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Abstract. In this paper, we introduce and study a new subclass of meromorphically uniformly

convex functions with positive coef�cients de�ned by a differential operator and obtain coef�-

cient estimates ,growth and distortion theorem, radius of convexity,integral transforms, convex

linear combinations, convolution properties and δ - neighborhoods for the class σρ(α, β).

1 Introduction

Let A denote the class of functions of the form

f (z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk E ={z ∈ C : |z| < 1} and satisfy the following usual
normalization condition f(0) = f ′(0)− 1 = 0. We denote by S the subclass of A consisting of

functions f(z) which are all univalent in E. A function f ∈ A is a starlike function by the order

α, 0 ≤ α < 1 if it satisfy

Re

{
zf ′(z)

f(z)

}
> α(z ∈ E). (1.2)

We denote this class withS∗(α).
A function f ∈ A is a convex function by the order α, 0 ≤ α < 1 if it satisfy

Re

{
1+

zf ′′(z)

f ′(z)

}
> α(z ∈ E). (1.3)

We denote this class with K(α).
Let T denote the class of functions analytic in E that are of the form

f(z) = z −
∞
S

n=2

anz
n, an ≥ 0(z ∈ E) (1.4)

and let T ∗(α) = T
∩

S∗(α), C(α) = T
∩
K(α). The class T ∗(α) and allied classes possess

some interesting properties and have been extensively studied by Silverman[17] and others.

A function f ∈ A is said to in the class of uniformly convex functions of order γ and type β,
denoted by UCV (β, γ), if

Re

{
1+

zf ′′(z)

f ′(z)
− γ

}
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , (1.5)
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where β ≥ 0, γ ∈ [−1, 1) and β + γ ≥ 0, and is said to be in the class corresponding class

denoted by SP (β, γ) if

Re

{
zf ′(z)

f(z)
− γ

}
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , (1.6)

where β ≥ 0, γ ∈ [−1, 1) and β + γ ≥ 0.

Indeed it follows from (1.5) and (1.6) that

f ∈ UCV (γ, β) ⇔ zf ′ ∈ SP (γ, β). (1.7)

For β = 0 we get respectively, the classesK(γ) and S∗(γ).The function of the classUCV (1, 0) ≡
UCV are called uniformly convex functions and were introduced by Goodman with geometric

interpretation in [5]. The class SP (1, 0) ≡ SP is de�ned by Ronning [13].

The classes UCV (1, γ) ≡ UCV (γ) and SP (1, γ) ≡ SP (γ) are investgated by Ronning in

[12 ]. For γ = 0, the classes UCV (β, 0) ≡ β − UCV and SP (β, 0) ≡ β − SP are de�ned

respectively, by Kanas and Wisniowska in [ 8 ] and [ 9 ].

Further Ahuja et al [1], Bharathi et al [2], Murugusundaramurthy andMagesh [10] and others

have studied and investigated interesting properties for the classes UCV (β, γ) and SP (β, γ).
Let

∑
denote the class the class of functions of the form

f(z) =
1

z
+

∞∑
m=1

am zm (1.8)

which are regular in domain E = {z :0 < |z|< 1} with a simple pole at the origin with residue 1

there.

Let
∑

s,
∑∗

(α) and
∑

k (α) (0≤ α< 1) denote the subclasses of
∑

that are univalent, meromor-

phically starlike of order α and meromorphically convex of order α respectively. Analytically

f (z) of the form (1.8) is in
∑∗

(α) if and only if

Re

{
−zf ′ (z)

f (z)

}
> α, z ∈ E (1.9)

Similarly, f ∈
∑

k (α) if and only if, f (z) is of the form (1.8) and satis�es

Re

{
−
(
1+

zf ′′ (z)

f ′ (z)

)}
> α, z ∈ E (1.10)

It being understood that if α = 1 then f (z) = 1

z is the only function which is
∑∗(1) and

∑
k(1).

The classes
∑∗

(α) and
∑

k (α) have been extensively studied by Pommerenke [11], Clunie [3],

Royster [15] and others.

Since, to a certain extent the work in the meromorphic univalent case has paralleled that of

regular univalent case, it is natural to search for a subclass of
∑

s that has properties analogous

to those of T∗ (α). Juneja and Reddy [7] introduced the class
∑

pof functions of the form

f(z) =
1

z
+

∞∑
m=1

am zm, am ≥ 0, (1.11)

∗∑
p

(α) =
∑
p

∩ ∗∑
(α) .

For functions f(z) in the class
∑

p, we de�ne a linear operator D
n by the following form

D0f(z) = f(z)
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D1f(z) =
1

z
+ 3a1z + 4a2z

2 + .... =
(z2f(z))′

z

D2f(z) = D(D′f(z))

and for n=1,2,3,. . . ..

