Ty, p) = r. (3.5)

From (3.3),

r = αr + (1− α)d(βy ⊕ (1− β)Ty, p),

hence,

r = d(βy ⊕ (1− β)Ty, p). (3.6)

The strict convexity of X implies,

Ty = y. (3.7)

Also, from (3.2),

r = αr + (1− α)d(Sy, p),

hence,

r = d(Sy, p). (3.8)

Moreover, from (3.1),

r = d(αy ⊕ (1− α)Sy, p),

The strict convexity of X implies

Sy = y. (3.9)

Therefore, (3.7) and (3.9) imply that y ∈ F .
Now by Lemma 2.2,

lim
n→∞

d(xn, y) = lim
n→∞

d(xni , y) = 0,

and so xn → y.

Remark 3.2. Let C be a nonempty bounded closed and convex subset of X. Let S : C → C be

a nonexpansive mapping. Assume that F (S) ̸= ∅. Let x0 ∈ C and {xn} be given by (2.2). Then
the following holds:

If αn ∈ [a, b], with 0 < a ≤ b < 1, then xni → y implies y ∈ F (S). In this case, we have

xn → y.

If we assume compactness, then Theorem 3.1 implies the following result.
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Theorem 3.3. Let C be a nonempty bounded closed and convex subset of X . Let S, T : C → C
be nonexpansive mappings. Assume that F ̸= ∅. Fix x0 ∈ C. Assume that co {{x0} ∪ S (C) ∪ T (C)}
is a compact subset of C. De�ne {xn} as in (2.1) where αn and βn ∈ [a, b], with 0 < a ≤ b < 1,

and x0 is the initial element of the sequence. Then {xn} converges strongly to a common �xed

point of S and T.

Proof. As xn ∈ co {{x0} ∪ S (C) ∪ T (C)} (compact), so {xn} has a convergent subsequence

{xni}, i.e., xni → z. By Theorem 3.2, we have z ∈ F and xn → z.

4 Convergence in uniformly convex hyperbolic spaces

In this section, X is a uniformly convex hyperbolic space.

Lemma 4.1. Let C be a nonempty closed convex subset of X and let T and S be nonexpansive

selfmappings on C with F ̸= ϕ. If for the sequence {xn} in (2.1), αn and βn ∈ [a, b], with
0 < a ≤ b < 1, then we have,

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, Sxn) = 0.

i.e., {xn} is an approximate common �xed point sequence for T and S.

Proof. Let p ∈ F . Then by Lemma 2.5, limn→∞ d(xn, p) exists. Set r = lim
n→∞

d(xn, p). If

r = 0, then the conclusion is trivial. Therefore, we assume that r > 0.

From (2.1),

d (xn, p) =d (αnxn−1 ⊕ (1− αn)Syn, p)

≤αnd (xn−1, p) + (1− αn) d (Syn, p)

≤αnd (xn−1, p) + (1− αn) d ( yn, p) .

Taking lim inf on both sides in the above estimate, we have

r ≤ lim inf
n→∞

d ( yn, p) . (4.1)

Moreover,

d (yn, p) =d (βnxn−1 ⊕ (1− βn)Txn, p)

≤βnd ( xn−1, p) + (1− βn) d (Txn, p)

≤βnd ( xn−1, p) + (1− βn) d ( xn, p) .

Taking lim sup on both sides in the above estimate, we have

lim sup
n→∞

d ( yn, p) ≤ r. (4.2)

Therefore, from (4.1) and (4.2)

lim
n→∞

d ( yn, p) = r. (4.3)

Next,

lim
n→∞

d (xn, p) = lim
n→∞

d (αnxn−1 ⊕ (1− αn)Syn, p) = r.

So by Lemma 2.5 , we have

lim
n→∞

d (xn−1, Syn) = 0. (4.4)

Also,

lim
n→∞

d (yn, p) = lim
n→∞

d (βnxn−1 ⊕ (1− βn)Txn, p) = r,
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gives by Lemma 2.5,

lim
n→∞

d (xn−1, Txn) = 0. (4.5)

As,

d (xn, xn−1) =d (αnxn−1 ⊕ (1− αn)Syn, xn−1)

≤ (1− αn) d (Syn, xn−1) ,

so by (4.4),

lim
n→∞

d (xn, xn−1) = 0. (4.6)

Moreover,

d (Txn, xn) ≤ d (Txn, xn−1) + d ( xn−1, xn) ,

hence, by (4.5) and (4.6),

lim
n→∞

d (Txn, xn) = 0. (4.7)

Finally,

d (Sxn, xn) ≤ d (Sxn, Syn) + d (Syn, xn−1) + d (xn−1, xn) ,

gives by (4.4) and (4.6),

lim
n→∞

d (Sxn, xn) ≤ lim
n→∞

d (Sxn, Syn)

≤ lim
n→∞

d ( xn, yn)

= lim
n→∞

d ( xn, βnxn−1 ⊕ (1− βn)Txn)

≤ lim
n→∞

(βnd ( xn, xn−1) + (1− βn) d ( xn, Txn)).

This implies by (4.6) and (4.7),

lim
n→∞

d (Sxn, xn) = 0. (4.8)

The result follows from (4.7) and (4.8).

As a direct consequence of Lemma 4.1, we establish D-convergence of the algorithm (2.1).

Theorem 4.2. If X is complete, C a nonempty closed convex subset of X, and T , S are non-

expansive selfmappings on C with F ̸= ϕ. Then the sequence {xn} in (2.1), △−converges to a

common �xed point of T and S.

