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Abstract. In this paper, we consider three-dimensional almost coKähler manifold M 3 sat-

isfying ∇ξh = 0. We prove that the Ricci tensor of M3 is cyclic-parallel if and only if M3

is conformally �at with ξ an eigenvector �eld of the Ricci operator, and this is also equivalent

to that M3 is locally isometric to either the �at Euclidean space R3 or the Riemannian product

R×N2(c), where N2(c) denotes a Kähler surface of constant curvature c ̸= 0.

1 Introduction

As a special class of almost contact metric manifolds and an analogy of Kähler manifolds, the

geometry of (almost) coKähler manifolds was introduced and studied in the last years by many

authors (see for example Blair [1], Goldberg and Yano [7], Dacko et al. [4, 6] and Olszak

[10, 11]). In the present paper, (almost) coKähler manifolds are just (almost) cosymplectic

manifolds discussed in the above earlier literatures. The main reason why the new terminology

recently was adopted widely lies in the fact that the coKähler manifolds are really the odd-

dimensional analogy of Kähler manifolds (see [8]). In a recent survey [3], the authors collected

some new results concerning (almost) coKähler manifolds both from geometrical and topological

viewpoints. It is also worth pointing out that Perrone in [12, 13] obtained some classi�cation

results of three-dimensional almost coKähler manifolds which are homogeneous or the Reeb

vector �elds are minimal. Recently, three-dimensional almost coKähler manifolds were also

studied by Wang [14].

In this paper, we investigate three-dimensional almost coKähler manifolds M3 satisfying

∇ξh = 0. An example satisfying this condition was provided in Section 3. We �rst give some

classi�cations ofM3 for which the Ricci tensor is cyclic-parallel in Section 4. As stated in Dacko

[5], it is dif�cult to give a complete classi�cation of M3 with a conformal �atness condition. In

Section 5, we obtain that a three-dimensional conformally �at almost coKähler manifold with

∇ξh = 0 and ξ being an eigenvector �eld of the Ricci operator is locally isometric to either the

�at Euclidean space R3 or the product space R ×N2(c), where N2(c) denotes a Kähler surface
of constant curvature c ̸= 0.

2 Almost coKähler manifolds

On a smooth manifoldM2n+1 of dimensional 2n+ 1, if there exist a (1, 1)-type tensor �eld ϕ, a
global vector �eld ξ and a 1-form η such that

ϕ2 = −id+ η ⊗ ξ, η(ξ) = 1, (2.1)

where id denotes the identity endomorphism, then we say that M2n+1 admits an almost contact

structure denoted by the triplet (ϕ, ξ, η), where ξ is called the Reeb vector �eld. From (2.1) we

have ϕ(ξ) = 0, η ◦ ϕ = 0 and rank(ϕ) = 2n. We denote by (M2n+1, ϕ, ξ, η) a smooth manifold

M2n+1 endowed with an almost contact structure, which is called an almost contact manifold.
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On the product manifoldM2n+1 ×R we de�ne an almost complex structure J by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
,

where X denotes the vector �eld tangent to M2n+1, t is the coordinate of R and f is a smooth

function de�ned on productM 2n+1 ×R.
An almost contact structure is said to be normal if the above almost complex structure J is

integrable, i.e., J is a complex structure. According to Blair [2], the normality of an almost

contact structure is expressed by [ϕ, ϕ] = −2dη⊗ ξ, where [ϕ, ϕ] denotes the Nijenhuis tensor of
ϕ de�ned by

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

for any vector �eldsX,Y onM2n+1. If on an almost contact manifold there exists a Riemannian

metric g satisfying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any vector �elds X,Y , then g is said to be compatible with the associated almost contact

structure. In general, an almost contact manifold furnished with a compatible Riemannian met-

ric is said to be an almost contact metric manifold and is denoted by (M2n+1, ϕ, ξ, η, g). The

fundamental 2-form F on an almost contact metric manifold M2n+1 is de�ned by F(X,Y ) =
g(X,ϕY ) for any vector �elds X and Y .

