On the Poisson Transform on the bounded domain of type IV.

Fouzia. El Wassouli

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 32M15, 22E46, 22E4; Secondary 43A90, 32A36.

Keywords and phrases: Poisson transform, Shilov boundary, hyperfunctions, Lie ball.

Abstract. Let \mathcal{D} be the Lie ball in \mathbb{C}^2 and let A'(S) be the space of all hyperfunctions over the Shilov boundary S of \mathcal{D} .

The aim of this paper is to give a necessary and sufficient condition on the Poisson transform $P_{\lambda}f$ of an element f in the space A'(S) for f to be in $L^2(S)$. More precisely, we establish for any $\lambda \in \mathbb{R} \setminus \{0\}$ that:

(i) Let $F = P_{\lambda} f$, $f \in L^2(S)$. Then we have

$$||F||_*^2 = \sup_{t>0} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \int_{S(O(2)\times O(2))} |F(ka_R.0)|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dk dr_2 \Big) dr_1 < \infty.$$

(ii) Let f be a hyperfunction on S such that its image $F = P_{\lambda}f$ satisfies the growth condition $||F||_* < \infty$, then necessarily such f is in $L^2(S)$.

1 Introduction

Let $\mathcal{D}=G/K$ be a Riemannian symmetric space of the non-compact type with Furstenberg boundary (maximal boundary) S_F . Each eigenfunction of all invariant differential operators on \mathcal{D} can be represented by the Poisson integral of a hyperfunction on S_F . This was conjectured by S. Helgason and proved by Kashiwara *et al*.

If $\mathcal{D}=G/K$ is an irreducible bounded hermitian symmetric domain, it is well known that the Hua operator associated to \mathcal{D} characterizes the Poisson transform on the Shilov boundary (minimal boundary) S of \mathcal{D} .

More precisely, the Poisson transform P_{λ} is a G-isomorphism from the space A'(S) of all hyperfunctions on S onto an eigenspace of the Hua operator for λ varying in a subset of \mathbb{C} .

Hence it becomes natural to look a characterization of the range of the Poisson transform on classical spaces of S. This problem was handled by the authors in a series of papers for the case of the classical L^p -space on S.

More precisely, they showed that for λ ranges a subset of $\lambda \in \mathbb{C}\backslash\mathbb{R}$ the eigenfunctions of The Hua operator that are Poisson integral of L^p -functions on the Shilov boundary S are characterized by an H^p -condition.

In order to prove those result they established a Fatou-type theorem for the eigenfunctions of the Hua operator. More precisely, they gave the L^p -boundedness properties of the Poisson transform P_{λ} associated to the space \mathcal{D} . And they established the asymptotic behaviour of the generalized spherical function $\Phi_{\lambda,m}$

$$\Phi_{\lambda,m}(z) = \int_S P_{\lambda}(z,u)\phi_m(u)du$$

where ϕ_m is the zonal spherical function.

Thus, we address the question of the characterization of the L^p -range of the Poisson transform P_{λ} for $\lambda \in \mathbb{R}$. In [1], [5] the authors gave an answer of this question in the case of rank one symmetric space with p=2.

The aim of this paper is to give a necessary and sufficient condition on the Poisson transform $P_{\lambda}f, \lambda \in \mathbb{R}\setminus\{0\}$ of an element f in the space A'(S) for f to be in $L^2(S)$ in the case of Lie ball $\mathcal{D} = SO(2,2)/SO(2)\times SO(2)$. We are led:

First to establish the following lemma on the asymptotic behaviour of the generalized spherical function ϕ_m

Lemma 1.1. There exists a constant $\gamma_1 > 0$ such that we have:

$$\lim_{t\longrightarrow\infty}\frac{1}{t^2}\int_0^t\Big(\int_0^{r_1}\Big|\Phi_{\lambda,m}(a_R.0)\Big|^2\sinh(r_1-r_2)\sinh(r_1+r_2)dr_2\Big)dr_1=\gamma_1^2\Big|\frac{\Gamma^2(i\lambda)}{\Gamma^4(\frac{i\lambda+1}{2})}\Big|^2$$

for every $\lambda \in \mathbb{R} \setminus \{0\}$ and for every $m = (m_1, m_2) \in \Lambda$.

