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Abstract. We prove modular relations and 2-, 4-, 8-, 16-dissections for a continued fraction
of order sixteen which are analogous to the Rogers—-Ramanujan continued fraction R(q). We also
show that the sign of the coefficients in the power series expansion of I} (q) := ¢~'/*I;(q) and
its reciprocal are periodic with period 16.

1 Introduction

Throughout this paper, we let | ¢ |< 1 and we use the following notation

o0

(a:9)o0 = [[(1 = ag" ™),

n=1

(1,02, ;am: @)oo = (a139)00 (023 @)oo -+ * (Am3 @) o-

The Rogers-Ramanujan continued fraction is defined by [9]

' f(=¢%, —¢%) I +14+ 141+ '
where -
fla,b) = Y a2 =2 ah) < 1, (1.2)
n=—oo

is Ramanujan’s general theta function.

Ramanujan eventually found several generalizations and ramifications of R(q) which can
be found in his notebooks [10] and “Lost Notebook" [11]. Ramanujan recorded many identities
involving R(q) namely,

/R / Qa
\/7 1/10 q q H 1+7qn/5+q271/5’ (13)

iy | ( %4
R(Q) oV = 1/10 (¢*:¢%) H1+5q”/5+q2”/5’ (4

> 5
1 >
( R(Q)> - (7 R(q)> N q' }_[1 14+ ,yqn/s T ) (1.5)
1 5_<5 R()>S_l i) ﬁ : (1.6)
R(q) V) =2\ (@) S (14 6qn/ + g2n/3)S? '
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where v = (1 —+/5)/2and § = (1 +/3)/2.

Ramanujan was the first person to give dissections of g-series identities. Ramanujan [11,
p- 50] gave the 2-dissections of the continued fraction R*(q) and its reciprocal.

R () = (6" ¢ " "% ™) (d*¢%d™, 0" ) (W
q ( 10 10 18; qZO)Oo 4q (q8’ qu7 ql()7 q12; qZO)OO ’ :
_ @ a2 (6060705 ¢%)o 1.8)
R*(q) ( 10 10 14; QZO)OO q (q4’ q107 q107 q16; qZO)OO :
where A ) ,
Ri(g)= 10 10 @
f-—¢) T+1+ 1 +1 4.

Ramanujan [11, p. 50] also gave 5-dissections of the continued fraction R*(q) and its
reciprocal. These results were improved upon and proved by Hirschhorn [6]. Hirschhorn [6]
presented a conjecture on the 4-dissections of the Rogers—Ramanujan continued fraction and
its reciprocal. In [7], Lewis and Liu settled Hirschhorn’s conjecture. Hirschhorn was able
to demonstrate the periodic behaviour of the sign of the coefficients in the series expansion
of R*(q) and its reciprocal, first proved by Richmond and Szekeres [12]. In particular, if

R*(q) = Z a(n)q™, they proved that there exists Ny such that for any n > Np,
n=0
a(5n), a(5n+2) >0 and a(5n+ 1), a(5n+3), a(5n+4) <O0.

Andrews [4], further showed that the above inequalities hold for all n except that

a(3)=a(8)=a(13)=a(23)=0 by considering the formulas for Z a(5n+ 7)¢", 0 < j < 4, which

were recorded in Ramanujan’s Lost Notebook [11]. In [4], Andrews also considered the 2-
dissections of the Rogers-Ramanujan continued fraction and its reciprocal.

In his second notebook [1, p. 24], [10], Ramanujan recorded the following beautiful con-
tinued fraction identity:

(@) (Pesa)oe 1 (0= ba)(b—ag)
(@4 ) (1’ ¢*)ee 1 —ab + (1 —-ab)(¢*> +1)
(a —bg*) (b — ag’)
+ (I—ab)(¢*+1) +---
For | ab |> 1, Lisa Jacobsen [8] has shown that,
1@/ (@ /0 1 (a —bg)(b— aq)
ab (q/a*q*)oo(a/0%¢*) o 1—ab + (1 —ab)(¢* +1)

(a—bg*)(b—ag’)
+ (1—ab)(¢*+1) + .-~

. Jabl< 1. (1.9)