In this paper, by an almost coKähler manifold, we mean an almost contact metric manifold

such that both the 1-form η and 2-form F are closed (see [3]). In particular, an almost coKähler

manifold is said to be a coKähler manifold if the associated almost contact structure is normal,

which is also equivalent to ∇ϕ = 0, or equivalently, ∇F = 0.

In this paper, we set h = 1

2
Lξϕ and h′ = h ◦ ϕ on an almost coKähler manifoldM 2n+1. Note

that both h and h′ are symmetric operators. Then the following formulas can be found in Olszak

[10] and Perrone [12]:

hξ = 0, hϕ+ ϕh = 0, tr(h) = tr(h′) = 0, (2.2)

∇ξϕ = 0, ∇ξ = h′, divξ = 0, (2.3)

∇ξh = −h2ϕ− ϕl, (2.4)

ϕlϕ− l = 2h2, (2.5)

where l := R(· , ξ)ξ is the Jacobi operator along the Reeb vector �eld and the Riemannian

curvature tensor R is de�ned by R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ − ∇[X,Y ]Z, and tr and div

denote the trace and divergence operators, respectively.

3 Three dimensional almost coKähler manifolds with∇ξh = 0

Throughout this paper, we denote by (M3, ϕ, ξ, η, g) an almost coKähler manifold of dimension

3. By using the second term of relation (2.3) we may obtain (Lξg)(X,Y ) = 2g(h′X,Y ), this
means that ξ is a Killing vector �eld if and only if h = 0. Then, from Goldberg and Yano [7,

Proposition 3] we know that a three-dimensional almost coKähler manifold is coKähler if and

only if h is vanishing. However, the converse of this assertion is not necessarily true in case of

dimension greater than three (for more details see [3]).

Proposition 3.1. On any 3-dimension almost coKähler manifold, the following four conditions

are equivalent.

∇ξh = 0, ∇ξl = 0, h2 + l = 0, ϕl = lϕ. (3.1)
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Proof. Firstly, the equivalence between ∇ξh = 0 and ∇ξl = 0 was already proved by Perrone

[12, Lemma 3.1]. If ∇ξh = 0, using it in (2.4) gives that h2 = ϕlϕ and using this in (2.5) yields

the third term of relation (3.1). Conversely, using h2 = −l in (2.5) and (2.4) we obtain∇ξh = 0.

By (2.5), the equivalence between the last two terms of relation (3.1) is easy to check.

In what follows, we shall study 3-dimensional almost coKähler manifolds M3 satisfying

∇ξh = 0. Obviously, on any 3-dimensional coKähler manifold, such a condition holds trivially

because of vanishing of h. Next, we present a non-trivial example as follows.

Example 3.2. LetM3 be an almost coKähler manifold of dimension 3 with the Reeb vector �eld

ξ belonging to the k-nullity distribution (see [4]), that is,

R(X,Y )ξ = k(η(Y )X − η(X)Y ) (3.2)

for any vector �elds X,Y , where k is a non-zero constant. If k in the above relation is a smooth

function, Dacko in [4] proved that k must be a constant. From relation (3.2) we have l = −kϕ2.

Using it in equation (2.5) we have h2 = kϕ2, hence k is a negative constant and M3 is non-

coKähler. Using this in equation (2.4) gives that ∇ξh = 0.

Let U1 be the open subset of M 3 on which h ̸= 0 and U2 the open subset de�ned by U2 =
{p ∈ M3 : h = 0 in a neighborhood of p}. Therefore, U1 ∪ U2 is an open dense subset of M3.