Second to investigate L^2 -boundedness properties of the Poisson transform associated to \mathcal{D} . More precisely, we give the following lemma

Lemma 1.2. Let λ be a non zero real number. Then, there exists a positive constant $\gamma_2(\lambda)$ such that

$$\sup_{t>0} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \Big) dr_1 < \gamma_2^2(\lambda).$$

The paper is organized as follows. In Section 2, we recall some preliminaries of harmonic analysis on the Lie ball in \mathbb{C}^2 and we state the main results of this paper. In Section 3, we give the precise action of the Poisson transform $L^2(S)$. Section 4 is devoted to the proof of Theorem 2.1 and Theorem 2.2. We conclude with an appendix in which we give the proof of Lemma 1.1.

2 Notation and statement of the main results

First, we recall some well known results of harmonic analysis in the Lie ball (see [3], [4]). For any matrix we denote by a^t and \bar{a} the transpose and conjugate of a respectively. Let

$$\mathcal{D} = \{ z = (z_1, z_2) \in \mathbb{C}^2 / 1 - 2\overline{z}z^t + |zz^t|^2 > 0 \text{ and } |zz^t| < 1 \},$$

be the Lie ball, where $|w|^2 = \bar{w}^t w$ for any $w \in \mathbb{C}^2$. The Shilov boundary S of \mathcal{D} is given by

$$S = \{ u = e^{i\theta} x \in \mathbb{C}^2; \quad 0 \le \theta < 2\pi, \quad x \in S^1 \},$$

with

$$S^1 = \{(x_1, x_2) \in \mathbb{R}^2; \ x_1^2 + x_2^2 = 1\}.$$

Let G = SO(2,2) be the group of all matrices g in $SL(4,\mathbb{R})$ such that $g^tJg = J$, where $J = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}$. Then, the group G = SO(2,2) acts transitivity on \mathcal{D} by:

$$\begin{split} g:z\longmapsto g.z &\;=\;\; \Big\{\Big[\Big((\frac{zz^t+1}{2}),i(\frac{zz^t-1}{2})\Big)A^t+zB^t\Big]\left(\begin{array}{c}1\\i\end{array}\right)\Big\}^{-1}\\ &\;\times\;\; \Big\{\Big((\frac{zz^t+1}{2}),i(\frac{zz^t-1}{2})\Big)C^t+zD^t\Big\}. \end{split}$$

for $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G = SO(2,2)$. Thus as homogeneous space, we have the identification

 $\mathcal{D} = G/K$ where K is the stabilizer in G of 0 given by $K = S(O(2) \times O(2))$. The action of G extends naturally to $\overline{\mathcal{D}}$ and under this action the group K acts transitively on the Shilov boundary S and we have $S = K/\{I_4\}$.

Finally recall that every z in \mathcal{D} can be written as $z = ka_R.0$, with respect to the Cartan decomposition of G is given by SO(2,2) = KAK. Here

$$a_R \in A = \left\{ \left(\begin{array}{cc} diag(\cosh r_1, \cosh r_2) & diag(\sinh r_1, \sinh r_2) \\ diag(\sinh r_1, \sinh r_2) & diag(\cosh r_1, \cosh r_2) \end{array} \right); \qquad R = (r_1, r_2) \in \mathbb{R}^2_+ \right\}.$$

Let $L^2(S)$ be the space of all square integrable \mathbb{C} -valued functions on S with respect to the measure du. Then the group K acts on $L^2(S)$ by:

$$f \longrightarrow \pi(k)f = f \circ k^{-1}, \quad k \in K,$$

and under this action the space $L^2(S)$ has the following Peter-weyl decomposition (see [3]):

$$L^2(S) = \bigoplus_{m \in \Lambda} V_m,$$

where \wedge is the set of all two-tuple $m=(m_1,m_2)\in\mathbb{Z}^2$ with $m_1\geq m_2$. The K-irreducible component V_m is the finite linear span $\{\phi_m\circ k,k\in K\}$. where $\phi_m\in V_m$ is the zonal spherical function given by

$$\phi_m(u) = (u_1 - iu_2)^{m_1 - m_2} (u_1^2 + u_2^2)^{m_2}, \quad u = (u_1, u_2) \in S, \quad m = (m_1, m_2).$$

Let P(z,u) be the Poisson kernel of the Lie ball \mathcal{D} with respect to the Shilov boundary S of \mathcal{D} , given by (see [4])

$$P(z,u) = \frac{1 - 2\bar{z}z^t + |zz^t|^2}{|(z-u)(z-u)^t|^2}.$$

Let $\lambda \in \mathbb{C}$ the Poisson transform P_{λ} is defined for $f \in A'(S)$ by:

$$[P_{\lambda}f](z) = \int_{S} P_{\lambda}(z, u)f(u)du, \qquad (2.1)$$

where

$$P_{\lambda}(z, u) = (P(z, u))^{\frac{i\lambda+1}{2}}.$$

The main result of this paper is the following theorems.

