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Abstract. Let D be the Lie ball in C2 and let A′(S) be the space of all hyperfunctions over
the Shilov boundary S of D.

The aim of this paper is to give a necessary and suf�cient condition on the Poisson transform

Pλf of an element f in the space A′(S) for f to be in L2(S). More precisely, we establish for

any λ ∈ R\{0} that:
(i) Let F = Pλf, f ∈ L2(S). Then we have

||F ||2∗ = sup
t>0

1

t2

∫ t

0

(∫ r1

0

∫
S(O(2)×O(2))

|F (kaR.0)|2 sinh(r1 − r2) sinh(r1 + r2)dkdr2
)
dr1 < ∞.

(ii) Let f be a hyperfunction on S such that its image F = Pλf satis�es the growth condition

||F ||∗ < ∞, then necessarily such f is in L2(S).

1 Introduction

Let D = G/K be a Riemannian symmetric space of the non-compact type with Furstenberg

boundary (maximal boundary)SF . Each eigenfunction of all invariant differential operators on

D can be represented by the Poisson integral of a hyperfunction on SF . This was conjectured by

S. Helgason and proved by Kashiwara et al.

If D = G/K is an irreducible bounded hermitian symmetric domain, it is well known that the

Hua operator associated to D characterizes the Poisson transform on the Shilov boundary (min-

imal boundary) S of D.

More precisely, the Poisson transform Pλ is a G-isomorphism from the space A
′
(S) of all hy-

perfunctions on S onto an eigenspace of the Hua operator for λ varying in a subset of C.
Hence it becomes natural to look a characterization of the range of the Poisson transform on

classical spaces of S. This problem was handled by the authors in a series of papers for the case

of the classical Lp-space on S.
More precisely, they showed that for λ ranges a subset of λ ∈ C\R the eigenfunctions of The

Hua operator that are Poisson integral of Lp-functions on the Shilov boundary S are character-

ized by an Hp-condition.

In order to prove those result they established a Fatou-type theorem for the eigenfunctions of the

Hua operator. More precisely, they gave the Lp-boundedness properties of the Poisson transform

Pλ associated to the space D. And they established the asymptotic behaviour of the generalized

spherical function Fλ,m

Fλ,m(z) =

∫
S

Pλ(z, u)ϕm(u)du

where ϕm is the zonal spherical function.

Thus, we address the question of the characterization of the Lp-range of the Poisson transform

Pλ for λ ∈ R. In [1], [5] the authors gave an answer of this question in the case of rank one

symmetric space with p = 2.

The aim of this paper is to give a necessary and suf�cient condition on the Poisson transform

Pλf, λ ∈ R\{0} of an element f in the space A′(S) for f to be in L2(S) in the case of Lie ball

D = SO(2, 2)/SO(2)× SO(2).We are led:

First to establish the following lemma on the asymptotic behaviour of the generalized spherical

function ϕm
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Lemma 1.1. There exists a constant γ1 > 0 such that we have:

lim
t−→∞

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1 = γ2

1

∣∣∣ G2(iλ)

G4( iλ+1

2
)

∣∣∣2
for every λ ∈ R\{0} and for every m = (m1,m2) ∈ ∧.

Second to investigate L2-boundedness properties of the Poisson transform associated to D.

More precisely, we give the following lemma

Lemma 1.2. Let λ be a non zero real number. Then, there exists a positive constant γ2(λ) such
that

sup
t>0

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1 < γ2

2(λ).

The paper is organized as follows. In Section 2, we recall some preliminaries of harmonic

analysis on the Lie ball in C2 and we state the main results of this paper. In Section 3, we give

the precise action of the Poisson transform L2(S). Section 4 is devoted to the proof of Theorem

2.1 and Theorem 2.2. We conclude with an appendix in which we give the proof of Lemma 1.1.

2 Notation and statement of the main results

First, we recall some well known results of harmonic analysis in the Lie ball (see [3], [4]).

For any matrix we denote by at and ā the transpose and conjugate of a respectively.