Proof. As {xn} is bounded, so by Lemma 2.7, {xn} has a unique asymptotic center, that is,

A({xn}) = {x}. Let {un} be any subsequence of {xn} such that A({un}) = {u}. Now by

Lemma 4.1, we have limn→∞ d(un, Tun) = 0 = limn→∞ d(un, Sun).
We claim that u is a common �xed point of T and S.

Clearly,

d (Tu, un) ≤ d (Tu, Tun) + d (Tun, un) ,

Taking limsup,

lim sup
n→∞

d (Tu, un) ≤ lim sup
n→∞

d (u, un) ,

we get, r(Tu, un) ≤ r(u, un). i. e., Tu ∈ A(un). Hence, Tu = u. Similarly, we can show

that Su = u.

Therefore, u is the common �xed point of T and S.
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Suppose x ̸= u. By the uniqueness of asymptotic centers,

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u).

Since limn→∞ d(xn, u) exists. Therefore,

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, u),

a contradiction. Hence x = u. Since {un} is an arbitrary subsequence of {xn}, therefore
A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn} △−converges to a

common �xed point of T and S.

Remark 4.3. Let X and C be as in Theorem 4.1 and let S be a nonexpansive selfmapping on

C with F (S) ̸= ϕ. Then the sequence {xn} in (2.2), △−converges to a �xed point of S.

Using the concept of near point projection, we establish the following amazing convergence

result.

Theorem 4.4. LetX, C, S, T , and F be as in Theorem 4.1. Let P be the nearest point projection

of C onto F . For an initial value x0 ∈ C, de�ne {xn} as in (2.1), where αn and βn ∈ [a, b], with
0 < a ≤ b < 1. Then {Pxn} converges strongly to the asymptotic center of {xn}.

Proof. By calculations similar to those in the proof of Lemma 2.2 and mathematical induction,

we get

d (Pxn−1, xn−1+m) ≤ d (Pxn−1, xn−1) , for m ≥ 1, n ≥ 1. (4.9)

We know by Theorem 4.2 that {xn} D-converges to y ∈ F and {d(xn, y)} converges by

Lemma 2.2. Now Lemmas 2.3 and 2.4 imply that A({xn}) = {y}.
Let us prove that {Pxn} converges strongly to y. Assume not, i.e., there exist ε > 0 and a

subsequence {Pxni} such that d(Pxni , y) ≥ ε, for any ni ≥ 1. We must have R = d(x0, y) > 0,

otherwise {xn} is a constant sequence. From
d(xni , y) ≤ d(xni , y)

d(xni , Pxni) ≤ d(xni , y)

d(Pxni , y) ≥ ε = d(xni , y)
ε

d(xni , y)
≥ d(xni , y)

ε

R

we get

d

(
xni ,

1

2
Pxni ⊕

1

2
y

)
≤ d(xni , y)

(
1− δ

(
d(xni , y),

ε

R

))
,

for any ni ≥ 1. Using the properties of the modulus of uniform convexity, there exists η > 0

such that

δ
(
d(xni , y),

ε

R

)
≥ η,

for any ni ≥ 1. Hence

d

(
xni ,

1

2
Pxni ⊕

1

2
y

)
≤ d(xni , y) (1− η) ,

for any ni ≥ 1. Using the de�nition of the nearest point projection P , we get

d (xni , Pxni) ≤ d(xni , y) (1− η) ,

for any ni ≥ 1. Using the inequality (4.9), we get

d (xni+m, Pxni) ≤ d(xni , y) (1− η) ,
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for any ni ≥ 1, and m ≥ 1. As Pxni ∈ F ,so {d(xn, Pxni} is decreasing (in n and �xed ni).

Hence

lim sup
m→∞

d (xni+m, Pxni) = lim
n→∞

d (xn, Pxni) ≤ d(xni , y) (1− η) ,

for any ni ≥ 1. Since y is the asymptotic center of {xn}, we get

lim
n→∞

d (xn, y) ≤ lim
n→∞

d (xn, Pxni) ≤ d(xni , y) (1− η) ,

for any ni ≥ 1. Finally, since y ∈ F , if we let ni → ∞, we get

lim
n→∞

d (xn, y) ≤ lim
n→∞

d (xn, y) (1− η) .

From ε ≤ d(xni , Pxni) ≤ d(xni , y), we conclude that ε ≤ lim
n→∞

d (xn, y), a contradiction.

Therefore {Pxn} converges strongly to y.

Remark 4.5. Let X , C, S, P , and F be as in Theorem 4.1. For an initial value x0 ∈ C, de�ne

{xn} as in (2.2), where αn ∈ [a, b], with 0 < a ≤ b < 1. Then {Pxn} converges strongly to the

asymptotic center of {xn}.

Remark 4.6. (i) It is shown by Khamsi and Khan [8] that CAT(0) spaces are uniformly convex

with

δ(r, ε) = 1−
√
1− ε2

4
.

Hence, Theorem 4.1 sets analogue of Proposition 3.7 of Kirk and Panyanak [13] for two

nonexpansive mappings on a uniformly convex hyperbolic space.

(ii) Theorem 4.1, generalizes Theorem 3.3 of Plubtieng et al. [19] for two nonexpansive map-

pings on a uniformly convex hyperbolic space.

(iii) Theorems 3.1 and 4.2 extend the corresponding results of Takahashi and Tamura [22] to a

nonlinear domain for the implicit algorithm (2.1).
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