Theorem 2.1. Let $\lambda \in \mathbb{R} \setminus \{0\}$. Then, we have:

(1) Let
$$F = P_{\lambda}f, f \in L^{2}(S)$$
. Then

$$||F||_*^2 = \sup_{t>0} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \int_{S(O(2)\times O(2))} |F(ka_R.0)|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dk dr_2 \Big) dr_1 < \infty.$$

(2) Let $f \in A'(S)$. If $F = P_{\lambda}f$ satisfies $||F||_* < \infty$, then $f \in L^2(S)$. Moreover, there exists a positive constants γ_1 and $\gamma_2(\lambda)$ such that for every function $f \in L^2(S)$ we have:

$$\gamma_1 |C(\lambda)||f||_{L^2(S)} \le ||P_{\lambda}f||_* \le \gamma_2(\lambda)||f||_{L^2(S)}$$
 (2.2)

where
$$C(\lambda) = \frac{\Gamma^2(i\lambda)}{\Gamma^4(\frac{i\lambda+1}{2})}$$
.

As a second result of this paper, we give an L^2 -type inversion formula for the Poisson transform.

Theorem 2.2. Let $F = P_{\lambda}f$, $f \in L^2(S)$. Then its L^2 -boundary value f is given by the following inversion formula

$$\lim_{t \to \infty} \frac{1}{t^2} \int_0^t \left(\int_0^{r_1} \int_K F(ka_R.0) \overline{P_{\lambda}(ha_R.0, ke)} \sinh(r_1 - r_2) \sinh(r_1 + r_2) dk dr_2 \right) dr_1$$

$$= \gamma_1^2 |C(\lambda)|^2 f(h.e), \quad \text{in } L^2(S).$$

The difficult part in proving our result is to show that every $F = P_{\lambda}f$, $f \in A'(S)$ such that $||F||_* < \infty$ is the poisson transform of an L^2 -function on the Shilov boundary S. Indeed, expanding F into a C^{∞} series (see corollary below)

$$F(ka_R.0) = \sum_{m \in \land} a_m \Phi_{\lambda,m}(a_R.0) f_m(k.e)$$

next, applying the Lemma 1.1 of asymptotic behaviour of integral type of $\Phi_{\lambda,m}(a_R.0)$.

3 The Poisson transform.

In this section, we give the precise action of the Poisson transform P_{λ} on $L^{2}(S)$. For $\lambda \in \mathbb{C}$ and for $k \in \mathbb{Z}^{+}$, let $\varphi_{\lambda,k}(r)$ denote the following \mathbb{C} -valued function on $r \in [0,1]$

$$\varphi_{\lambda,k}(r) = (1 - r^2)^{\frac{i\lambda+1}{2}} r^k \frac{(\frac{i\lambda+1}{2})_k}{(1)_k} F(\frac{i\lambda+1}{2}, \frac{i\lambda+1}{2} + k, 1+k; r^2),$$

where $(a)_k = a(a+1)(a+2)...(a+k-1)$ is the Pochhammer's symbol and F(a,b,c;x) is the classical Gauss hypergeometric function.

Proposition 3.1. [2] Let $m = (m_1, m_2) \in \land$ and let $f \in V_m$. Then, we have

$$(P_{\lambda}f)(ka_R.0) = \Phi_{\lambda,m}(a_R.0)f(k.e),$$

where the generalized spherical function $\Phi_{\lambda,m}$ is given by

$$\Phi_{\lambda,m}(a_R.0) = 4\pi^2 \Big[\varphi_{\lambda,|m_1|}(\tanh(\frac{r_1-r_2}{2})\varphi_{\lambda,|m_2|}(\tanh(\frac{r_1+r_2}{2}) \Big]$$