For any point p ∈ U1 ∪ U2, we may �nd a local orthonormal basis {ξ, e1, e2 = ϕe1} of three

distinct unit eigenvector �elds of h in certain neighborhood of p. On U1 we may assume that

he1 = λe1 and hence he2 = −λe2, where λ is a positive function, continuous onM3 and smooth

on U1 ∪ U2. Using ∇ξh = 0, according to [13, Lemma 2.1] we have the following

Lemma 3.3. On U1 we have

∇ξe1 = 0, ∇ξe2 = 0, ∇e1ξ = −λe2, ∇e2ξ = −λe1,

∇e1e1 =
1

2λ

(
e2(λ) + σ(e1)

)
e2, ∇e2e2 =

1

2λ

(
e1(λ) + σ(e2)

)
e1,

∇e2e1 = λξ − 1

2λ

(
e1(λ) + σ(e2)

)
e2, ∇e1e2 = λξ − 1

2λ

(
e2(λ) + σ(e1)

)
e1,

where σ is an 1-form de�ned by σ(·) = S(· , ξ) and S denotes the Ricci tensor.

Using Lemma 3.3, the Ricci operator Q can be expressed (see [13]) on U1 by
Qξ = −2λ2ξ + σ(e1)e1 + σ(e2)e2,

Qe1 = σ(e1)ξ +
1

2

(
r + 2λ2

)
e1,

Qe2 = σ(e2)ξ +
1

2

(
r + 2λ2

)
e2,

(3.3)

with respect to the local basis {ξ, e1, e2}, where r denotes the scalar curvature.

4 Cyclic-parallel Ricci tensor

In this section, we shall classify three-dimensional almost coKähler manifolds whose Ricci ten-

sor is cyclic-parallel, that is,

g((∇XQ)Y, Z) + g((∇Y Q)Z,X) + g((∇ZQ)X,Y ) = 0 (4.1)

for any vector �elds X,Y and Z. Making use of the well-known formula divQ = 1

2
grad(r) and

the symmetry of the Ricci tensor in equation (4.1), we have

Lemma 4.1. The scalar curvature of a Riemannian manifold with cyclic-parallel Ricci tensor is

a constant.

Before giving our main result, we �rst prove the following
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Proposition 4.2. A 3-dimensional coKähler manifold with cyclic-parallel Ricci tensor is locally

isometric to either the �at Euclidean space R3 or the product space R × N2(c), where N2(c)
denotes a Kähler surface of constant curvature c ̸= 0.

Proof. Recall that on any three-dimensional Riemannian manifold, the following relation

R(X,Y )Z =g(Y,Z)QX − g(X,Z)QY + g(QY,Z)X

− g(QX,Z)Y − r

2
(g(Y, Z)X − g(X,Z)Y )

(4.2)

holds for any vector �elds X,Y and Z. On a three-dimensional coKähler manifold, using h = 0

in the second term of relation (2.3) gives that Qξ = 0 and also l = 0. Thus, putting Y = Z = ξ
in equation (4.2) gives that

Q =
r

2
id− r

2
η ⊗ ξ.

Taking the covariant derivative of the above relation and using the second term of relation (2.3),

we have

(∇XQ)Y =
1

2
X(r)Y − 1

2
X(r)η(Y )ξ (4.3)

for any vector �eldsX,Y . Applying Lemma 4.1 on equation (4.3), it follows that the Ricci tensor

is symmetric and henceM3 is locally symmetric. According to Perrone [12, Proposition 3.1] we

know that any 3-dimensional locally symmetric almost coKähler manifold is locally isometric to

either the �at Euclidean space R3 or the Riemannian product R×N2(c), where N2(c) denotes a
Kähler surface of constant curvature c ̸= 0. This completes the proof.

Using Proposition 4.2 we obtain directly the following

Corollary 4.3. Any 3-dimensional coKähler manifold with constant scalar curvature is locally

isometric to either the �at Euclidean space R3 or the Riemannian product R × N2(c), where
N2(c) denotes a Kähler surface of constant curvature c ̸= 0.

Applying the above results, we may present our main results as follows:

Theorem 4.4. Let M3 be a 3-dimensional almost coKähler manifold satisfying ∇ξh = 0. Sup-

pose that the Ricci tensor of M3 is cyclic-parallel. Then, M3 is locally isometric to either the

�at Euclidean space R3 or the product R × N2(c), where N2(c) denotes a Kähler surface of

constant curvature c ̸= 0.

