SOME NEW MODULAR EQUATIONS OF RATIO'S OF RAMANUJAN QUANTITY

M. C. Mahesh Kumar*, B. N. Dharmendra** and P. S. Guruprasad***
Communicated by P.K. Banerji

MSC 2010 Classifications: Primary 33D10, 40A15,; Secondary 11A55, 30B70.
Keywords and phrases: Continued fraction, quantities, theta functions.
The First Author is thankful to the University Grants Commission (UGC), New Delhi, India for the Financial Support under the Minor Research Project No. MRP(S)0045/12-13/KABA095/UGC-SWRO, Dated 23.09.2013.

Abstract. Recently, In [5],[6] Nikos Bagis defined Ramanujan Quantities $R(a, b, p ; q)$ as

$$
\begin{equation*}
R(a, b, p ; q)=q^{-(a-b) / 2+\left(a^{2}-b^{2}\right) /(2 p)} \frac{\prod_{n=0}^{\infty}\left(1-q^{a} q^{n p}\right)\left(1-q^{p-a} q^{n p}\right)}{\prod_{n=0}^{\infty}\left(1-q^{b} q^{n p}\right)\left(1-q^{p-b} q^{n p}\right)} \tag{0.1}
\end{equation*}
$$

where a, b and p are positive rationals such that $a+b<p$. In this paper, we establish some modular equations of ratios for Ramanujan quantity $R\left(q^{n}\right):=R\left(1,2,4 ; q^{n}\right)$ for $n=2,3,4,5,7,9$ and some of their evaluations.

1 Introduction

In Chapter 16 of his second notebook [1], Ramanujan develops the theory of theta-function and is defined by

$$
\begin{align*}
f(a, b) & :=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}},|a b|<1 \tag{1.1}\\
& =(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}
\end{align*}
$$

where $(a ; q)_{0}=1$ and $(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots$.
Following Ramanujan, we define

$$
\begin{gather*}
\varphi(q):=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{(-q ;-q)_{\infty}}{(q ;-q)_{\infty}}, \tag{1.2}\\
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{1.3}\\
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=(q ; q)_{\infty} \tag{1.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\chi(q):=\left(-q ; q^{2}\right)_{\infty} \tag{1.5}
\end{equation*}
$$

Now we define a modular equation in brief. The ordinary hypergeometric series ${ }_{2} F_{1}(a, b ; c ; x)$ is defined by

$$
{ }_{2} F_{1}(a, b ; c ; x):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} x^{n}
$$

where $(a)_{0}=1,(a)_{n}=a(a+1)(a+2) \cdots(a+n-1)$ for any positive integer n, and $|x|<1$.
Let

$$
\begin{equation*}
z:=z(x):={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; x\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
q:=q(x):=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; x\right)}\right) \tag{1.7}
\end{equation*}
$$

where $0<x<1$.
Let r denote a fixed natural number and assume that the following relation holds:

$$
\begin{equation*}
r \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-\alpha\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right)}=\frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 1-\beta\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \beta\right)} . \tag{1.8}
\end{equation*}
$$

Then a modular equation of degree r in the classical theory is a relation between α and β induced by (1.8). We often say that β is of degree r over α and $m:=\frac{z(\alpha)}{z(\beta)}$ is called the multiplier. We also use the notations $z_{1}:=z(\alpha)$ and $z_{r}:=z(\beta)$ to indicate that β has degree r over α.

Using Ramanujan continued fraction [1], Nikos Bagis [5],[6] deduced the following result:

$$
\begin{gather*}
\frac{q^{B-A}}{1-a_{1} b_{1}}+\frac{\left(a_{1}-b_{1} q_{1}\right)\left(b_{1}-a_{1} q_{1}\right)}{\left(1-a_{1} b_{1}\right)\left(q_{1}^{2}+1\right)}+\frac{\left(a_{1}-b_{1} q_{1}^{3}\right)\left(b_{1}-a_{1} q_{1}^{3}\right)}{\left(1-a_{1} b_{1}\right)\left(q_{1}^{4}+1\right)}+\cdots \\
=\frac{\prod_{n=0}^{\infty}\left(1-q^{a} q^{n p}\right)\left(1-q^{p-a} q^{n p}\right)}{\prod_{n=0}^{\infty}\left(1-q^{b} q^{n p}\right)\left(1-q^{p-b} q^{n p}\right)} \tag{1.9}
\end{gather*}
$$