Changing ¢ to ¢* and then putting a = ¢'/2, b = ¢—°/? in the above continued fraction, we obtain
_ =P —d") =P -¢) (@ —a ) =)
Ii(q) "~ ¢'2f(=¢* —q") (I-q¢*) + (I-¢ "1+
(ql/z _ q15/2)(q—9/2 _ q25/2)
T (e [(E R

(1.10)

Similarly, changing q by ¢* and then putting & = ¢/ and b = ¢°/? in (1.9), we obtain

ipfl=.—¢%)  ¢P0-q ¢0-F)0-¢) ¢(1-¢")(1-¢")

F=d, =) (=¢*) + (0-g)(1+¢) + (T-¢)(1+¢"°) +..-
(1.11)

I(q) :==
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In Section 2 of this paper, we establish modular relations for I1(q) and I>(g) which are
similar to (1.3) and (1.4). In Section 3, we prove the 2-, 4-, 8- and 16-dissections of I} (¢) and

its reciprocals, where

S U | G e )
*nzzoafnq - f(_ 3 _qn)v

qa,

I A e i)
_nzzob"q f(=¢ —gB)

(1.12)

(1.13)

We also show that the sign of the coefficients in the power series expansion of I;(g) and its

reciprocal are periodic with period 16.

2 Modular relations of I;(q)

In [2], Adiga et al. studied new identities and properties of the Ramanujan’s continued fraction
of order 12. In this section, we derive identities involving I (¢q), which are similar to the identities

(1.3) and (1.4).
Theorem 2.1. We have

R f( g —q7)f(q4 q*)
nw "= 0 e, — e )
Proof. From (1.10), we have
1 f(=a", =) — "2 f(=¢", —¢*)
—\/I(q) = .
Ii(q) 19 Va2 (=4 =) (=45, —¢%)

From [1, Entry 30, p. 46], we have
f(a,b) = f(ab,ab®) + af(b/a,a’v®).
Putting a=—¢'/? and b=¢’/? in (2.3), we get
F(=4'2.4") = f(=¢", =¢") = ¢'* F (=", =¢).

Employing (2.4) in (2.2), we obtain

In a similar way, we deduce

f (q'/2, —¢'72)
11 Vi V= e e A e =)

’

Multiplying (2.5) and (2.6), we deduce that
1 T ( ) f(ql/za _q7/2)f(_q1/25 q7/2)
L) "7 425 (=", =) f(=d", —¢))

From [1, Entry 30, p. 46], we have

f(a7 b)f(_a7 _b) = f(_a27 _bz)f(_abv _ab)'
Putting a = ¢/ and b = —¢"/? in (2.8), we get

F@ 2 =) (=" d) = f(—a.—d") f(d*, q*).

Employing (2.9) in (2.7), we obtain (2.1).

| S f(=¢"2,q'7?)
11(q) hilg) = Va2 (=, =) f(—4B, —¢7)

2.1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7

(2.8)

(2.9)
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Theorem 2.2. We have

| | o0
—— tay/b(g) = 1 —~(=g"/4)"
L(q) VR VEP (=%, ) f(—=¢". ) g ( H=e")
+y (=g — (—q1/4)3"> — " f(=, =" {y - BL1(q9)}, (2.10)

o 354(vV2+1) . [359(V2+1) o [(V241)
where o = —2 + 7125\@ , =1 7250\@ andvy=1-2 72\@ .

Proof. We have

1 7 _ .9 3/2p(_ - 15
L(q) VErPf(=d,—¢°) f(—q,—q")
From [1, p. 48], we have
= Upir Vi
k+r k—r
f(U1, V1) ZUf( 0. ) (2.12)
where U,, = a™(t1)/2pn(n=1)/2 and V,, = ¢"(»=D/2pn(n+1)/2 for each integer n.
Taking k = 8, a = £ and b = £7¢!/* in (2.12), where £ = €™/%, we obtain
[0 = f(=d, =) + & (=4, =) + €94 f (=, —¢'!) + 7
< f(=a*, =) + 27 f(—a, —a") + 8P f (=" —¢7)
+ 5126q15/4f(—q19, _q—3) + 5175(121/4‘10(_(1217 _q—S), (213)
From [1], we have
fla,b) = f(b,a)
and if n is an integer, then
f(a,b) = a™ D257 (=072 £ (g (ab)" b(ab) ™). (2.14)