Proof. If U1 is an empty subset, i.e., M3 is a coKähler manifold, then the proof follows from

Lemma 4.1 and Proposition 4.2. Next, we consider the case that U1 is a non-empty subset and

λ on it is a positive smooth function. Using ∇ξh = 0, it follows that ξ(λ) = 0. Thus, on U1 by

applying Lemma 3.3 and relation (3.3) we obtain the following relations.

(∇ξQ)ξ = ξ(σ(e1))e1 + ξ(σ(e2))e2. (4.4)

(∇ξQ)e1 = ξ(σ(e1))ξ +
1

2
ξ(r)e1. (4.5)

(∇ξQ)e2 = ξ(σ(e2))ξ +
1

2
ξ(r)e2. (4.6)

(∇e1Q)e1 =
(
e1(σ(e1))−

1

2λ
σ(e2)(e2(λ) + σ(e1))

)
ξ

+
(1
2
e1(r) + 2λe1(λ)

)
e1 − λσ(e1)e2.

(4.7)

(∇e2Q)e2 =
(
e2(σ(e2))−

1

2λ
σ(e1)(e1(λ) + σ(e2))

)
ξ

− λσ(e2)e1 +
(1
2
e2(r) + 2λe2(λ)

)
e2.

(4.8)
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(∇e1Q)e2 =
(
e1(σ(e2)) +

1

2
λ(r + 6λ2) +

1

2λ
σ(e1)(e2(λ) + σ(e1))

)
ξ

− λσ(e1)e1 −
(
2λσ(e2)−

1

2
e1(r)− 2λe1(λ)

)
e2.

(4.9)

(∇e2Q)e1 =
(
e2(σ(e1)) +

1

2
λ(r + 6λ2) +

1

2λ
σ(e2)(e1(λ) + σ(e2))

)
ξ

−
(
2λσ(e1)−

1

2
e2(r)− 2λe2(λ)

)
e1 − λσ(e2)e2.

(4.10)

(∇e1Q)ξ

=2λ
(
σ(e2)− 2e1(λ)

)
ξ

+
(
e1(σ(e1))−

1

2λ
σ(e2)(e2(λ) + σ(e1))

)
e1

+
(
2λ3 + e1(σ(e2)) +

1

2
λ(r + 2λ2) +

1

2λ
σ(e1)(e2(λ) + σ(e1))

)
e2.

(4.11)

(∇e2Q)ξ

=2λ
(
σ(e1)− 2e2(λ)

)
ξ

+
(
e2(σ(e2))−

1

2λ
σ(e1)(e1(λ) + σ(e2))

)
e2

+
(
2λ3 + e2(σ(e1)) +

1

2
λ(r + 2λ2) +

1

2λ
σ(e2)(e1(λ) + σ(e2))

)
e1.

(4.12)

Firstly, putting X = Y = Z in equation (4.1) then it follows that

g((∇XQ)X,X) = 0 (4.13)

for any vector �eldX. Therefore, applying Lemma 4.1 we obtain from relations (4.4) and (4.7)-

(4.8) that λ is a global constant, where we have used that λ > 0 on U1 and λ is continuous. Since

the scalar curvature r is a constant, by using (4.4) and (4.7)-(4.8) in the well-known formula

divQ = 1

2
grad(r) we have

ξ(σ(e1))− λσ(e2) = 0,

ξ(σ(e2))− λσ(e1) = 0,

e1(σ(e1)) + e2(σ(e2)) =
1

λσ(e1)σ(e2).