Let

D = {z = (z1, z2) ∈ C2 / 1− 2zzt + |zzt|2 > 0 and |zzt| < 1},

be the Lie ball, where |w|2 = w̄tw for any w ∈ C2. The Shilov boundary S of D is given by

S = {u = eiθx ∈ C2; 0 ≤ θ < 2π, x ∈ S1},

with

S1 = {(x1, x2) ∈ R2; x2

1 + x2

2 = 1}.

Let G = SO(2, 2) be the group of all matrices g in SL(4,R) such that gtJg = J , where

J =

(
I2 0

0 −I2

)
. Then, the group G = SO(2, 2) acts transitivity on D by:

g : z 7−→ g.z =
{[(

(
zzt + 1

2
), i(

zzt − 1

2
)
)
At + zBt

]( 1

i

)}−1

×
{(

(
zzt + 1

2
), i(

zzt − 1

2
)
)
Ct + zDt

}
.

for g =

(
A B

C D

)
∈ G = SO(2, 2). Thus as homogeneous space, we have the identi�cation

D = G/K where K is the stabilizer in G of 0 given by K = S(O(2) × O(2)). The action of G

extends naturally toD and under this action the groupK acts transitively on the Shilov boundary

S and we have S = K/{I4}.
Finally recall that every z in D can be written as z = kaR.0, with respect to the Cartan decom-

position of G is given by SO(2, 2) = KAK. Here

aR ∈ A =

{(
diag(cosh r1, cosh r2) diag(sinh r1, sinh r2)

diag(sinh r1, sinh r2) diag(cosh r1, cosh r2)

)
; R = (r1, r2) ∈ R2

+

}
.

Let L2(S) be the space of all square integrable C-valued functions on S with respect to the

measure du. Then the group K acts on L2(S) by:

f −→ π(k)f = f ◦ k−1, k ∈ K,
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and under this action the space L2(S) has the following Peter-weyl decomposition (see [3]) :

L2(S) =
⊕
m∈∧

Vm,

where ∧ is the set of all two-tuple m = (m1,m2) ∈ Z2 with m1 ≥ m2. The K-irreducible

component Vm is the �nite linear span {ϕm ◦ k, k ∈ K}. where ϕm ∈ Vm is the zonal spherical

function given by

ϕm(u) = (u1 − iu2)
m1−m2(u2

1 + u2

2)
m2 , u = (u1, u2) ∈ S, m = (m1,m2).

Let P(z,u) be the Poisson kernel of the Lie ball D with respect to the Shilov boundary S of D,

given by (see [4])

P (z, u) =
1− 2z̄zt + |zzt|2

|(z − u)(z − u)t|2
.

Let λ ∈ C the Poisson transform Pλ is de�ned for f ∈ A′(S) by:

[Pλf ](z) =

∫
S

Pλ(z, u)f(u)du, (2.1)

where

Pλ(z, u) = (P (z, u))
iλ+1

2 .

The main result of this paper is the following theorems.

Theorem 2.1. Let λ ∈ R\{0} . Then, we have:

(1) Let F = Pλf, f ∈ L2(S). Then

||F ||2∗ = sup
t>0

1

t2

∫ t

0

(∫ r1

0

∫
S(O(2)×O(2))

|F (kaR.0)|2 sinh(r1 − r2) sinh(r1 + r2)dkdr2
)
dr1 < ∞.

(2) Let f ∈ A′(S). If F = Pλf satis�es ||F ||∗ < ∞, then f ∈ L2(S). Moreover, there exists a

positive constants γ1 and γ2(λ) such that for every function f ∈ L2(S) we have:

γ1|C(λ)||f ||L2(S) ≤ ||Pλf ||∗ ≤ γ2(λ)||f ||L2(S) (2.2)

where C(λ) =
G
2(iλ)

G4( iλ+1

2
)
.

As a second result of this paper, we give an L2-type inversion formula for the Poisson trans-

form.

Theorem 2.2. Let F = Pλf, f ∈ L2(S). Then its L2-boundary value f is given by the

following inversion formula

lim
t−→∞

1

t2

∫ t

0

(∫ r1

0

∫
K

F (kaR.0)Pλ(haR.0, ke) sinh(r1 − r2) sinh(r1 + r2)dkdr2
)
dr1

= γ2

1 |C(λ)|2f(h.e), in L2(S).