Using (2.14) in (2.13), we can deduce that
F&Ed ) =0+ 9f(=d, =) + (€ = ) f (=4, =) + ¢
< (€7 =€) f(=0*, =) + ¢ (€0 - €V (= =) @215)
Note that €2 — ¢85 = a(1 + &), €77 — £126 = B(1 +¢) and €10 — €175 = (1 + €). It follows that

f(&€¢'%)

v A" (=4 =" + Bd 2 f(—¢*, —¢")} = f(=d", —°) + ag® 2 f(—q, —q").

(2.16)
Substituting (2.16) in (2.11), we have
7,1/4
f(&.€q¢'%) g/ {'yf( q11)+ﬂq1/2f(—q3,—q13)}
L A P e 1+ .17
L(q) VO (=47, =) f(—q,—4")

In Ramanujan’s notation Jacobi triple product identity [1] takes the form

f(a,b) = (—a;ab) oo (—b; ab) s (ab; ab) . (2.18)
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Using (2.18), we have

FEEGY) (=&Yoo (= d* =) oo (=4 — ¢V *)

1+¢ 1+
= (£¢"* =) oo (7Y% — g ) o (g —'*)

oo

ﬁ (14 €= ")) (1 = € (=g /3ym)(1 — (—g"4)").

V2+1
22

Notethaté —¢7 —1=—-1+42 and ¢% = —1. Using these in above equation, we see

that
7 1/4 oo
f(fiiqg) =TT = A=) + (=g = (¢/4)*™). (2.19)

n=1
Substituting (2.19) in (2.17), we get

ﬁ(l — (=g + (=g = (¢

+ay/I(q) = n=l

L(q) Ve f(=d,—d) f(~a,—4")
_ /A S 12 f(= 7, —q" )}
x—q¢ " f(=q’,—q ){7+6q F—g, =g
[T = (=" + (=) = (@) = ¢ * F(=", —¢"") {7 + BT (a)}
_a . (2.20)

VEPf(=d, - f(—q,—q")

3 Dissections of I (q) and its reciprocal

In [5], Bernard L. S. Lin studied 2-, 3-, 4-, 6- and 12-dissections of a continued fraction of
order twelve. In [3] Adiga et al. studied 2- and 4-dissection of Ramanujan’s continued fraction
of order six. Motivated by these, in this section, we give 2-, 4-, 8- and 16-dissections of the
continued fraction I; (¢) and its reciprocal which are similar to (1.7)-(1.8).

Ramanujan recorded many identities involving f(a,b) and its special cases ¢(q) and 1(q),
which are defined by

0(q) == flg,q) = Zq

n=—oo

¥(q) = fa, ) Zq””“

We will require the following identity of Ramanujan [1, p. 45],

f(a,b)f(c,d) = f(ac,bd)f(ad, be) + af(b/c,ac*d) f(b/d, acd?), 3.1

where ab = cd.
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3.1 The 2-dissection of I} (q)

Theorem 3.1. If I (q) := ?E Za"q then
n=0

— n_ V(= (=4 —¢)
2 aand" = o(—¢®) f(—¢°, —q'1)’

n=0
Proof. We have
ia o= f(=a*,—q")
=
ot f=a,—¢")
_ f—d") F(@q"
f(_qi,_qll) f(qi qll)

Puttinga = —¢>, b = —¢"3, c = ¢’ and d = ¢'' in (3.1), we get

f(=2,=a®) (@ d") = F(=®, =) F (¢, ") = P f (=, - (= —°).

Putting a = ¢° and b = ¢'! in (2.8), we obtain
A& d (=, —4") = f(=d"°, =) e(—¢").