(4.14)

Next, putting Y = Z into equation (4.1) and using the symmetry of Ricci tensor we have

g((∇XQ)Y + 2(∇Y Q)X,Y ) = 0 (4.15)

for any vector �eldX,Y . Then, puttingX = e1, Y = ξ andX = ξ, Y = e1 into equation (4.15),
respectively, from relations (4.5) and (4.11) we have that{

λσ(e2) + ξ(σ(e1)) = 0,

e1(σ(e1))− 1

2λσ(e2)σ(e1) = 0.
(4.16)

Similarly, puttingX = e2, Y = ξ andX = ξ, Y = e2 into equation (4.15), respectively, from
relations (4.6) and (4.12) we have that{

λσ(e1) + ξ(σ(e2)) = 0,

e2(σ(e2))− 1

2λσ(e1)σ(e2) = 0.
(4.17)

Due to λ > 0 on U1, from the �rst terms of (4.14) and (4.16) we get σ(e2) = 0. Similarly,

from the second term of (4.14) and the �rst term (4.17) we have that σ(e1) = 0. This means that
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ξ is an eigenvector �eld of the Ricci operator. In fact, such conclusion can also be deduced from
using (4.9)-(4.10) in (4.15).

On the other hand, if we setX = ξ, Y = e1 and Z = e2 in equation (4.1), by using equations
(4.5), (4.9) and (4.12) we have that

r + 6λ2 = 0. (4.18)

Using this in relation (3.3) we see that M3 is an Einstein manifold whose Ricci operator is

Q = −2λ2id. Thus, putting it into equation (4.2) gives thatM3 is of constant sectional curvature.

According to Olszak [11, Theorem 3] we know that any three-dimensional almost coKähler

manifold of constant sectional curvature is a locally �at coKähler manifold. It follows that

λ = 0, a contradiction.

Theorem 4.5. On a three-dimensionalalmost coKähler manifold M 3 satisfying ∇ξh = 0, the

following conditions are equivalent.

• M3 is locally symmetric.

• The Ricci tensor of M3 is parallel

• The Ricci tensor of M3 is cyclic-parallel.

• M3 is locally isometric to either the �at Euclidean space R3 or the Riemannian product

R×N2(c), where N2(c) denotes a Kähler surface of constant curvature c ̸= 0.

Proof. The proof follows from Theorem 4.5 and [12, Proposition 3.1].

Corollary 4.6. Let M3 be a 3-dimensional almost coKähler manifold such that ξ belongs to the

k-nullity distribution, where k is a smooth function on M3. If the Ricci tensor of M3 is cyclic-

parallel, then M3 is locally isometric to either the �at Euclidean space R3 or the product space

R×N2(c), where N2(c) denotes a Kähler surface of constant curvature c ̸= 0.

Proof. For the coKähler case, i.e., k = 0, the proof follows from Lemma 4.1 and Proposition

4.2. For the non-coKähler case, i.e., k ̸= 0, the proof follows from Theorem 4.4 and Example

3.2.

5 Conformal �atness

It is well-known that a three-dimensional Riemannian manifold M is said to be conformally

�at if and only if its Weyl-Schouten tensor is of Codazzi-type, or equivalently, its Ricci tensor

satis�es

(∇XQ)Y − (∇Y Q)X =
1

4
{X(r)Y − Y (r)X} (5.1)

for any vector �elds X,Y on M .

Theorem 5.1. Any 3-dimensional conformally �at coKähler manifold is locally isometric to ei-

ther the �at Euclidean space R3 or the product space R×N2(c), where N2(c) denotes a Kähler

surface of constant curvature c ̸= 0.

Proof. Let M3 be a 3-dimensional coKähler manifold, we observe that h vanishes and equation

(4.3) holds. SinceM3 is conformally �at, putting (4.3) into (5.1) yields that

X(r)Y − Y (r)X = X(r)η(Y )ξ − Y (r)η(X)ξ

for any vector �elds X and Y . Replacing Y by ϕX , where X is orthogonal to ξ, in the above

relation gives that r is invariant along the contact distribution ker η. On the other hand, letting

Y = ξ and using the formula divQ = 1

2
grad(r) in equation (4.3) gives that ξ(r) = 0. This means

that r is a constant and hence the following proof follows from Corollary 4.3.