The dif�cult part in proving our result is to show that every F = Pλf, f ∈ A′(S) such

that ||F ||∗ < ∞ is the poisson transform of an L2-function on the Shilov boundary S. Indeed,
expanding F into a C∞ series (see corollary below)

F (kaR.0) =
∑
m∈∧

amFλ,m(aR.0)fm(k.e)

next, applying the Lemma 1.1 of asymptotic behaviour of integral type of Fλ,m(aR.0).
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3 The Poisson transform.

In this section, we give the precise action of the Poisson transform Pλ on L2(S).
For λ ∈ C and for k ∈ Z+, let φλ,k(r) denote the following C-valued function on r ∈ [0, 1[

φλ,k(r) = (1− r2)
iλ+1

2 rk
( iλ+1

2
)k

(1)k
F (

iλ+ 1

2
,
iλ+ 1

2
+ k, 1+ k; r2),

where (a)k = a(a+ 1)(a+ 2)...(a+ k− 1) is the Pochhammer's symbol and F (a, b, c;x) is the
classical Gauss hypergeometric function.

Proposition 3.1. [2] Let m = (m1,m2) ∈ ∧ and let f ∈ Vm. Then, we have

(Pλf)(kaR.0) = Fλ,m(aR.0)f(k.e),

where the generalized spherical function Fλ,m is given by

Fλ,m(aR.0) = 4π2

[
φλ,|m1|(tanh(

r1 − r2
2

)φλ,|m2|(tanh(
r1 + r2

2
)
]

Corollary 3.2. Let F = Pλf, f ∈ A′(S). Then, there exists a sequence of spherical harmonic

functions (fm)m∈∧ such that for every z = kaR.0 ∈ D, k ∈ K aR ∈ A, F may be written in the

form as follows

F (z) =
∑
m∈∧

Fλ,m(aR.0)fm(k.e), fm ∈ Vm.

Proof. For f in A′(S). Let f =
∑

m∈∧
fm it's K-type decomposition. Then using Proposition 3.1

we get

F (kaR.0) =
∑
m∈∧

Fλ,m(aR.0)fm(k.e), fm ∈ Vm.

4 Proof of main results

4.1 Proof of Theorem 2.1

For the proof Theorem 2.1, we will need the Lemma 1.2, which we recall below

Lemma 1.2 Let λ be a non zero real number. Then, there exists a positive constant γ2(λ) such
that

sup
t>0

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1 < γ2

2(λ)

Proof. In order to get the proof for this lemma, we introduce the following lemma

Lemma (see [1]): Let λ be a non zero real number. Then, there exists a positive constant

A(λ) such that for every t > 0, we have

sup
k∈Z+

∣∣∣φλ,k(tanh t)
∣∣∣ ≤ A(λ) cosh−1 t.

For �xed t > 0, we have

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1

=
4

t2

∫ t

0

(∫ r1

0

coth2(
r1 − r2

2
) coth2(

r1 + r2
2

)
∣∣∣Fλ,m(aR.0)

∣∣∣2 tanh(r1 − r2
2

) tanh(
r1 + r2

2
)dr2

)
dr1

≤ 4

t2

∫ t

0

(∫ r1

0

coth2(
r1 − r2

2
) coth2(

r1 + r2
2

)
∣∣∣Fλ,m(aR.0)

∣∣∣2dr2)dr1.
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Then, we deduce from the above lemma that there exists a positive constant γ2(λ) such that

sup
t>0

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1 ≤

1

4π4
A2(λ) = γ2

2(λ).

Then, for the necessary condition let f ∈ L2(S) and let f =
∑

m∈∧
fm be its K-type decomposition.

By Proposition 3.1, with
∑

m∈∧
|Fλ,m(aR.0)|2||fm||2

L2(S) < ∞, for every R = (r1, r2) ∈ R2
+, we

have

(Pλf)(kaR.0) = F (kaR.0) =
∑
m∈∧

Fλ,m(aR.0)fm(k.e).