Corollary 3.2. Let $F = P_{\lambda}f$, $f \in A'(S)$. Then, there exists a sequence of spherical harmonic functions $(f_m)_{m \in \wedge}$ such that for every $z = ka_R.0 \in \mathcal{D}$, $k \in K$ $a_R \in A$, F may be written in the form as follows

$$F(z) = \sum_{m \in \Lambda} \Phi_{\lambda,m}(a_R.0) f_m(k.e), \qquad f_m \in V_m.$$

Proof. For f in A'(S). Let $f = \sum_{m \in \Lambda} f_m$ it's K-type decomposition. Then using Proposition 3.1 we get

$$F(ka_R.0) = \sum_{m \in \Lambda} \Phi_{\lambda,m}(a_R.0) f_m(k.e), \qquad f_m \in V_m.$$

4 Proof of main results

4.1 Proof of Theorem 2.1

For the proof Theorem 2.1, we will need the Lemma 1.2, which we recall below **Lemma 1.2** Let λ be a non zero real number. Then, there exists a positive constant $\gamma_2(\lambda)$ such that

$$\sup_{t>0} \frac{1}{t^2} \int_0^t \bigg(\int_0^{r_1} \bigg| \Phi_{\lambda,m}(a_R.0) \bigg|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \bigg) dr_1 < \gamma_2^2(\lambda)$$

Proof. In order to get the proof for this lemma, we introduce the following lemma

Lemma (see [1]): Let λ be a non zero real number. Then, there exists a positive constant $A(\lambda)$ such that for every t > 0, we have

$$\sup_{k\in\mathbb{Z}^+} \left| \varphi_{\lambda,k}(\tanh t) \right| \leq A(\lambda) \cosh^{-1} t.$$

For fixed t > 0, we have

$$\begin{split} &\frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \Big) dr_1 \\ &= \frac{4}{t^2} \int_0^t \Big(\int_0^{r_1} \coth^2(\frac{r_1 - r_2}{2}) \coth^2(\frac{r_1 + r_2}{2}) \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 \tanh(\frac{r_1 - r_2}{2}) \tanh(\frac{r_1 + r_2}{2}) dr_2 \Big) dr_1 \\ &\leq \frac{4}{t^2} \int_0^t \Big(\int_0^{r_1} \coth^2(\frac{r_1 - r_2}{2}) \coth^2(\frac{r_1 + r_2}{2}) \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 dr_2 \Big) dr_1. \end{split}$$

Then, we deduce from the above lemma that there exists a positive constant $\gamma_2(\lambda)$ such that

$$\sup_{t>0} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 \sinh(r_1-r_2) \sinh(r_1+r_2) dr_2 \Big) dr_1 \leq \frac{1}{4\pi^4} A^2(\lambda) = \gamma_2^2(\lambda).$$

Then, for the necessary condition let $f \in L^2(S)$ and let $f = \sum_{m \in \wedge} f_m$ be its K-type decomposition. By Proposition 3.1, with $\sum_{m \in \wedge} |\Phi_{\lambda,m}(a_R.0)|^2 ||f_m||_{L^2(S)}^2 < \infty$, for every $R = (r_1, r_2) \in \mathbb{R}^2_+$, we have

$$(P_{\lambda}f)(ka_R.0) = F(ka_R.0) = \sum_{m \in \wedge} \Phi_{\lambda,m}(a_R.0) f_m(k.e).$$

Then, replacing F by the above series expansion we get

$$||F||_*^2 = \sup_{t>0} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \sum_{m \in \mathbb{A}} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 ||f_m||_2^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \Big) dr_1.$$

Next, we use the Lemma 1.2 to obtain

$$\sum_{m \in \wedge} \frac{||f_m||_2^2}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \Big) dr_1 \leq \gamma_2^2(\lambda) \sum_{m \in \wedge} ||f_m||_2^2 < \infty.$$

Henceforth

$$||P_{\lambda}f||_* \leq \gamma_2(\lambda)||f||_2$$

this gives the right hand side of estimate (2.3) in Theorem 2.1.