Dnf(z) = D(Dn−1f(z)) =
1

z
+

∞∑
m=1

(m+ 2)namzm =
(z2Dn−1f(z))′

z
(1.12)

Now, we de�ne a new subclass σp(α, β) of
∑

p.

De�nition 1.1. For −1 ≤ α < 1, and β ≥ 1, we let σp(α, β) be the subclass of
∑

p

consisting of functions of the form (1.11) and satisfying the analytic criterion

Re

{
Dn+1f(z)

Dnf(z)
− α

}
> β

∣∣∣∣Dn+1f(z)

Dnf(z)
− 1

∣∣∣∣ (1.13)

Dnf(z) is given by (1.12).

The main object of the paper is to study some usual properties of the geometric

function theory such as coef�cient bounds ,growth and distortion properties ,radius of

convexity ,convex linear combination and convolution properties, integral operators

and δ- neighbourhoods for the class σp(α, β).

2 Coef�cient Inequality

Theorem 2.1. A function f(z) of the form (1.11) is in σp(α, β) if∑∞
m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α] |am| ≤ (1− α),−1 ≤ α < 1 and β ≥ 1.

Proof: It suf�ces to show that

β

∣∣∣∣Dn+1f(z)

Dnf(z)
− 1

∣∣∣∣−Re

{
Dn+1f(z)

Dnf(z)
− 1

}
≤ 1− α.

We have

β

∣∣∣∣Dn+1f(z)

Dnf(z)
− 1

∣∣∣∣−Re

{
Dn+1f(z)

Dnf(z)
− 1

}

≤ (1+ β)

∣∣∣∣Dn+1f(z)

Dnf(z)
− 1

∣∣∣∣
≤

(1+ β)
∑∞

m=1
(m+ 2)n(m+ 1) |am| |zm|

1

|z| −
∑∞

m=1
(m+ 2)n |am| |z|m

Letting z → 1 along the real axis, we obtain

≤
(1+ β)

∑∞
m=1

(m+ 2)n(m+ 1) |am|
1−

∑∞
m=1

(m+ 2)n |am|

This last expression is bounded by (1− α) if
∞∑

m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α] |am| ≤ (1− α).

Hence the theorem is completed.

Corollary 2.1. Let the function f(z) de�ned by (1.11) be in the class σp(α, β), then

am ≤ (1− α)∑∞
m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
, (m ≥ 1) (2.1)

Equality holds for the functions of the form

fm(z) =
1

z
+

(1− α)

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
zm. (2.2)
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3 Distortion Theorems

Theorem 3.1. Let the function f(z) de�ned by (1.11) be in the class σp(α, β). Then for 0 <
|z| = r < 1,

1

r − (1−α)
3n(3+2β−α)r ≤ |f(z)| ≤ 1

r +
(1−α)

3n(3+2β−α)r (3.1)

with equality for the function

f(z) =
1

z
+

(1− α)

3n(3+ 2β − α)
z, atz = r, ir. (3.2)

Proof: Suppose f(z) is in σp(α, β). In view of Theorem 2.1, we have

3n(3+ 2β − α)
∞∑

m=1

am ≤
∞∑

m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α] ≤ (1− α).

which evidently yields
∞∑

m=1

am ≤ 1− α

3n(3+ 2β − α)

Consequently, we obtain |f(z)| =
∣∣ 1
z +

∑∞
m=1

amzm
∣∣≤ ∣∣ 1z ∣∣+∑∞

m=1
am |z|m ≤ 1

r +r
∑∞

m=1
am

≤ 1

r +
(1−α)

3n(3+2β−α)r

Also,

|f(z)| =

∣∣∣∣∣1z +
∞∑

m=1

amzm

∣∣∣∣∣
≥
∣∣∣∣1z
∣∣∣∣− ∞∑

m=1

am |z|m ≥ 1

r
− r

∞∑
m=1

am

≥ 1

r − (1−α)
3n(3+2β−α)r

Hence the results (3.1) follow.

Theorem 3.2. Let the function f(z) de�ned by (1.11) be in the class σp(α, β). Then
for 0 < |z| = r < 1,

1

r2
− (1− α)

3n(3+ 2β − α)
≤ |f ′(z)| ≤ 1

r2
+

(1− α)

3n(3+ 2β − α)

The result is sharp, the extremal function being of the form (2.2).