Then, replacing F by the above series expansion we get

||F ||2∗ = sup
t>0

1

t2

∫ t

0

(∫ r1

0

∑
m∈∧

∣∣∣Fλ,m(aR.0)
∣∣∣2||fm||22 sinh(r1 − r2) sinh(r1 + r2)dr2

)
dr1.

Next, we use the Lemma 1.2 to obtain

∑
m∈∧

||fm||2
2

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2 sinh(r1−r2) sinh(r1+r2)dr2

)
dr1 ≤ γ2

2(λ)
∑
m∈∧

||fm||22 < ∞.

Henceforth

||Pλf ||∗ ≤ γ2(λ)||f ||2,

this gives the right hand side of estimate (2.3) in Theorem 2.1.

Now, to prove the suf�ciency condition. Let F = Pλf, f ∈ A′(S) such that ||F ||∗ < ∞. Let

f =
∑

m∈∧
fm be its K-type decomposition, then using Proposition 3.1, we get

F (kaR.0) =
∑
m∈∧

Fλ,m(aR.0)fm(k.e).

Since ||F ||∗ < ∞, we have

∑
m∈∧

||fm||22
1

t2

∫ t

0

(∫ r1

0

|Fλ,m(aR.0)|2 sinh(r1 − r2) sinh(r1 + r2)dr2
)
dr1 < ∞

Let ∧◦ be a �nite subset of ∧, then we have

∑
m∈∧◦

||fm||22
1

t2

∫ t

0

(∫ r1

0

|Fλ,m(aR.0)|2 sinh(r1 − r2) sinh(r1 + r2)dr2
)
dr1 ≤ ||F ||2∗ < ∞,

for every t > 0.
Next, using the asymptotic behaviour of Fλ,m given by Lemma 1.1. we obtain

γ2

1 |C(λ)|2
∑

m∈∧◦

||fm||22 ≤ ||F ||2∗ < ∞.

Since ∧◦ is arbitrary, we get

γ2

1 |C(λ)|2
∑
m∈∧

||fm||22 ≤ ||F ||2∗ < ∞.

Thus γ2

1
|C(λ)|2||f ||2

2
≤ ||F ||2∗ < ∞ and f ∈ L2(S) this �nishes the proof of Theorem 2.1.
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4.2 Proof of Theorem 2.2

In this section we try to prove the L2-inversion formula.

Let F = Pλf, f ∈ A′(S) such that ||F ||∗ < ∞. By the Theorem 2.1, we know that f in L2(S).
Expanding f into its K-type series, f =

∑
m∈∧

fm and using Proposition 3.1, we get the series

expansion of F ,

F (kaR.0) =
∑
m∈∧

Fλ,m(aR.0)fm(k.e), fm ∈ Vm, (4.1)

with
∑

m∈∧
|Fλ,m(aR.0)|2||fm||2

2
< ∞, for all R = (r1, r1), r1 > r2 > 0. Next, set for each

t > 0, the following C-valued function on S

gt(h.e) =
1

t2

∫ t

0

(∫ r1

0

∫
K

F (kaR.0)Pλ(haR.0, k.e)| sinh(r1 − r2)| sinh(r1 + r2)dkdr2
)
dr1.

Then, replacing F by its above series expansion in (4.1), the function gt can be rewritten as:

gt(h.e) =
1

t2

∫ t

0

(∫ r1

0

∫
K

∑
m∈∧

Fλ,m(aR.0)fm(k.e)Pλ(haR.0, k.e)| sinh(r1−r2)| sinh(r1+r2)dkdr2
)
dr1.

Since, for every �xed r1 > r2 > 0, the series
∑

m∈∧
Fλ,m(aR.0)fm(k.e) is uniformly convergent

on S, we get

gt(h.e) =
1

t2

∑
m∈∧

∫ t

0

(∫ r1

0

∫
K

Fλ,m(aR.0)fm(k.e)Pλ(haR.0, k.e)| sinh(r1−r2)| sinh(r1+r2)dkdr2
)
dr1

and by proposition 3.1, we have

gt(h.e) =
1

t2

∑
m∈∧

[ ∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1

]
fm(h.e).

Hence the L2(S)-norm of the function gt is given by:

||gt||22 =

(
1

t2
)2
∑
m∈∧

[ ∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1

]2
||fm||22.