Employing (3.5) and (3.6) in (3.4), we deduce that

_ i g = F=ab =) f(=a" =¢") = (=, ) f (=, —a)

F(—=4'% —¢**)p(—q'%)
Hence
8’_ 24 f _ 147_ 18
g+ *22”"‘1 (ff]—qw[f—)cﬁ%sf(—qwq) )
and
24 2 30
I _ _2 2n+1 23f( Q7 q )f(iqaiq )
1) > en F(=a,—¢2)p(—q")

n=0

Changing ¢ to ¢'/? in the above equations, we obtain (3.2) and (3.3).

3.2 The 4-dissection of I*(q)
Theorem 3.2. We have

00 w(_qZ) (_q6’ q10>f( q 7_(]9)
nz::oQMq o(=g")e(=¢®) f(=¢°, —¢'t)
.- V(=) f(—* —q")
ng)cuan T o=
= w2 0(=) (=, —a") f(—q, —¢")
2 annd" = g )
S (

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

(3.10)



Modular relations and dissections 125

Proof. From (3.2), we have

) 10
Z“M Yol e,

Settinga = ¢°, b = ¢'', ¢ = —¢" and d = —¢° in (3.1), we get
F(@d"N (=4 =) = f(=d", =) f (=", —¢"*) + (=, =) f (. —¢°). (3.12)
Employing (3.12) and (3.6) in (3.11), we find that

2“2 o — ") f(=¢", =) (=", —¢"®) + O f (=", =) f(—=¢*, =)}
" o(—*)e(—q'%) f(—¢'°, —¢*) '

v

(3.11)

This implies

n=0

) (
iwmzqz” = q4w(q4)£§(I4, ngzf(;f, ~)}

Changing ¢ to ¢'/? in the above equations, we obtain (3.7) and (3.9).
Proofs of (3.8) and (3.10) are similar.

3.3 The 8-dissection of I;*(q)
Theorem 3.3. We have

o = A e 19
S == rouc = G
S = A a9
e = e re e S
3o = - 17
S = 19

Proof. By (3.7), we have
2 ( q 7_q )f(_q77_q9)f(q5aqu). (319)

Z““"q ) 8 5 1) f(o5 1L
)p(—=a*) f(—® —a't) f(a°, ¢*)
Employing (3.12) and (3.6) in (3.19), we find that

™ g — $)f (")
;}%q —e(=a)e(=a*)e(=q") f(=q", —¢»)

{f(=4%, =) f(=d", ") + @ (¢, —*) (=%, =) }.

—q
90(
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It follows immediately that

iagnqzn _ (=) (=4 —d")f

= N6 10 e A 28\ gl
Za8n+4qzn:q4¢( ) f(=4% =) f( ¢\~ )£( Z

Changing ¢ to ¢!/ in the above equations, we obtain (3.13) and (3.16).
Proofs of (3.14), (3.15) (3.17) and (3.18) are similar.

Theorem 3.4. We have

> agni1g =0 (mod 4),
n=0

iasmsq”z VDS Ce=d) g g

Proof. From (3.8), we have

From (2.3) and f(1,a) = 2f(a,a*), we have

p(d*) = 2a9(¢%) = p(—a).
Employing (3.23) in (3.22), we get

D auniig" = Pl 0 e {so —44p(q" ) (¢*) + 44 (@)} -
n=0

o(—q*)p(—¢ )@

Note that (cp(q))zk =1 (mod 4) for k > 1. This is clear when one writes

(o(a))* = (1 +2an2)

and then expands via the binomial theorem. Hence (3.24) becomes

. n_ V(=) f(=¢* —q")
2 dansia ~ e () (=) (mod 4).