where $a_{1}=q^{A}, b_{1}=q^{B}, q_{1}=q^{A+B}, a=2 A+3 p / 4,2 B+p / 4$, and $p=4(A+B),|q|<1$,.
In this paper, we establish several new modular relations between
$\frac{R(-q)}{R(q)}$ and $\frac{R\left(-q^{n}\right)}{R\left(q^{n}\right)}$ for $n=2,3,4,5,7,9$ and values of $\frac{R(-q)}{R(q)}$ for $q=e^{-\pi}, e^{-2 \pi}$.

2 Preliminary results

Definition 2.1. [6]

$$
\begin{equation*}
[a, p ; q]=\left(q^{p-a} ; q^{p}\right)_{\infty}\left(q^{a} ; q^{p}\right)_{\infty} \tag{2.1}
\end{equation*}
$$

where $q=e^{-\pi \sqrt{r}}$ and $a, p, r>0$.
Definition 2.2. [6]

$$
\begin{equation*}
R(a, b, p ; q):=q^{-(a-b) / 2+\left(a^{2}-b^{2}\right) /(2 p)} \frac{[a, p ; q]}{[b, p ; q]} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. [1, Ch. 17, Entry 10-11, p.122-123]

$$
\begin{gather*}
\psi(q)=\sqrt{\frac{1}{2}} z\left\{\alpha q^{-1}\right\}^{1 / 8} \tag{2.3}\\
\psi(-q)=\sqrt{\frac{1}{2}} z\left\{\alpha(1-\alpha) q^{-1}\right\}^{1 / 8} \tag{2.4}
\end{gather*}
$$

where $q=e^{-y}$.
Lemma 2.4. [4, Entry 17.3.1, p.385] If β is of degree 2 over α, then

$$
\begin{equation*}
(1-\sqrt{1-\alpha})(1-\sqrt{\beta})=2 \sqrt{\beta(1-\alpha)} \tag{2.5}
\end{equation*}
$$

Lemma 2.5. [1, Entry 5(ii), p.230] If β has degree 3 over α, then

$$
\begin{equation*}
(\alpha \beta)^{1 / 4}+\{(1-\alpha)(1-\beta)\}^{1 / 4}=1 \tag{2.6}
\end{equation*}
$$

Lemma 2.6. [4, Entry 17.3.2, p.385] If β has degree 4 over α, then

$$
\begin{equation*}
(1-\sqrt[4]{1-\alpha})(1-\sqrt[4]{\beta})=2 \sqrt[4]{\beta(1-\alpha)} \tag{2.7}
\end{equation*}
$$

Lemma 2.7. [1, Entry 13(i), p.280] If β has degree 5 over α, then

$$
\begin{equation*}
(\alpha \beta)^{1 / 2}+\{(1-\alpha)(1-\beta)\}^{1 / 2}+2\{16 \alpha \beta(1-\alpha)(1-\beta)\}^{1 / 6}=1 \tag{2.8}
\end{equation*}
$$

Lemma 2.8. [1, Entry 19(i), p.314] If β has degree 7 over α, then

$$
\begin{equation*}
(\alpha \beta)^{1 / 8}+\{(1-\alpha)(1-\beta)\}^{1 / 8}=1 \tag{2.9}
\end{equation*}
$$

Lemma 2.9. [1, Entry 3(x),(xi), p.352] If β has degree 9 over α, then

$$
\begin{align*}
& \left(\frac{\beta}{\alpha}\right)^{1 / 8}+\left(\frac{1-\beta}{1-\alpha}\right)^{1 / 8}-\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{1 / 8}=\sqrt{m} \tag{2.10}\\
& \left(\frac{\alpha}{\beta}\right)^{1 / 8}+\left(\frac{1-\alpha}{1-\beta}\right)^{1 / 8}-\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 8}=\frac{3}{\sqrt{m}} \tag{2.11}
\end{align*}
$$

Lemma 2.10. [1, Entry 24(i), p.39]

$$
\begin{equation*}
\frac{\psi(-q)}{\psi(q)}=\sqrt{\frac{\varphi(-q)}{\varphi(q)}} \tag{2.12}
\end{equation*}
$$