Theorem 5.2. Let M3 be a three-dimensional conformally �at almost coKähler manifold satis-

fying ∇ξh = 0. Then ξ is an eigenvector �eld of the Ricci operator if and only if M3 is locally

isometric to either the �at Euclidean space R3 or the product space R × N2(c), where N2(c)
denotes a Kähler surface of constant curvature c ̸= 0.
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Proof. Firstly, let us consider the non-coKähler case, i.e., U1 is an non-empty subset. As shown

in Theorem 4.4, ∇ξh = 0 implies that ξ(λ) = 0. Then, puttingX = e1 and Y = ξ into (5.1) and
using (4.5) and (4.11) gives that

2λσ(e2)− 4λe1(λ)− ξ(σ(e1))− 1

4
e1(r) = 0,

e1(σ(e1))− 1

2λσ(e2)(e2(λ) + σ(e1))− 1

4
ξ(r) = 0,

2λ3 + e1(σ(e2)) +
1

2
λ(r + 2λ2) + 1

2λσ(e1)(e2(λ) + σ(e1)) = 0.

(5.2)

Similarly, putting X = e2 and Y = ξ into equation (5.1), and making use of equations (4.6)

and (4.12) gives that
2λσ(e1)− 4λe2(λ)− ξ(σ(e2))− 1

4
e2(r) = 0,

e2(σ(e2))− 1

2λσ(e1)(e1(λ) + σ(e2))− 1

4
ξ(r) = 0,

2λ3 + e2(σ(e1)) +
1

2
λ(r + 2λ2) + 1

2λσ(e2)(e1(λ) + σ(e2)) = 0.

(5.3)

Similarly, putting X = e2 and Y = e1 into equation (5.1), and making use of equations (4.9)

and (4.10) gives that
λσ(e1)− 1

4
e2(r)− 2λe2(λ) = 0,

λσ(e2)− 1

4
e1(r)− 2λe1(λ) = 0,

e2(σ(e1))− e1(σ(e2))

= 1

2λ

(
σ(e1)(e2(λ) + σ(e1))− σ(e2)(e1(λ) + σ(e2))

) (5.4)

The above three relations (5.2)-(5.4) are the necessary and suf�cient condition for a 3-dimensional

almost coKähler manifold with∇ξh = 0 to be conformally �at. Putting the second term of (5.4)

into the �rst term of (5.2) gives that

ξ(σ(e1)) = λσ(e2)− 2λe1(λ). (5.5)

Similarly, putting the �rst term of (5.4) into the �rst term of (5.3) gives that

ξ(σ(e2)) = λσ(e1)− 2λe2(λ). (5.6)

Assuming that ξ is an eigenvector �eld of the Ricci operator, it follows from equations (5.5)

and (5.6) that λ is a global positive constant, where we have used that λ is positive and con-

tinuous. In this case, from the last terms of relations (5.2)-(5.3) we see that r = −6λ2 being a

negative constant. As shown in proof of Theorem 4.4, using r = −6λ2 in (3.3) we see that M3

is Einstein and hence by (4.2) we see that M3 is of constant sectional curvature. According to

Olszak [11, Theorem 3], we know that M3 is a locally �at coKähler manifold, a contradiction.

If M3 is a coKähler manifold, the proof follows from Theorem 5.1. The converse is easy to

check.

From Example 3.1 and Theorem 5.2 we have the following

Corollary 5.3. Any 3-dimensional almost coKähler manifold with ξ belonging to the k-nullity
distribution (k a smooth function) is conformally �at if and only if it is locally isometric to either

the �at Euclidean spaceR3 or the Riemannian productR×N2(c), whereN2(c) denotes a Kähler
surface of constant curvature c ̸= 0.

Remark 5.4. Any one condition in Theorem 4.5 is also equivalent to thatM 3 is conformally �at

and ξ is an eigenvector of the Ricci operator.

Remark 5.5. Dacko and Olszak [6, Section 5] constructed a three-dimensional conformally �at

almost coKähler manifold which is non-coKähler and not locally �at. Moreover, on such mani-

fold ξ is not an eigenvector �eld of the Ricci operator and ∇ξh ̸= 0.

Remark 5.6. Dacko in [5, Theorem 1] gave a necessary and suf�cient condition for a special

three-dimensional almost cosymplectic manifold to be conformally �at.
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