Immediately it follows

Z agns1¢°" =0 (mod 4)
n=0

and hence ag,+1 = 0 (mod 4). From (3.25), we have also

c- o _ Y= (=% —4")
nZZOaS””q e e B

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Changing ¢ to ¢'/? in (3.26), we obtain (3.21).
3.4. The 16-dissection of I} (q)

WedeﬁneA f(=a,=a?), A" = f(4,47), B:= f(~¢’, "), B := f(¢,¢"),

—q = ,
= f(- q ,—q Y, C* = f(d’,¢") D= f(—q".—¢°), D* := f(q’,q°), P := f(—¢® —q"7),
Q = f(—¢* ¢ ),)1( f(@,¢), X* = f(—¢*,—¢°), Y = f(clz .q )andY = f(—q,—q"),
E .= , F .= .
Co(—=q)p(—a*)p(—q*)p(—4®) Bo(—q)p(—¢?)e(—q*)p(—q®)
Theorem 3.5. We have
Z a16nq" = EX*{-AA*QXq¢* — AD*QY ¢ + A*DPY ¢* + DD*PX}, 3.27)
n=0
Z aeni2q" = EX*Y(—?){—AB*Y ¢ — AC*X¢* + (-B*X — C*Y)Dq}, (3.28)
n=0

> ani3¢" = EY(—¢*){AA*QX¢* + AD*QY ¢’ — A"DPY¢* — DD*PX},  (3.29)

> aniaq™ = EY*{(A*BPY + A*CQX)q’ + CD*QY¢* + BD*PXq}, (3.30)
n=0

= . YY(B*X +C*Y

S atgniod” = —\ ) (3.31)

o(—q)o(—a*)e(—q*)’

> a16n17¢" = EY(—¢*){~A*CQY ¢’ — A*"BPXq* — BD*PY — CD*QX}, (3.32)

n=0

Z alenisq” = EX*{AA*QY ¢* + AD*QX¢* — A*DPXq— DD*PY}, (3.33)
n=0

> an100" = EX*Y(=¢*){(B*X + C*Y)Aq* + B*DY ¢+ C*DX}, (3.34)
n=0

> aieninq" = EY(—¢*){~AA*QY¢" — AD*QX¢* + A*"DPXq+ DD*PY},  (3.35)

n=0
> aieni12¢" = EY'{~A*CQY ¢ — A"BPXq* — (BD*PY + CD*QX)q}, (3.36)
n=0
= Y*(B*Yq+ C*X)

at6n+14¢" = — ; (3.37)
2 aionss o(—a) (=) p(—q*)
> ani150" = E(—¢*){(A*BPY + A*"CQX)q* + CD*QYq+ XD*PB}. (3.38)

Proof. From (3.13), we have

- n V(=) (=, -V f (=&, —) fF(—d", —d°) f(&,q*)
e ) ey v s ey s B

Using (2.3), we obtain

P(—q) = f(¢° ") — af (¢, d"), (3.40)
f(=a* =) = f(¢*.4"®) — @ F (. ). (3.41)
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Employing (3.40), (3.41), (3.6) and (3.12) in (3.39), we deduce that
> 6 10
nzzoagnq" N w(—q2)<ﬁ(—q4)<pf((—q%);0(qu)G)f(—q“’ —q*)
{(f(%4") — af (@ a")(F (@ d") = £ (¢, )
x(f(=a% =) (=" =) + f (=", =) (=, ™))},
f(=¢%,—4")
e(=a*)p(—a*)o(—a*)e(—¢") f(—q'0, —¢*)

{1 ") f (" ") F(=a", =) F(=¢", =)

+ (% q") f(a", a"®) (=", =) F (-

- f(d% ¢ () F(=4", ) (=
—*f(¢®,¢") (¢, ) F (4", )f(— 2=
—af (& a"*) (", a"®) F(=a", ")

—°f(d", ") F (@, 4") (g ,—ng)

+q (7 d (@ ) f(—q 20)

(—q

qz, )

+ ¢ F( (P ) f )f(—q 7 )}
Immediately it follows

= o f(=¢°,—4")

nzzo‘“ﬁ"q ~ D)~ (—a) [~ —¢2)

{F(@®d") f(a™,¢"®) f(=a"% ) f

— @ f( ) (P ) f(—¢", —¢*°

— af (@ a") f(d"™ ") f(—a" —a") f(—
Changing ¢ to ¢'/? i

in above equations, we obtain (3.27) and (3.33), respectively.
The remaining identities (3.28)—(3.32) and (3.34)—(3.38) follows similarly

