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Abstract. In the present Paper, we study a pair of a general class of fractional integral

operators whose kernel involves the product of a Appell Polynomial, Fox H-function and S-

Generalized Gauss's Hypergeometric Function. First, we have given images of some useful

functions under these fractional integral operators. Next, we obtain Mellin Transform, inversion

formula and Mellin convolutions for these fractional operators. Finally, we study the Parseval-

Goldstein Theorem related to operators of our study. The fractional integral operators studied by

us are most general in nature and may be considered as generalizations of a number of uni�ed

fractional operators studied from time to time by several authors. For the sake of illustration,

we give here exact references of the recent results obtained by Saxena and Kumbhat [15] , Saigö
[13]. which follow as special case of our �ndings. The importance of the present study lies in

the fact that it uni�es and extends the recent results of a large number of authors.

1 Introduction

Fox H-Function

A single Mellin-Barnes contour integral, occurring in the present work, is now popularly known

as the H-function of Charles Fox (1897-1977). It will be de�ned and represented here in the

following manner (see, for example, [9, p. 10]):

HM,N
P,Q [z] = HM,N

P,Q

z
∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q

 = HM,N
P,Q

z
∣∣∣∣∣∣∣
(a1, α1), · · · , (aP , αP )

(b1, β1), · · · , (bQ, βQ)


=

1

2πi

∫
L

Q(s)zs ds, (1.1)

where i =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Q(s) =

M∏
j=1

G(bj − βjs)
N∏
j=1

G(1− aj + αjs)

Q∏
j=M+1

G(1− bj + βjs)
P∏

j=N+1

G(aj − αjs)

, (1.2)

and

1 5 M 5 Q and 0 5 N 5 P (M,Q ∈ N = {1, 2, 3, · · · }; N,P ∈ N0 = N ∪ {0}),
(1.3)

an empty product being interpreted to be 1. Here L is a Mellin-Barnes type contour in the

complex s-plane with appropriate indentations in order to separate the two sets of poles of the

integrand Q(s) (see, for details, [1] and [9]).
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Multivariable H-Function

The Multivariable H-Function is de�ned and represented in the following manner

[9, p. 251, Eqs. (C.1-C.3)]

H0,B:A1,B1;...;Ar,Br

C,D:C1,D1;...;Cr,Dr


z1

.

.

.

zr

∣∣∣∣∣∣∣∣∣∣∣∣

(aj ;α
(1)
j , ..., α

(r)
j )1,C : (c

(1)
j , γ

(1)
j )1,C1

; ...; (c
(r)
j , γ

(r)
j )1,Cr

(bj ;β
(1)
j , ..., β

(r)
j )1,D : (d

(1)
j , δ

(1)
j )1,D1

; ...; (d
(r)
j , δ

(r)
j )1,Dr



=
1

(2πω)r

∫
L1

∫
L2

...

∫
Lr

F(ξ1, ξ2, ..., ξr)
r∏

i=1

Qi(ξi)z
ξi dξ1dξ2, ..., dξr, (1.4)

where ω =
√
−1,

F(ξ1, ξ2, ..., ξr) =

B∏
j=1

G(1− aj +
r∑

i=1

α
(i)
j ξi)

D∏
j=1

G(1− bj +
r∑

i=1

β
(i)
j ξi)

C∏
j=B+1

G(aj −
r∑

i=1

α
(i)
j ξi)

Qi(ξi) =

Ai∏
j=1

G(d
(i)
j − δ

(i)
j ξi)

Bi∏
j=1

G(1− c
(i)
j + γ

(i)
j ξi)

Ci∏
j=Bi+1

G(c
(i)
j − γ

(i)
j ξi)

Di∏
j=Ai+1

G(1− d
(i)
j + δ

(i)
j ξi)

(i = 1, 2, ..., r), (1.5)

All the Greek letters occurring on the left and side of (1.4) are assumed to be positive real

numbers for standardization purposes. Te de�nition of the multivariable H-function will however

be meaningful even if some of these quantities are zero. The details about te nature of contour

L1, ...,Lr, conditions of convergence of the integral given by (1.4). Throughout the paper it is

assumed that this function always satis�ed its appropriate conditions of convergence [9, p. 251,

Eqs. (C.4-C.6)]

S-Generalized Gauss's Hypergeometric Function

The S-generalized Gauss hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) introduced and de�ned

by Srivastava et al. [11, p.350, Eq.(1.12)] is represented in the following manner:

F (α,β;τ,µ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ,µ)
p (b+ n, c− b)