3 Modular relations of Ratio's of Ramanujan Quantities of $\boldsymbol{R}(\boldsymbol{q})$

In this section, we obtain certain modular relations between $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{n}\right)}{R\left(q^{n}\right)}$.
Theorem 3.1. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{2}\right)}{R\left(q^{2}\right)}$ then

$$
\begin{equation*}
\left(\frac{a c}{b d}\right)^{2}+\left(\frac{b c}{a d}\right)^{2}=2\left(\frac{d}{c}\right)^{2} \tag{3.1}
\end{equation*}
$$

Proof. Putting $a=1, b=2, p=4$ in (0.1), we obtain

$$
\begin{equation*}
R(q):=R(1,2,4 ; q)=\frac{\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{2} ; q^{4}\right)_{\infty}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}} \tag{3.2}
\end{equation*}
$$

Using the equations (1.1), (1.2) and (1.3), the above equation can be written as

$$
\begin{equation*}
R(q)=\frac{f\left(-q^{2},-q^{2}\right)}{f\left(-q,-q^{3}\right)}=\frac{\varphi\left(-q^{2}\right)}{\psi(-q)} \tag{3.3}
\end{equation*}
$$

Replacing q by $-q$ in the above equation, we obtain

$$
\begin{equation*}
R(-q)=\frac{f\left(-q^{2},-q^{2}\right)}{f\left(q, q^{3}\right)}=\frac{\varphi\left(-q^{2}\right)}{\psi(q)} \tag{3.4}
\end{equation*}
$$

Dividing (3.4) by (3.3), we obtain

$$
\begin{equation*}
\frac{R(-q)}{R(q)}=\frac{\psi(-q)}{\psi(q)} . \tag{3.5}
\end{equation*}
$$

Employing the equations (2.3) and (2.4), we obtain

$$
\begin{equation*}
\frac{\psi(-q)}{\psi(q)}=(1-\alpha)^{1 / 8} \tag{3.6}
\end{equation*}
$$

Dividing (3.4) by (3.3) and then using (3.6), we obtain

$$
\begin{equation*}
(1-\alpha)^{1 / 8}=\frac{R(-q)}{R(q)} \tag{3.7}
\end{equation*}
$$

From the equation (3.7) and lemma (2.4), we obtain

$$
\begin{equation*}
\left(b^{4} c^{4}+2 b^{2} d^{4} a^{2}+c^{4} a^{4}\right)\left(b^{4} c^{4}-2 b^{2} d^{4} a^{2}+c^{4} a^{4}\right)=0 \tag{3.8}
\end{equation*}
$$

By examining the behavior of the above factors near $q=0$, we can find a neighborhood about the origin, where the second factor is zero; whereas first factor are not zero in this neighborhood. By the Identity Theorem second factor vanishes identically. This completes the proof.

Theorem 3.2. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{3}\right)}{R\left(q^{3}\right)}$ then

$$
\begin{equation*}
\left(\frac{a d}{b c}\right)^{2}+2 \frac{b d}{a c}=\left(\frac{b c}{a d}\right)^{2}+2 \frac{a c}{b d} \tag{3.9}
\end{equation*}
$$

Proof. From the equation (3.7) and lemma (2.5), we obtain

$$
\begin{equation*}
\left(d^{4} a^{4}+2 d c^{3} b a^{3}-2 d^{3} c b^{3} a-c^{4} b^{4}\right)\left(d^{4} a^{4}-2 d c^{3} b a^{3}+2 d^{3} c b^{3} a-c^{4} b^{4}\right)=0 \tag{3.10}
\end{equation*}
$$

By examining the behavior of the above factors near $q=0$, we can find a neighborhood about the origin, where the second factor is zero; whereas first factor are not zero in this neighborhood. By the Identity Theorem second factor vanishes identically. This completes the proof.

Theorem 3.3. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{4}\right)}{R\left(q^{4}\right)}$ then

$$
\begin{equation*}
\left(\frac{a c}{b d}\right)^{4}+\left(\frac{b c}{a d}\right)^{4}+\frac{c^{4}}{d^{4}}\left(4\left[\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right]+6\right)=8 \frac{d^{4}}{c^{4}}\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right) \tag{3.11}
\end{equation*}
$$

Proof. From the equation (3.7) and lemma (2.6), we obtain(3.11).