Now, to prove the sufficiency condition. Let $F = P_{\lambda}f$, $f \in A'(S)$ such that $||F||_* < \infty$. Let $f = \sum_{m \in A} f_m$ be its K-type decomposition, then using Proposition 3.1, we get

$$F(ka_R.0) = \sum_{m \in \Lambda} \Phi_{\lambda,m}(a_R.0) f_m(k.e).$$

Since $||F||_* < \infty$, we have

$$\sum_{m \in \wedge} ||f_m||_2^2 \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} |\Phi_{\lambda,m}(a_R.0)|^2 \sinh(r_1 - r_2) \sinh(r_1 + r_2) dr_2 \Big) dr_1 < \infty$$

Let \wedge_{\circ} be a finite subset of \wedge , then we have

$$\sum_{m \in \wedge_0} ||f_m||_2^2 \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} |\Phi_{\lambda,m}(a_R.0)|^2 \sinh(r_1-r_2) \sinh(r_1+r_2) dr_2 \Big) dr_1 \leq ||F||_*^2 < \infty,$$

for every t > 0.

Next, using the asymptotic behaviour of $\Phi_{\lambda,m}$ given by Lemma 1.1. we obtain

$$\gamma_1^2 |C(\lambda)|^2 \sum_{m \in \Lambda_2} ||f_m||_2^2 \le ||F||_*^2 < \infty.$$

Since \wedge_{\circ} is arbitrary, we get

$$\gamma_1^2 |C(\lambda)|^2 \sum_{m \in \Lambda} ||f_m||_2^2 \le ||F||_*^2 < \infty.$$

Thus $\gamma_1^2 |C(\lambda)|^2 ||f||_2^2 \leq ||F||_*^2 < \infty$ and $f \in L^2(S)$ this finishes the proof of Theorem 2.1.

4.2 Proof of Theorem 2.2

In this section we try to prove the L^2 -inversion formula.

Let $F = P_{\lambda}f$, $f \in A'(S)$ such that $||F||_* < \infty$. By the Theorem 2.1, we know that f in $L^2(S)$. Expanding f into its K-type series, $f = \sum_{m \in \wedge} f_m$ and using Proposition 3.1, we get the series expansion of F,

$$F(ka_R.0) = \sum_{m \in \Lambda} \Phi_{\lambda,m}(a_R.0) f_m(k.e), \quad f_m \in V_m, \tag{4.1}$$

with $\sum_{m \in \wedge} |\Phi_{\lambda,m}(a_R.0)|^2 ||f_m||_2^2 < \infty$, for all $R = (r_1, r_1)$, $r_1 > r_2 > 0$. Next, set for each t > 0, the following \mathbb{C} -valued function on S

$$g_t(h.e) = rac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \int_K F(ka_R.0) \overline{P_{\lambda}(ha_R.0, k.e)} |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dk dr_2 \Big) dr_1.$$

Then, replacing F by its above series expansion in (4.1), the function g_t can be rewritten as:

$$g_t(h.e) = \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \int_K \sum_{m \in \wedge} \Phi_{\lambda,m}(a_R.0) f_m(k.e) \overline{P_{\lambda}(ha_R.0,k.e)} |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dk dr_2 \Big) dr_1.$$

Since, for every fixed $r_1 > r_2 > 0$, the series $\sum_{m \in \wedge} \Phi_{\lambda,m}(a_R.0) f_m(k.e)$ is uniformly convergent on S, we get

and by proposition 3.1, we have

$$g_t(h.e) = \frac{1}{t^2} \sum_{m \in \wedge} \Big[\int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dr_2 \Big) dr_1 \Big] f_m(h.e).$$

Hence the $L^2(S)$ -norm of the function g_t is given by:

$$\begin{aligned} ||g_t||_2^2 &= \\ &(\frac{1}{t^2})^2 \sum_{m \in \Lambda} \Big[\int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dr_2 \Big) dr_1 \Big]^2 ||f_m||_2^2. \end{aligned}$$

Now using the fact that

$$\begin{split} &\frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dr_2 \Big) dr_1 \\ &= &\frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| P_{\lambda} \phi_m(a_R.0) \Big|^2 |\sinh(r_1 - r_2)| \sinh(r_1 + r_2) dr_2 \Big) dr_1 \leq \gamma_2^2 \end{split}$$

we obtain that

$$\begin{split} &||\gamma_1^2|C(\lambda)|^{-2}g_t-f||_2^2\\ &=&\sum_{m\in\mathbb{A}}\left[\frac{\gamma_1^2|C(\lambda)|^{-2}}{t^2}\int_0^t\Big(\int_0^{r_1}\Big|\Phi_{\lambda,m}(a_R.0)\Big|^2|\sinh(r_1-r_2)|\sinh(r_1+r_2)dr_2\Big)dr_1-1\right]^2||f_m||_2^2 \end{split}$$

and, using the uniform pointwises boundedness of $\Phi_{\lambda,m}$ given by Lemma 1.1, we see that

$$\lim_{t \to \infty} ||\gamma_1^2|C(\lambda)|^{-2}g_t - f||_2^2 = 0$$

which given the desired result.