B(b, c− b)

zn

n!
(|z| < 1) (1.6)

provided that (R(p) ≥ 0; minR(α, β, τ, µ) > 0; R(c) > R(b) > 0)

where the S-generalized Beta function B
(α,β;τ,µ)
p (x, y) was introduced and de�ned by Srivastava

et al. [11, p.350, Eq.(1.13)]:

B(α,β;τ,µ)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1

(
α;β;

−p

tτ (1− t)µ

)
dt (1.7)

provided that (R(p) ≥ 0; minR{x, y, α, β} > 0; minR{τ, µ} > 0)

and (λ)n denotes the pochhammer symbol de�ned (for λ ∈ C) by (see [6, p. 2 and pp. 4-6];
see also [5, p. 2]):

(λ)n : =
G(λ+ n)

G(λ)
=

{
1, (n = 0)

λ(λ+ 1)...(λ+ n− 1), (n ∈ N := {1, 2, 3})
(1.8)

provided that the Gamma quotient exists (see, for details,[7, et seq.] and [8, p. 22 et seq.]).
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Generalized incomplete hypergeometric function

The generalized incomplete hypergeometric function introduced and de�ned by Srivastava et al.

[10, p.675, Eq.(4.1)] is represented in the following manner:

pγq

 (Ep;σ);

Fq;

z

 = pγq

 (e1;σ), e2, ..., ep;

f1, ..., fq;

z


:=

∞∑
n=0

(Ep;σ)n
(Fq; 0)n

zn

n!
=

∞∑
n=0

(e1;σ)n, (e2)n, ..., (ep)n
(f1)n, (f2)n, ..., (fq)n

zn

n!
(1.9)

where the incomplete Pochhammer symbols are de�ned as follows:

(a;σ)n =
γ(a+ n, σ)

G(a)
(a, n ∈ C;x ≥ 0) (1.10)

and the familiar incomplete gamma function γ(s, x) is

γ(s, x) =

x∫
0

ts−1e−tdt (R(s) > 0;x ≥ 0) (1.11)

provided that the de�ning of in�nite series in each case is absolutely convergent.

Appell Polynomial

The Appell Polynomial introduced and de�ned by [14] is represented in the following manner:

An(z) =
n∑

k=0

an−k
zk

k!
n = 0, 1, 2, ... (1.12)

where an−k is the complex coef�cient a0 ̸= 0

Fractional Integral Operators

We study two uni�ed fractional integral operators involving the Appell Polynomial, Fox H-

function and S-Generalized Gauss's Hypergeometric Function having general arguments

Iν,λx {An,H, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

HM,N
P,Q

z2 ( t

x

)ν2 (
1− t

x

)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3

]
f(t)dt

(1.13)

where, The operators are de�ned for f(t) ∈ L, L denotes the class of function f(t) for which

f(t) : =

{
O{|t|ζ}; Max{|t|} → 0

O{|t|w1e−w2|t|}; Min{|t|} → ∞
(1.14)

provided that

min
1≤j≤M

R

(
ν + ν2

bj
βj

+ ζ + 1, λ+ λ2

bj
βj

+ 1

)
> 0 and min{ν1, ν3, λ1, λ3} ≥ 0 (1.15)
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Jν,λ
x {An,H, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λAn

[
z1

(x
t

)ν1 (
1− x

t

)λ1

]

HM,N
P,Q

z2 (x
t

)ν2 (
1− x

t

)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3

]
f(t)dt

(1.16)

provided that

R(w2) > 0 or R(w2) = 0 and min
1≤j≤M

R

(
ν − w1 + ν2

bj
βj

)
> 0;

min
1≤j≤M

R

(
λ+ λ2

bj
βj

+ 1

)
> 0,min{ν1, ν3, λ1, λ3} ≥ 0 (1.17)

2 Special Cases

(i) In (1.13) and (1.16) , if we reduce Appell polynomial to Laguerre polynomial [3, p.101,

Eq.(5.1.6)] and Fox H-function reduced to Lorenzo Hartley G-function [12, p.64,Eq.(2.3)], we

obtain the following integral

Iν,λx {Ln, Gq,σ,r, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λL(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

Gq,σ,r

[
z2,

(
t

x

)ν2 (
1− t

x

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3

]
f(t)dt (2.1)

and

Jν,λ
x {Ln, Gq,σ,r, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λL(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

Gq,σ,r

[
z2,

(x
t

)ν2 (
1− x

t

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3

]
f(t)dt (2.2)

(ii) In (1.13) and (1.16) , if we reduce Appell polynomial to Bessel polynomial [4, p.108,