Proof : From Theorem 2.1, we have

3n(3+ 2β − α)
∞∑

m=1

mam ≤
∞∑

m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α] ≤ (1− α)

which evidently yields

∞∑
m=1

mam ≤ 1− α

3n(3+ 2β − α)

Consequently, we obtain

|f ′(z)| ≤ 1

r2
+

∞∑
m=1

mamrm−1

≤ 1

r2
+

∞∑
m=1

mam

≤ 1

r2
+

(1− α)

3n(3+ 2β − α)
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Also,

|f ′(z)| ≥ 1

r2
−

∞∑
m=1

mamrm−1

≥ 1

r2
−

∞∑
m=1

mam

≥ 1

r2
− (1− α)

3n(3+ 2β − α)

This completes the proof.

4 Class Preserving Integral operators

In this section we consider the class preserving integral operators of the form (1.11).

Theorem 4.1. Let the function f(z) be de�ned by (1.11) be in the class σp(α, β). Then the

integral operator

F (z) = cz−c−1

∫ z

0

tcf(t)dt =
1

z
+

∞∑
m=

c

c+m+ 1
amzm, c > 0 (4.1)

is in σp(δ, β), where

δ(α, β, c) =
(m+ 1)(1+ β) + αc(1− β) + (1− α)

(c+m+ 1)(1+ β) + (1− α)
(4.2)

The result is sharp for

f(z) =
1

z
+

(1− α)

3n(3+ 2β − α)
z.

Proof. Suppose f(z) = 1

z +
∑∞

m=1
amzm is in σp(α, β).We have

F (z) = cz−c−1

∫ z

0

tcf(t)dt =
1

z
+

∞∑
m=1

c

c+m+ 1
amzm, c > 0.

It is suf�cient to show that

∑∞
m=1

(m+2)n[(1+β)(m+1)+1−δ]
1−δ

c
c+m+1

an ≤ 1
(4.3)

Since f(z) is in σp(α, β),we have

∑∞
m=1

(m+2)n[(1+β)(m+1)+1−α]|am|
1−α ≤ 1

(4.4)

Thus (4.3) will be satis�ed if

[(1+β)(m+1)+1−δ]
1−δ

c
c+m+1

≤ [(1+β)(m+1)+1−α]
1−α

Solving for δ, we obtain

δ ≤ (m+ 1)(1+ β) + αc(1− β) + (1− α)

(c+m+ 1)(1+ β) + (1− α)
= G(m)

A simple computation will show thatG(m) is increasing andG(m) ≥ G(1).Using this, the result
follows.
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5 Convex Linear Combinations and Convolution Properties

Theorem 5.1. If the function f(z) = 1

z +
∑∞

m=1
amzm is in σp(α, β)then f(z) is meromorphi-

cally convex of order δ(0 ≤ δ < 1) in |z| < r = r(α, β, δ) where

r(α, β, δ) = inf
n≥1

{
(1− δ)(m+ 2)n [(1+ β)(1+m) + 1− α]

(1− α)m(m+ 2− δ)

}1/m+ 1

.

The result is sharp.

Proof.Let f(z) is in σp(α, β). Then ,by Theorem 2.1, we have

∞∑
m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α] |am| ≤ (1− α) (5.1)

It is suf�cient to show that ∣∣∣∣2+ zf ′′ (z)

f ′ (z)

∣∣∣∣ ≤ 1− δ

for |z| < r = r(α, β, δ),where r(α, β, δ) is speci�ed in the statement of the theorem. Then∣∣∣∣2+ zf ′′(z)

f ′(z)

∣∣∣∣ =
∣∣∣∣∣
∑∞

m=1
m(m+ 1)amzm−1

−1

z2
+
∑∞

m=1
mamzm−1

∣∣∣∣∣ ≤
∞∑

m=1

m(m+ 1)am |z|m+1

1−
∑∞

m=1
mam |z|m+1

This will be bounded by (1− δ) if

∞∑
m=1

m(m+ 2− δ)

1− δ
am |z|m+1 ≤ 1. (5.2)

By (5.1), it follow that (5.2) is true if

m(m+2−δ)
1−δ |z|m+1 ≤ (m+2)n[(1+β)(m+1)+1−α]

1−α ,m ≥ 1

or

|z| ≤
{
(1− δ)(m+ 2)n [(1+ β)(1+m) + 1− α]

(1− α)m(m+ 2− δ)

}1/m+ 1
(5.3)

Setting |z| = r(α, β, δ) in (5.3) , the result follows. The result is sharp for the function

fm(z) =
1

z
+

(1− α)

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
zm, (m ≥ 1).