5 Appendix The asymptotic behaviour of $\Phi_{\lambda,m}$.

We will now establish the asymptotic behavior of the generalized spherical function $\Phi_{\lambda,m}$. Recall that $\Phi_{\lambda,m}$ is given by

$$\begin{split} \Phi_{\lambda,m}(a_R.0) &= 4\pi^2 \Big[\cosh(\frac{r_1-r_2}{2})\cosh(\frac{r_1+r_2}{2})\Big]^{-(i\lambda+1)} \\ &\times \tanh^{|m_1|}(\frac{r_1-r_2}{2})\tanh^{|m_2|}(\frac{r_1+r_2}{2})\frac{(\frac{i\lambda+1}{2})_{|m_1|}}{(1)_{|m_1|}}\frac{(\frac{i\lambda+1}{2})_{|m_2|}}{(1)_{|m_2|}} \\ &\times F(\frac{i\lambda+1}{2},\frac{i\lambda+1}{2}+|m_1|,|m_1|+1;\tanh^2(\frac{r_1-r_2}{2})) \\ &\times F(\frac{i\lambda+1}{2},\frac{i\lambda+1}{2}+|m_2|,|m_2|+1;\tanh^2(\frac{r_1+r_2}{2})). \end{split}$$

There exists a constant $\gamma_1 > 0$ such that we have:

$$\lim_{t \longrightarrow \infty} \frac{1}{t^2} \int_0^t \Big(\int_0^{r_1} \Big| \Phi_{\lambda,m}(a_R.0) \Big|^2 |\sinh(r_1-r_2)| \sinh(r_1+r_2) dr_2 \Big) dr_1 = \gamma_1^2 \Big| \frac{\Gamma^2(i\lambda)}{\Gamma^4(\frac{i\lambda+1}{2})} \Big|^2$$

for every $\lambda \in \mathbb{R} \setminus \{0\}$ and for every $m = (m_1, m_2) \in \wedge$.

Proof. Using the following identity on hypergeometric function (see[6]):

$$F(a, b, c; x) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} F(a, b, a + b - c + 1, 1 - x)$$

$$+ \frac{\Gamma(c)\Gamma(a + b - c)}{\Gamma(a)\Gamma(b)} (1 - x)^{c - a - b}$$

$$\times F(c - a, c - b, c - a - b + 1, 1 - x)$$

Then, the hypergeometric function $\varphi_{\lambda,k}(x)$ can be written as follows

$$\begin{split} \varphi_{\lambda,k}(\tanh^2 x) &= \cosh^{-(i\lambda+1)}(x) \tanh^k(x) \frac{(\frac{i\lambda+1}{2})_k}{(1)_k} F(\frac{i\lambda+1}{2}, \frac{i\lambda+1}{2} + k, k+1; \tanh^2(x)) \\ &= \cosh^{-(i\lambda+1)}(x) \tanh^k(x) \frac{(\frac{i\lambda+1}{2})_k \Gamma(-i\lambda)}{\Gamma(k+\frac{1-i\lambda}{2}) \Gamma(\frac{1-i\lambda}{2})} F(\frac{i\lambda+1}{2}, \frac{i\lambda+1}{2} + k, i\lambda+1; 1 - \tanh^2(x)) \\ &+ \cosh^{i\lambda-1}(x) \tanh^k(x) \frac{\Gamma(i\lambda)}{\Gamma^2(\frac{i\lambda+1}{2})} F(\frac{1-i\lambda}{2}, \frac{1-i\lambda}{2} + k, 1 - i\lambda; 1 - \tanh^2(x)). \end{split}$$