Eq.(34)] and Fox H-function reduced to GeneralizedMittag Lef�er function [2, p.25,Eq.(1.137)],

we obtain the following integral

Iν,λx {yn, Eη
γ,δ, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λyn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

, ρ, σ

]

Eη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3

]
f(t)dt (2.3)

and

Jν,λ
x {yn, Eη

γ,δ, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λyn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

, ρ, σ

]

Eη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3

]
f(t)dt (2.4)

(iii) In (1.13) and (1.16) , if we reduce Appell polynomial to Cesaro polynomial [8, p.449,

Eq.(20)] and Fox H-function reduced to Bessel Maitland function [2, p.25,Eq.(1.139)], we obtain
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the following integral

Iν,λx {gρn, J
η
γ,δ, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λg(ρ)n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

Jη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3

]
f(t)dt (2.5)

and

Jν,λ
x {gρn, J

η
γ,δ, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λg(ρ)n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

Jη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2

]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3

]
f(t)dt (2.6)

If we reduce Appell polynomial An(z) and Fox's H-function to unity, S-generalized hypergeo-

metric function into gauss hypergeometric function and λ3 = 1, ν3 = 0 in our fractional integral

operators de�ned by (1.13) and (1.16), we easily arrive at the results which are same in essence

as those obtained by Saxena and Kumbhat [15].

If we reduce Appell polynomial An(z) and Fox's H-function to unity, S-generalized hyperge-

ometric function into gauss hypergeometric function and λ3 = 1, ν3 = ν = 0 in our fractional

integral operators de�ned by (1.13) and (1.16), we easily arrive at the results which are same in

essence as those obtained by Saigo [13].

3 Images

In this section we shall obtain the following images in our operators de�ne by (1.13) and (1.16).

(i)

Iν,λx

An,H, Fp; t
ρH0,A;A1,B1;...;Ar,Br

C,D;C1,D1;...;Cr,Dr


z(1)tν

(1)

(x− t)λ
(1)

.

.

.

z(r)tν
(r)

(x− t)λ
(r)





=
G(β)xρ

G(a)G(α)B(b, c− b)

n∑
k=0

an−k

k!
zk1H

0,B+3;A1,B1;...;Ar,Br ;M,N ;1,1;1,2
C+3,D+2;C1,D1;...;Cr,Dr ;P,Q;1,1;3,1



z(1)xν(1)+λ(1)

.

.

z(r)xν(r)+λ(r)

z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(3.1)
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where

A∗ =(−ρ− ν − ν1k; ν
(1), ..., ν(r), ν2, ν3, 0), (−λ− λ1k;λ

(1), ..., λ(r), λ2, λ3, 0),

(1− b; 0, 0, ..., 0,︸ ︷︷ ︸
r

0, 1, τ), (aj ;α
(1)
j , ..., α

(r)
j , 0, 0, 0)1,C

B∗ =(−1− ρ− (λ+ ν))− (λ1 + ν1)k; (λ
(1) + ν(1)), ..., (λ(r) + ν(r)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, ..., 0,︸ ︷︷ ︸
r

0, 1, τ + µ), (bj ;β
(1)
j , ..., β

(r)
j , 0, 0, 0)1,D

C∗ =(c
(1)
j , γ

(1)
j )1,C1

; ...; (c
(r)
j , γ

(r)
j )1,Cr

; (aj , αj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

D∗ =(d
(1)
j , δ

(1)
j )1,D1

; ...; (d
(r)
j , δ

(r)
j )1,Dr

; (bj , βj)1,Q; (0, 1); (α, 1)


(3.2)

provided that conditions given by (1.15) are satis�ed.

(ii)

Jν,λ
x

An,H, Fp; t
ρH0,A;A1,B1;...;Ar,Br

C,D;C1,D1;...;Cr,Dr


z(1)t−ν(1)

(1− x
t )

λ(1)

.

.

.

z(r)t−ν(r)

(1− x
t )

λ(r)





=
G(β)xρ

G(a)G(α)B(b, c− b)

n∑
k=0

an−k

k!
zk1H

0,B+3;A1,B1;...;Ar,Br ;M,N ;1,1;1,2
C+3,D+2;C1,D1;...;Cr,Dr ;P,Q;1,1;3,1



z(1)x−ν(1)

.

.

z(r)x−ν(r)

z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗∗ : C∗

B∗∗ : D∗


(3.3)

where A∗∗ and B∗∗ can be obtained from A∗ and B∗ de�ned in (3.2) by replacing ρ by −1− ρ,
and provided that conditions given by (1.17) are satis�ed.