In a similar way, it is not hard to derive the following theorems

(—¢", —4"®)
- ¢*f(¢%, ") (¢, a°) f (4", - qzs)f( 7, —q)
— (" d"") (@ ) F(=a =) F (= 2,—q )
+ ¢ (7 d") (@ ) (=4, qzo)f( 7 ¢},
el 10
D S FEuEE B
{1 a7 (—d*, =) F (= =)
+ (% d") f(d", d®) (=t =) F (= =)
)

4 Dissection of

It (q)
1 f=¢,—¢") &
Th 4.1. ] = =N bug™, th
coremt T = FeF =) nzjo e

n_ V(=) (=, —¢)
nzzobznq o) (= —qB) @D




Modular relations and dissections 129

e N w 4 f —q,— 15
;)bmq :q@((_q‘{;))fé_q‘i?_zlf). 4.2)
Theorem 4.2. We have
- n_ql)(_qz)f( q7 q )f(_q57_q11)
nz::[)bmq  e(=d)e(=A) f(=¢F =) @)
> (=) (=45 —4") f (=g, —4")
;mnﬂq T e (D) @4
Y(=¢*) f(—=¢* —q")
Zmnﬂq I T @.5)
- n_w(iqz) (7q237q14)f(7q777q9)
;b‘m”q o= (=t —a) 40
Theorem 4.3. We have
—0)f(=¢", =) (=, =) F(—=¢" . —¢°)
Zbg"q T O O D) @D
n V(=) (= ="V (=0, =) f(—q,—4")
;)bsnﬂq T e e A (= =) @8
V(=) f(=¢%, —¢") f(=¢, =) f(—=¢, —¢'")
st”*” S o ey e iy G R @9
w (=) f(=¢*, =) [ (=, =) f(—q, —¢")
> b =1 T ey o iy ) R @19
- w_ Y —d") (=~ f(=d', =)
D e = i v @1
= n o (=) f(= =" f(—q,—q")
D e e 12
Theorem 4.4. We have
ibgn+2q"50 (mod 4), (4.13)
T2 203 5
stn+6q = qlpS%—);g)(Z?iqf)ng(zj;) 0.4) {£ (@, @) +6q+f(a,q")} (mod 4).
(4.14)
Proof. From (4.5), we have
= n V(=R (=4, —d") ¢*(q)
2_bunszd" = o )e(—¢®)  ¢*q)
_ LR CE —a )R (@) (@)
o(—=q*)e(—¢®)*(q)
Eqf(—qz,—q”)wz(61221/)4(—61) (mod 4). 4.15)
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‘We have
W (=q) = fH(—a.—-7) = (f(¢® d"°) — af (. ¢"))*
= (% d") =44 £ (¢°.d"°) f (. d") + 6217 (¢4, 4") 17 (7, 4™)
—4¢ f (¢%.¢"°) £ (4. d") + ¢ * (. ¢) . (4.16)

Employing (4.16) in (4.15), we obtain

- w_ F(= —d"M () 4 3,6 10 2 14
bn = 4 s )
HZ:O4+zq S o) (d ){f (¢°,¢") —4q £ (¢°,4") f (¢#.4")
+ 612 (¢%¢"°) 2 (% d") — 4¢* £ (%, d"°) £* (4. ") + &* F* (4. ')} (E‘H;OC; 4).

17

Immediately, it follows that

i bsur2q” =0 (mod 4), (4.18)
n=0

T2 203 5\ 20, 7
stn+6q = {t q’ws(‘é_);i)(;g{ng)d’g()_z)(q’q LUP@.6%) + 60+ @ (a.a7)} (mod 4)

4.19)
Theorem 4.5. We have

> bieng” = Fyp(-¢*){—A"BQX ¢’ + (-BD*QY + A*CPY)¢* + CD*PX}  (4.20)

n=0
> biens1q" = FX*{=AA*PY ¢’ — A"DQXq¢* — (AD*PX + DD*QY)q}, 4.21)
n=0
> bieniaq" = FX*(~¢*){(-B*X — C*Y)Aq* + B*DY ¢+ C*DX}, 4.22)
n=0