Therefore for $\lambda \in \mathbb{R} \setminus \{0\}$, we have

$$|\varphi_{\lambda,k}(\tanh^2 x)|^2\cosh(x)\sinh(x) \simeq_{x \longrightarrow \infty} 2\Big|\frac{\Gamma(i\lambda)}{\Gamma^2(\frac{i\lambda+1}{2})}\Big|^2 + \overline{A(\lambda,k)}\cosh^{-2i\lambda}(x) + A(\lambda,k)\cosh^{2i\lambda}(x)$$

$$\begin{array}{ll} \text{with} & A(\lambda,k) = \frac{\Gamma^2(i\lambda)(\frac{1-i\lambda}{2})_k}{(\frac{1+i\lambda}{2})_k\Gamma^4(\frac{1+i\lambda}{2})}. \\ \text{To complete the proof , we are going to establish that} \end{array}$$

$$\lim_{t \longrightarrow \infty} \frac{I_1}{t^2} = \lim_{t \longrightarrow \infty} \frac{I_2}{t^2} = \lim_{t \longrightarrow \infty} \frac{I_3^{\pm}}{t^2} = 0$$

where

$$\begin{split} I_1 &= \int_0^t \Big[\int_0^{r_1} \cosh^{2i\lambda}(\frac{r_1 - r_2}{2}) \cosh^{2i\lambda}(\frac{r_1 + r_2}{2}) dr_2 \Big] dr_1 \\ I_2 &= \int_0^t \Big[\int_0^{r_1} \cosh^{2i\lambda}(\frac{r_1 - r_2}{2}) \cosh^{-2i\lambda}(\frac{r_1 + r_2}{2}) dr_2 \Big] dr_1. \\ I_3^{\pm} &= \int_0^t \Big[\int_0^{r_1} \cosh^{2i\lambda}(\frac{r_1 \pm r_2}{2}) dr_2 \Big] dr_1 \end{split}$$

Indeed.

For the integral I_1

By using the fact that

$$\int_0^{r_1} \cosh^{2i\lambda}(\frac{r_1-r_2}{2}) \cosh^{2i\lambda}(\frac{r_1+r_2}{2}) dr_2 = \frac{1}{2} \int_0^{r_1} \left(\cosh(r_1) + \cosh(r_2) \right)^{2i\lambda} dr_2$$

and the fact that for every s>0

$$\int_{0}^{s} \cosh(x)(\cosh(x) + \cosh(y))^{2i\lambda - 1} dx = \frac{(\cosh(s) + \cosh(y))^{2i\lambda} - (\cosh(y) + 1)^{2i\lambda}}{2i\lambda} + \int_{0}^{s} e^{-x}(\cosh(x) + \cosh(y))^{2i\lambda - 1} dx,$$

which imply that

$$\left| \int_0^s e^{-x} (\cosh(x) + \cosh(y))^{2i\lambda - 1} dx \right| \le \int_0^s e^{-x} (\cosh(x) + \cosh(y))^{-1} dx$$

$$\le \int_0^s e^{-x} dx = 1 - e^{-s} < 1, \quad \lambda \in \mathbb{R} \setminus \{0\},$$

we have

$$\lim_{t \to \infty} \frac{I_1}{t^2} = 0.$$

For the integral I_2

The integral I_2 is equal

$$\begin{split} I_2 &= \int_0^t \Big[\int_0^{r_1} \cosh^{2i\lambda} (\frac{r_1 - r_2}{2}) \cosh^{-2i\lambda} (\frac{r_1 + r_2}{2}) dr_2 \Big] dr_1 \\ &= \frac{1}{2} \int_0^t \Big[\int_0^{r_1} \frac{\cosh(r_1) + \cosh(r_2)}{\cosh^2 (\frac{r_1 + r_2}{2})} \Big[\frac{\cosh(\frac{r_1 - r_2}{2})}{\cosh(\frac{r_1 + r_2}{2})} \Big]^{2i\lambda - 1} dr_2 \Big] dr_1 \\ &= \frac{1}{2} \int_0^t \Big[\int_0^{r_1} \frac{\sinh(r_1) + e^{-r_1} + \cosh(r_2)}{\cosh^2 (\frac{r_1 + r_2}{2})} \Big[\frac{\cosh(\frac{r_1 - r_2}{2})}{\cosh(\frac{r_1 + r_2}{2})} \Big]^{2i\lambda - 1} dr_2 \Big] dr_1 \\ &= \int_0^t \frac{1 - \Big(\frac{1}{\cosh(r_1)}\Big)^{2i\lambda}}{2i\lambda} dr_1 \\ &+ \frac{1}{2} \int_0^t \Big[\int_0^{r_1} \frac{e^{-r_1} + \cosh(r_2)}{\cosh^2 (\frac{r_1 + r_2}{2})} \Big[\frac{\cosh(\frac{r_1 - r_2}{2})}{\cosh(\frac{r_1 + r_2}{2})} \Big]^{2i\lambda - 1} dr_2 \Big] dr_1. \end{split}$$