(iii)

Iν,λx

An,H, Fp; t
ρ
pγq

 (Ep;σ);

Fq;

z4

(
t

x

)ν4 (
1− t

x

)λ4




=
G(β)

G(a)G(α)B(b, c− b)

∞∑
i=0

n∑
k=0

an−k

k!

(e1;σ)i, (e2)i, ..., (ep)i
(f1)i, (f2)i, ..., (fq)ii!

zk1 z
i
4x

ρ

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1


z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣

E∗; (aj , αj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

F ∗; (bj , βj)1,Q; (0, 1); (α, 1)


(3.4)

E∗ =(−ρ− ν − ν1k − ν4i, ν2, ν3, 0), (−λ− λ1k − λ4i, λ2, λ3, 0), (1− b; 0, 1, τ)

F ∗ =(−1− ρ− (λ+ ν))− (λ1 + ν1)k − (λ4 + ν4)i, (λ2 + ν2), (λ3 + ν3), 0), (1− c; 0, 1, τ + µ)
(3.5)
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provided that the conditions given by (1.15) are satis�ed.

(iv)

Jν,λ
x

An,H, Fp; t
ρ
pγq

 (Ep;σ);

Fq;

z4t
−ν4

(
1− x

t

)λ4




=
G(β)

G(a)G(α)B(b, c− b)

∞∑
i=0

n∑
k=0

an−k

k!

(e1;σ)i, (e2)i, ..., (ep)i
(f1)i, (f2)i, ..., (fq)ii!

zk1 z
i
4x

ρ−ν4i

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1


z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣

E∗∗; (aj , αj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

F ∗∗; (bj , βj)1,Q; (0, 1); (α, 1)


(3.6)

where E∗∗ and F ∗∗ can be obtained from E∗ and F ∗ de�ned in (3.5) by replacing ρ by −1− ρ,
and provided that conditions given by (1.17) are satis�ed.

Proof: To prove (3.1), �rst of all express the I-operator involved in its left hand side in the

integral form with the help of (1.13). Then we express Appell polynomial in terms of series with

the help of (1.12). Now we interchange the order of series and t-integral, express both the Fox

H-function, multivariable H-function and and S-Generalized Gauss's Hypergeometric Function

in terms of Mellin-Barnes type contour integral with the help of (1.1), (1.4) and (1.6) respec-

tively. Then we interchange the order of ξi(i = 1, 2, ..., r + 3)-integral and t-integral, (which is

permissible under the condition stated). Finally, on evaluating the t-integral and reinterpreting

the result thus obtained in terms of multivariable H-function, we easily arrive at the required

result after a little simpli�cation.

The proof of (3.3), (3.4) and (3.6), can be obtained by proceeding on similar lines.

Due to general nature of the H-function in several variables occur in (3.1) and (3.3), we can

obtain a large number of special cases by specializing the parameters in them.

4 Mellin Transform, Inversion Formulas and Mellin Convolution

In this section we shall obtain the Mellin Transform, Inversion Formulas and Mellin Convolution

in our operators of study.

Theorem 4.1. IfM{[f(t)]; s},M{Iν,λx [An, H, Fp; f(t)]; s} exist,R(1+λ) > 0,R(1+ν−s) > 0

and the conditions of the existence of the operator Iν,λx [An,H, Fp; f(t)] are satis�ed then

M{Iν,λx [An, H, Fp; f(t)]; s} = M{f(t); s}G(s) (4.1)

Theorem 4.2. If M{[f(t)]; s},M{Jν,λ
x [An,H, Fp; f(t)]; s} exist, R(1 + λ) > 0,R(ν + s) > 0

and the conditions of the existence of the operator Jν,λ
x [An,H, Fp; f(t)] are satis�ed then

M{Jν,λ
x [An,H, Fp; f(t)]; s} = M{f(t); s}G((1− s)) (4.2)
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where

G(s) =
G(β)

G(a)G(α)B(b, c− b)

n∑
k=0

an−k
zk1
k!