Now using the fact that

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1

=
1

t2

∫ t

0

(∫ r1

0

∣∣∣Pλϕm(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1 ≤ γ2

2

we obtain that

||γ2

1 |C(λ)|−2gt − f ||22

=
∑
m∈∧

[
γ2

1
|C(λ)|−2

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1 − 1

]2
||fm||22

and, using the uniform pointwises boundedness of Fλ,m given by Lemma 1.1, we see that

lim
t−→∞

||γ2

1 |C(λ)|−2gt − f |||22 = 0

which given the desired result.
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5 Appendix The asymptotic behaviour of Φλ,m.

We will now establish the asymptotic behavior of the generalized spherical function Fλ,m. Re-

call that Fλ,m is given by

Fλ,m(aR.0) = 4π2

[
cosh(

r1 − r2
2

) cosh(
r1 + r2

2
)
]−(iλ+1)

× tanh|m1|(
r1 − r2

2
) tanh|m2|(

r1 + r2
2

)
( iλ+1

2
)|m1|

(1)|m1|

( iλ+1

2
)|m2|

(1)|m2|

× F (
iλ+ 1

2
,
iλ+ 1

2
+ |m1|, |m1|+ 1; tanh2(

r1 − r2
2

))

× F (
iλ+ 1

2
,
iλ+ 1

2
+ |m2|, |m2|+ 1; tanh2(

r1 + r2
2

)).

Lemma 1.1 There exists a constant γ1 > 0 such that we have:

lim
t−→∞

1

t2

∫ t

0

(∫ r1

0

∣∣∣Fλ,m(aR.0)
∣∣∣2| sinh(r1 − r2)| sinh(r1 + r2)dr2

)
dr1 = γ2

1

∣∣∣ G2(iλ)

G4( iλ+1

2
)

∣∣∣2
for every λ ∈ R\{0} and for every m = (m1,m2) ∈ ∧.

Proof. Using the following identity on hypergeometric function (see[6]):

F (a, b, c;x) =
G(c)G(c− a− b)

G(c− a)G(c− b)
F (a, b, a+ b− c+ 1, 1− x)

+
G(c)G(a+ b− c)

G(a)G(b)
(1− x)c−a−b

× F (c− a, c− b, c− a− b+ 1, 1− x)

Then, the hypergeometric function φλ,k(x) can be written as follows

φλ,k(tanh
2 x) = cosh−(iλ+1)(x) tanhk(x)

( iλ+1

2
)k

(1)k
F (

iλ+ 1

2
,
iλ+ 1

2
+ k, k + 1; tanh2(x))

= cosh−(iλ+1)(x) tanhk(x)
( iλ+1

2
)kG(−iλ)

G(k + 1−iλ
2

)G( 1−iλ
2

)
F (

iλ+ 1

2
,
iλ+ 1

2
+ k, iλ+ 1; 1− tanh2(x))

+ coshiλ−1(x) tanhk(x)
G(iλ)

G2( iλ+1

2
)
F (

1− iλ

2
,
1− iλ

2
+ k, 1− iλ; 1− tanh2(x)).

Therefore for λ ∈ R\{0}, we have

|φλ,k(tanh
2 x)|2 cosh(x) sinh(x) ≃x−→∞ 2

∣∣∣ G(iλ)

G2( iλ+1

2
)

∣∣∣2+A(λ, k) cosh−2iλ(x)+A(λ, k) cosh2iλ(x)

with A(λ, k) =
G
2(iλ)( 1−iλ

2
)k

( 1+iλ
2

)kG4( 1+iλ
2

)
.

To complete the proof , we are going to establish that

lim
t−→∞

I1
t2

= lim
t−→∞

I2
t2

= lim
t−→∞

I±
3

t2
= 0

where

I1 =

∫ t

0

[ ∫ r1

0

cosh2iλ(
r1 − r2

2
) cosh2iλ(

r1 + r2
2

)dr2
]
dr1

I2 =

∫ t

0

[ ∫ r1

0

cosh2iλ(
r1 − r2

2
) cosh−2iλ(

r1 + r2
2

)dr2
]
dr1.