Then, by using the fact that for every $\lambda \in \mathbb{R} \setminus \{0\}$

$$\begin{split} & \Big| \int_0^t \Big[\int_0^{r_1} \frac{e^{-r_1} + \cosh(r_2)}{\cosh^2(\frac{r_1 + r_2}{2})} \Big[\frac{\cosh(\frac{r_1 - r_2}{2})}{\cosh(\frac{r_1 + r_2}{2})} \Big]^{2i\lambda - 1} dr_2 \Big] dr_1 \Big| \\ & \leq & \int_0^t \Big[\int_0^{r_1} \frac{e^{-r_1} + e^{-r_2} + \sinh(r_2)}{\cosh(r_1) + \cosh(r_2)} dr_2 \Big] dr_1 \leq \int_0^t \Big[\int_0^{r_1} (e^{-r_1} + e^{-r_2}) dr_2 \Big] dr_1 + \int_0^t \log\Big(\frac{2\cosh(r_1)}{\cosh(r_1) + 1}\Big) dr_1 \Big] dr_1 \Big| dr_1 \Big|$$

we have

$$\lim_{t \to \infty} \frac{I_2}{t^2} = 0.$$

For the integral I_3^{\pm}

By using the fact that

$$\begin{split} \int_0^{r_1} \cosh^{2i\lambda}(\frac{r_1-r_2}{2}) dr_2 &= \int_0^{r_1} \cosh(\frac{r_1-r_2}{2}) \cosh^{2i\lambda-1}(\frac{r_1-r_2}{2}) dr_2 \\ &= \int_0^{r_1} \left[\sinh(\frac{r_1-r_2}{2}) + e^{(\frac{r_2-r_1}{2})} \right] \cosh^{2i\lambda-1}(\frac{r_1-r_2}{2}) dr_2 \\ &= \frac{\cosh^{2i\lambda}(\frac{r_1}{2}) - 1}{i\lambda} + 2 \int_0^{r_1} \left[\frac{e^{(r_2-r_1)}}{1 + e^{(r_2-r_1)}} \right] \cosh^{2i\lambda}(\frac{r_1-r_2}{2}) dr_2 \end{split}$$

and the fact that

$$\left| \int_0^{r_1} \left[\frac{e^{(r_2 - r_1)}}{1 + e^{(r_2 - r_1)}} \right] \cosh^{2i\lambda} \left(\frac{r_1 - r_2}{2} \right) dr_2 \right|$$

$$\leq \int_0^{r_1} \frac{e^{(r_2 - r_1)}}{1 + e^{(r_2 - r_1)}} dr_2 = \log \left(\frac{2}{1 + e^{-r_1}} \right) = r_1 + \log \left(\frac{2}{1 + e^{r_1}} \right),$$

we have, for every $\lambda \in \mathbb{R} \setminus \{0\}$ that

$$\lim_{t \to \infty} \frac{I_3^-}{t^2} = 0.$$

and analogously

$$\lim_{t\longrightarrow\infty}\frac{I_3^+}{t^2}=0.$$

References

- [1] A. Boussejra, H. Sami, Characterization of the L^p -Range of the Poisson transform in Hyperbolic Spaces $B(\mathbb{F}^n)$, Journal of Lie Theory 12, 1–14 (2002).
- [2] F. El Wassouli, F, L^2 -Poisson integral representations of solutions of the Hua system on the Lie ball in \mathbb{C}^2 , Journal of Integral Transforms and Special functions 17, 421–431 (2006).
- [3] J.Faraut, A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford 1994.
- [4] L.K., Hua, Harmonic analysis of functions of several variables in the classical domains, *American Mathematical Society*, Providence, RI, 1963
- [5] A. Ionescu, On the Poisson Transform on symmetric Spaces of Real Rank One, Funct. Anal 174, 513–523 (2000)
- [6] A. Nikiforov Ouvarov, Fonctions spécials de la physique Mathématique, Edition Mir. Moscou 1983.

Author information

Fouzia. El Wassouli, Department of Mathematics, Faculty of Sciences- Ain Chock, University Hassan II, Casablanca, Morocco.

E-mail: elwassouli@gmail.com

Received: June 30, 2015.

Accepted: Februery 7, 2016.