Theorem 5.2. Let f0(z) =
1

z and

fm(z) =
1

z
+

(1− α)

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
zm, (m ≥ 1)

Then f(z) = 1

z +
∑∞

m=1
amzm is in the class σp(α, β) if and only if it can be expressed in the

form

f(z) = λ0f0(z) +
∞∑

m=1

λmfm(z)

where λ0 ≥ 0 , λm ≥ 0 (m ≥ 1) and λ0 +
∑∞

m=1
λm = 1.

Proof. Let f(z) = λ
0
f0(z) +

∑∞
m=1

λmfm(z) with λ0 ≥ 0, λm ≥ 0 (m ≥ 1) and

λ0 +
∞∑

m=1

λm = 1

Then
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f(z) = λ0f0(z) +
∞∑

m=1

λmfm(z)

=
1

z
+

∞∑
m=1

λm
(1− α)

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
zm

Since ∑∞
m=1

(m+2)n[(1+β)(m+1)+1−α]
1−α λm

1−α
(m+2)n(1+β)(m+1)+1−α

=
∞∑

m=1

λm = 1− λ0 ≤ 1,

By Theorem 2.1 f(z) is in the class σp(α, β). Conversely suppose that the function f(z) is in
the class σp(α, β), Since

am ≤ (1− α)

(m+ 2)n [(1+ β)(m+ 1) + 1− α]
, (m ≥ 1)

λm = (m+2)n[(1+β)(m+1)+1−α]
1−α am,

and λ0 = 1−
∑∞

m=1
λm, it follows that f(z) = λ

0
f0(z) +

∑∞
m=1

λmfm(z). This completes the

proof of the theorem.

For the functions f(z) = 1

z +
∑∞

m=1
amzm and g(z) = 1

z +
∑∞

m=1
bmzmbelong to

∑
p we denote

by (f ∗ g)(z) the convolution of f(z) and g(z) or

(f ∗ g)(z) = 1

z
+

∞∑
m=1

ambmzm

Theorem 5.3. If the functions f(z) = 1

z +
∑∞

m=1
amzm and g(z) = 1

z +
∑∞

m=1
bmzm are in the

class σp(α, β),then (f ∗ g)(z) = 1

z +
∑∞

m=1
ambmzm is in the class σp(α, β).

Proof. Suppose f(z) and g(z) are in σp(α, β). By Theorem 2.1, we have and
∑∞

m=1

(m+2)n[(1+β)(m+1)+1−α]
1−α am ≤ 1

∑∞
m=1

(m+2)n[(1+β)(m+1)+1−α]
1−α bm ≤ 1

Since f(z) and g(z) are regular are in E, so is (f ∗ g)(z). Furthermore,

∑∞
m=1

(m+2)n[(1+β)(m+1)+1−α]
1−α ambm

≤
∑∞

m=1

{
(m+2)n[(1+β)(m+1)+1−α]

1−α

}2

ambm

≤

( ∞∑
m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α]

1− α
am

)( ∞∑
m=1

(m+ 2)n [(1+ β)(m+ 1) + 1− α]

1− α
bm

)

≤ 1.

Hence by Theorem 2.1, (f ∗ g)(z) is in the class σp(α, β).
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6 Neighborhoods for the class σp(α, β, γ) which we de�ne as follows:

De�nition 6.1. A function f ∈
∑

p is said to in the class σp(α, β, γ) if there exists a function

g ∈ σp(α, β) such that ∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1− γ, z ∈ E, (0 ≤ γ < 1) (6.1)

Following the earlier works on neighborhoods of analytic functions by Goodman [4] and Ruschweyh

[ 16 ], we de�ne the δ-neighborhood of a function f ∈
∑

pby

Nδ(f) :=

{
g ∈

∑
p

: g(z) =
1

z
+

∞∑
m=1

bmzm :

∞∑
m=1

m |am − bm| ≤ δ

}
(6.2)

Theorem 6.1. If g ∈ σp(α, β) and

γ = 1− δ(3+ 2β − α)

2+ 2β
(6.3)

Then

Nδ(g) ⊂ σp(α, β, γ).

Proof: Let f ∈ Nδ(g). Then we �nd from (6.2) that

∞∑
m=1

m |am − bm| ≤ δ (6.4)

which implies the coef�cient inequality

∞∑
m=1

|am − bm| ≤ δ, (m ∈ N) (6.5)

Since g ∈ σp(α, β), we have
∞∑

m=1

bm ≤ 1− α

3+ 2β − α
(6.6)

So that ∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ ≤ ∑∞
m=1

|am − bm|
1−

∑∞
m=1

bm
≤ δ(3+ 2β − α)

2+ 2β
= 1− γ.

provided γ is given by (6.3). Hence ,by de�nition , f ∈ σp(α, β, γ) for γ given by (6.3), which

completes the proof.
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