Theorem 3.4. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{5}\right)}{R\left(q^{5}\right)}$ then

$$
\begin{equation*}
\left(\frac{a d}{b c}\right)^{3}+4\left(\frac{b d}{a c}\right)^{2}+5 \frac{a d}{b c}=\left(\frac{b c}{a d}\right)^{3}+4\left(\frac{a c}{b d}\right)^{2}+5 \frac{b c}{a d} \tag{3.12}
\end{equation*}
$$

Proof. From the equation (3.7) and lemma (2.9), we obtain

$$
\begin{align*}
& \left(-5 b^{4} d^{2} c^{4} a^{2}-4 d^{5} b^{5} c a+d^{6} a^{6}+4 b d c^{5} a^{5}+5 d^{4} b^{2} c^{2} a^{4}-b^{6} c^{6}\right) \\
& \left(-5 b^{4} d^{2} c^{4} a^{2}+4 d^{5} b^{5} c a+d^{6} a^{6}-4 b d c^{5} a^{5}+5 d^{4} b^{2} c^{2} a^{4}-b^{6} c^{6}\right) \\
& \left(15 b^{4} d^{8} c^{4} a^{8}-10 b^{10} d^{2} c^{10} a^{2}+15 b^{8} d^{4} c^{8} a^{4}+20 b^{6} d^{6} c^{6} a^{6}+b^{12} c^{12}\right. \\
& \left.+d^{12} a^{12}+16 d^{2} b^{2} c^{10} a^{10}+16 b^{10} d^{10} c^{2} a^{2}-10 d^{10} b^{2} c^{2} a^{10}\right)\left(b^{24} c^{24}\right. \\
& +58 b^{20} d^{4} c^{20} a^{4}-320 b^{20} d^{12} c^{12} a^{4}+256 a^{4} c^{4} b^{20} d^{20}+1423 b^{16} a^{8} d^{8} c^{16} \tag{3.13}\\
& -1408 b^{16} a^{8} d^{16} c^{8}-320 b^{12} d^{4} c^{20} a^{12}+620 a^{12} c^{12} b^{12} d^{12}+a^{24} d^{24} \\
& -1408 b^{8} a^{16} d^{8} c^{16}+1423 b^{8} a^{16} d^{16} c^{8}+256 a^{20} c^{20} b^{4} d^{4}-320 b^{4} d^{12} c^{12} a^{20} \\
& \left.+58 b^{4} d^{20} c^{4} a^{20}-320 d^{20} b^{12} c^{4} a^{12}\right)=0
\end{align*}
$$

By examining the behavior of the above factors near $q=0$, we can find a neighborhood about the origin, where the second factor is zero; whereas other factors are not zero in this neighborhood. By the Identity Theorem second factor vanishes identically. This completes the proof.

Theorem 3.5. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{7}\right)}{R\left(q^{7}\right)}$ then

$$
\begin{align*}
& \left(\frac{a d}{b c}\right)^{4}+\left(\frac{b c}{a d}\right)^{4}+28\left[\left(\frac{a c}{b d}\right)^{2}+\left(\frac{b d}{a c}\right)^{2}\right]+70 \tag{3.14}\\
& =8\left[\left(\frac{a c}{b d}\right)^{3}+\left(\frac{b d}{a c}\right)^{3}\right]+56\left[\left(\frac{a c}{b d}\right)+\left(\frac{b d}{a c}\right)\right] .
\end{align*}
$$

Proof. From the equation (3.7) and lemma (2.8), we obtain(3.14).