I±
3

=

∫ t

0

[ ∫ r1

0

cosh2iλ(
r1 ± r2

2
)dr2

]
dr1
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Indeed,

For the integral I1
By using the fact that∫ r1

0

cosh2iλ(
r1 − r2

2
) cosh2iλ(

r1 + r2
2

)dr2 =
1

2

∫ r1

0

(
cosh(r1) + cosh(r2)

)2iλ
dr2

and the fact that for every s > 0∫ s

0

cosh(x)(cosh(x) + cosh(y))2iλ−1dx =
(cosh(s) + cosh(y))2iλ − (cosh(y) + 1)2iλ

2iλ

+

∫ s

0

e−x(cosh(x) + cosh(y))2iλ−1dx,

which imply that∣∣∣ ∫ s

0

e−x(cosh(x) + cosh(y))2iλ−1dx
∣∣∣ ≤

∫ s

0

e−x(cosh(x) + cosh(y))−1dx

≤
∫ s

0

e−xdx = 1− e−s < 1, λ ∈ R\{0},

we have

lim
t−→∞

I1
t2

= 0.

For the integral I2
The integral I2 is equal

I2 =

∫ t

0

[ ∫ r1

0

cosh2iλ(
r1 − r2

2
) cosh−2iλ(

r1 + r2
2

)dr2
]
dr1

=
1

2

∫ t

0

[ ∫ r1

0

cosh(r1) + cosh(r2)

cosh2( r1+r2
2

)

[cosh( r1−r2
2

)

cosh( r1+r2
2

)

]2iλ−1

dr2

]
dr1

=
1

2

∫ t

0

[ ∫ r1

0

sinh(r1) + e−r1 + cosh(r2)

cosh2( r1+r2
2

)

[cosh( r1−r2
2

)

cosh( r1+r2
2

)

]2iλ−1

dr2

]
dr1

=

∫ t

0

1−
(

1

cosh(r1)

)2iλ
2iλ

dr1

+
1

2

∫ t

0

[ ∫ r1

0

e−r1 + cosh(r2)

cosh2( r1+r2
2

)

[cosh( r1−r2
2

)

cosh( r1+r2
2

)

]2iλ−1

dr2

]
dr1.

Then, by using the fact that for every λ ∈ R\{0}

∣∣∣ ∫ t

0

[ ∫ r1

0

e−r1 + cosh(r2)

cosh2( r1+r2
2

)

[cosh( r1−r2
2

)

cosh( r1+r2
2

)

]2iλ−1

dr2

]
dr1

∣∣∣
≤

∫ t

0

[ ∫ r1

0

e−r1 + e−r2 + sinh(r2)

cosh(r1) + cosh(r2)
dr2

]
dr1 ≤

∫ t

0

[ ∫ r1

0

(e−r1 + e−r2)dr2
]
dr1 +

∫ t

0

log
( 2 cosh(r1)

cosh(r1) + 1

)
dr1.

we have

lim
t−→∞

I2
t2

= 0.

For the integral I±
3
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By using the fact that∫ r1

0

cosh2iλ(
r1 − r2

2
)dr2 =

∫ r1

0

cosh(
r1 − r2

2
) cosh2iλ−1(

r1 − r2
2

)dr2

=

∫ r1

0

[
sinh(

r1 − r2
2

) + e(
r
2
−r

1

2
)
]
cosh2iλ−1(

r1 − r2
2

)dr2

=
cosh2iλ( r1

2
)− 1

iλ
+ 2

∫ r1

0

[ e(r2−r1)

1+ e(r2−r1)

]
cosh2iλ(

r1 − r2
2

)dr2

and the fact that ∣∣∣∣∣
∫ r1

0

[ e(r2−r1)

1+ e(r2−r1)

]
cosh2iλ(

r1 − r2
2

)dr2

∣∣∣∣∣
≤

∫ r1

0

e(r2−r1)

1+ e(r2−r1)
dr2 = log

( 2

1+ e−r1

)
= r1 + log

( 2

1+ er1

)
,

we have, for every λ ∈ R\{0} that

lim
t−→∞

I−
3

t2
= 0.

and analogously

lim
t−→∞

I+
3

t2
= 0.
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