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1


z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣

G∗; (aj , αj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

H∗; (bj , βj)1,Q; (0, 1); (α, 1)


(4.3)

G∗ = (−λ− λ1k;λ2, λ3, 0), (s− ν − ν1k; ν2, ν3, 0), (1− b; 0, 1, τ)

H∗ = (s− (ν + λ)− (ν1 + λ1)k − 1; (ν2 + λ2), (ν3 + λ3), 0), (1− c; 0, 1, τ + µ)

provided that conditions given by (1.15) and (1.17) are satis�ed and M{f(t); s} stands for the

well known Mellin transform of function f(t) de�ned by the following equation

M{f(t); s} =

∞∫
0

ts−1f(t)dt (4.4)

Proof: To prove Theorem 4.1 �rst we write the Mellin transform of the I-operator de�ned by

(1.13) with the help of (4.4)

M{Iν,λx [An, H, Fp; f(t)]; s} =

∞∫
0

xs−1Iν,λx [f(t)]dx

=

∞∫
0

xs−1x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1

]

HM,N
P,Q

z2 ( t

x

)ν2 (
1− t

x

)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3

]
f(t)dt

Next, we change the order of x- and t-integrals. Now, we replace the Fox H-function and S-

generalized hypergeometric function occuring in it in terms of Mellin Barnes Contour integral

with the help of equation (1.1) and (1.6) respectively and Appell polynomial in terms of series

with the help of equation (1.12) and interchange the order of summation and integration in the

result thus obtained. Next we evaluate the t-integral and interpret the result in terms of multi-

variable H-function and �nally with the help of (4.4), we easily arrive at the desired result (4.1)

after a little simpli�cation.

The proof of theorem 2 can be developed on similar lines.

Inversion Formulas

Formula 1

f(t) =
1

2πi

∫
L

t−s

G(s)
M{Iν,λx [An, H, Fp; f(t)]; s}ds (4.5)

Formula 2

f(t) =
1

2πi

∫
L

t−s

G(−1− s)
M{Jν,λ

x [An,H, Fp; f(t)]; s}ds (4.6)
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where G(s) is given by (4.3)

Mellin Convolution

The Mellin convolution of two functions f(t) and g(t) will be de�ned by

(f ∗ g)(x) = (g ∗ f)(x) =
∞∫
0

t−1g
(x
t

)
f(t)dt (4.7)

provided that the integral involved in (4.7) exists.

The fractional integral operators de�ned by (1.13) and (1.16) can readily be expressed as Mellin

convolutions. we have the following interesting results involving the Mellin convolutions :

Result 1

Iν,λx [An,H, Fp; f(t)] = (g ∗ f)(x) (4.8)

where

g(x) = x−ν−λ−1(x− 1)λAn

[
z1x

−ν1−λ1(x− 1)λ1

]
HM,N

P,Q

z2x−ν2−λ2(x− 1)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q


F (α,β;τ,µ)
p

[
a, b; c; z3x

−ν3−λ3(x− 1)λ3

]
U(x− 1)

(4.9)

Result 2

Jν,λ
x [An,H, Fp; f(t)] = (h ∗ f)(x) (4.10)

where

h(x) = xν(1− x)λAn

[
z1x

ν1(1− x)λ1

]
HM,N

P,Q

z2xν2(1− x)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q


F (α,β;τ,µ)
p

[
a, b; c; z3x

ν3(1− x)λ3

]
U(1− x) (4.11)

U(x) being the Heaviside's unit function.

Proof: To prove Result 1 we �rst write the Iν,λx -operator de�ned by (1.13) in the following

form using the de�nition of Heaviside's unit function:

Iν,λx [f(t)] =

∞∫
0

t−1
(x
t

)−ν−λ−1 (x
t
− 1

)λ

An

[
z1

(x
t

)−ν1−λ1
(x
t
− 1

)λ1

]

HM,N
P,Q

z2 (x
t

)−ν2−λ2
(x
t
− 1

)λ2

∣∣∣∣∣∣∣
(aj , αj)1,P

(bj , βj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)−ν3−λ3
(x
t
− 1

)λ3

]

U
(x
t
− 1

)
f(t)dt (4.12)

Now making use of the equation (4.9) and the de�nition of the Mellin convolution given by (4.7)

in the above equation, we easily arrive at the required Result 1 after a little simpli�cation.

The proof of Result 2 can be developed on similar lines.
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5 Analogue of Parseval Goldstein Theorem

If

ϕ1(x) = Iν,λx [An,H, Fp; f(t)] (5.1)

and

ϕ2(x) = Jν,λ
x [An,H, Fp; f(t)] (5.2)

then

∞∫
0

ϕ1(x)f2(x)dx =

∞∫
0

ϕ2(x)f1(x)dx (5.3)

provided that the integral involved in (5.1), (5.2) and (5.3) exists.

Proof: To prove the above theorem, we substitute the value of ϕ1(x) from (5.1) in the left

hand side of (5.3) and expressing the I-operator in its integral form by using (1.13). Now inter-

change the order of x and t-integrals (which is permissible under given conditions) and interpret

the expression thus obtained in term of J-operator with the help of (1.16), we arrive at the desired

result by (5.2) after a little simpli�cation.
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