Theorem 3.6. If $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{9}\right)}{R\left(q^{9}\right)}$ then

$$
\begin{align*}
& \left(\frac{a d}{b c}\right)^{8}+\left(\frac{b c}{a d}\right)^{6}+8\left[\left(\frac{a d}{b c}\right)^{5}+\left(\frac{b c}{a d}\right)^{5}\right]+10\left[\left(\frac{a d}{b c}\right)^{4}+\left(\frac{b c}{a d}\right)^{4}\right] \\
& +16\left[\left(\frac{a c}{b d}\right)^{4}+\left(\frac{b d}{a c}\right)^{4}\right]+15\left[\left(\frac{a d}{b c}\right)^{2}+\left(\frac{b c}{a d}\right)^{2}\right]+48\left[\left(\frac{a d}{b c}\right)+\left(\frac{b c}{a d}\right)\right] \tag{3.15}\\
& =24\left[\left(\frac{a d}{b c}\right)^{3}+\left(\frac{b c}{a d}\right)^{3}\right]+16\left(\frac{b d}{a c}\right)^{3}\left[\frac{b^{2}}{a^{2}}+\frac{d^{2}}{c^{2}}\right]+16\left(\frac{a c}{b d}\right)^{3}\left[\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}\right]+84 .
\end{align*}
$$

Proof. From the equation (3.7) and lemma (2.9), we obtain (3.15).

Remark 3.7. Similarly, we obtain the Modular relations between $\frac{a}{b}:=\frac{R(-q)}{R(q)}$ and $\frac{c}{d}:=\frac{R\left(-q^{n}\right)}{R\left(q^{n}\right)}$, for $n=8,11,13,15,17,19,23$ and 25 .

4 Explicit values of Ratio's of Ramanujan Quantities of $\boldsymbol{R}(\boldsymbol{q})$

In this section, we obtain explicit values of Ratio's of Ramanujan Quantities of $R(q)$.
Theorem 4.1. We have

$$
\begin{equation*}
\frac{R\left(-e^{-n \pi}\right)}{R\left(e^{-n \pi}\right)}=\frac{\psi\left(-e^{-n \pi}\right)}{\psi\left(e^{-n \pi}\right)} \tag{4.1}
\end{equation*}
$$

Proof. Put $q=e^{-n \pi}$ in equation (3.5), we get (4.1) \square
In his first notebook, Ramanujan's second notebook [7] recorded many elementary values of $\varphi(q)$. In particularly, he recorded $\varphi\left(e^{-n \pi}\right)$ and $\varphi\left(-e^{-n \pi}\right)$ for $n=1,2,4$ and etc. Noting from [[3], Entry 1, p.325], we have

$$
\begin{equation*}
\varphi\left(e^{-\pi}\right)=\frac{\pi^{1 / 4}}{\Gamma(3 / 4)} \text { and } \varphi\left(-e^{-\pi}\right)=\frac{\pi^{1 / 4}}{\Gamma(3 / 4)} 2^{-1 / 4} \tag{4.2}
\end{equation*}
$$

Employing the equations (4.1), (4.2) and (2.12), we obtain

$$
\begin{equation*}
\frac{R\left(-e^{-\pi}\right)}{R\left(e^{-\pi}\right)}=2^{-1 / 8} \tag{4.3}
\end{equation*}
$$

Using the above value in Theorem (3.1), we get

$$
\begin{equation*}
\frac{R\left(-e^{-2 \pi}\right)}{R\left(e^{-2 \pi}\right)}=2^{5 / 16}[\sqrt{2}-1]^{1 / 4} \tag{4.4}
\end{equation*}
$$

References

[1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York (1991).
[2] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York (1994).
[3] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York (1998).
[4] G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, New York (2005).
[5] Nikos Bagis and M. L. Glasser, Jacobian Elliptic Functions, Continued Fractions and Ramanujan Quantities, arXiv:1001.2660v1 [math.GM], (15 Jan 2010).
[6] Nikos Bagis, Generalizations of Ramanujan Continued fractions, arXiv:1107.2393v2 [math.GM], (7 Aug 2012).
[7] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay (1957).

Author information

M. C. Mahesh Kumar*, B. N. Dharmendra** and P. S. Guruprasad***,
*Department of Mathematics, Government First Grade College, K. R. Puram, Bangalore-560036, INDIA.
**Post Graduate Department of Mathematics, Maharani's Science College for Women, J. L. B. Road, Mysore-570 001, INDIA.
***Department of Mathematics, Government First Grade College, Channarayapatana-573 116, INDIA.
E-mail: *softmahe15@gmail.com, ${ }^{* *}$ bndharma@gmail.com, ${ }^{* * *}$ guruprasad18881@gmail.com
Received: November 6, 2015.
Accepted: January 12, 2016.