D bieniaq" = F(~¢){—AA*PY¢® — A*DQXq* — (AD*PX + DD*QY)q}, (4.23)

i bienisq" = FY*{A*BQX¢* — (BD*QY — A*CPY)¢* — CD*PX}, (4.24)
n=0
S - FAEECI,
f: bisnssq" = Fio(—¢*){A*BQY ¢ + (BD*QX — A*CPX)q— CD*PY}, (4.26)
n=0
i bignioq" = FX*{(AA*PX + A*DQY)¢* + AD*PYq+ DD*QX}, (4.27)
n=0
i biont114" = FX*Y(—¢*){AB*Y¢* + AC*Xq+ (-B*X — C*Y)D}, (4.28)
n=0
i biont12¢" = F(—¢*){(AA*PX + A*DQY)¢* + AD*PY q+ DD*QX}, (4.29)
n=0
i bisns13¢" = FY*{A*BQY ¢ + (BD*QX — A*CPX)q — CD*PY}, (4.30)

n=0
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>, . Y*(B*Yq+C*X)
> biensisq" =

o(—q)e(—g*)e(—q*) @31

n=0

Corollary 4.6. We have

oo oo oo oo
E A4n41q" g bang" E a4nq" ban 3 q"
"0 o n=0 _ _n=0
e o] - T > ’ q %) - T > .
§ a4n+2qn E b4n+1qn E a4n+3qn § b4n+2qn
n=0 n=0 n=0 n=0

Proof. The proof the corollary follows from above Theorem.

Corollary 4.7. We have

o0 o0 oo o0
Z agnq" Z bgn+5q" Z agnq" Z bgn+1q"
n=0 n=0

n=0 _ n=0

= = ) ) ) S ’

E agn+2q" E bsn+7q" E agn+3q" E bsn+4q"
n=0 n=0 n=0 n=0

(o) o0 o0 o0
§ agn+3q" § bgnq" E agn+4q" E bgn+1q"
n=0 n=0 n=0 n=0

o] [ee] ? [e’e} e o] )
> " agni1q" > g iaq” > " agni6q" > b i3q"
n=0 n=0 n=0 n=0

0o oo
§ a8n+4qn E b8n+5qn
n=0 n=0

q [e'e) 0 .
> agniq" > bsad"
n=0

n=0

Proof. The proof the corollary follows from above Theorem.

Theorem 4.8. We have a; = a4 = ag = a7 = a1p = 0. The remaining coefficients a,, satisfy the
inequalities
A16n; A16n+4> A16n+65 A16n+105 A16n+1l, Alen+15 > 0,

QA16n+2; A16n+3; A16n+7; A16n+8; A16n+12; Alen+14 < 0.

Proof. Changing ¢ to —q in (3.13), we have

ias (g = LI ) (@ )", 4)

. —

e o(=a*)p(—a")p(—a®) f(, ¢")

(_Qa _q37 _q37 _q5’ _q7a _q7a _q9a _q9’ _qlla _q13a _q13a —q15§ q16)oo
(¢ a* % d% B, a3, 1% ¢'%, 412, ¢, ¢ ¢10)

From the above equality, we obtain the signs ajq, > 0and aig,48 < O.
Similarly, we can determine the signs of the remaining subsequences for a,,.

Theorem 4.9, We have by = by = by = 0. The remaining coefficients b,, satisfy the inequalities
bion, bi6n+3, bi6n+9, bien+12, Dion+13, bient+1s > 0,

b16n+1, Di6n+ds b16n+s, biont7, bi6nts, » biens1r < 0.
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Proof. Changing ¢ to —q in (4.7), we have

ibs (—q) = (@) f(=g*, —a") (@, &) f(d, &)

. —

e (=) e(=q")p(=a*) f(2*, q")

(_(L _q37 _qS’ _qS’ _q7a _q7a _q9’ _q97 _qlla _qlla _q13a —q15§ q16)o<>
(% ¢* d* q% q% q, a3, ', "%, ¢'%, ¢'*, ¢ ¢1)

From the above equality, we obtain the signs b, > 0and big,13 < 0.
Similarly, we can determine the signs of the remaining subsequences for b,,.
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