Tow estimates for the Generalized Fourier-Bessel Transform in the Space $L_{\alpha, n}^{2}$

R. Daher, S. El ouadih and M. EL hamma
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 42B10; Secondary 42B37.
Keywords and phrases: Singular differential operator; Generalized Fourier-Bessel transform; Generalized translation operator.

Abstract

Two estimates are proved for the generalized Fourier-Bessel transform in the space $L_{\alpha, n}^{2}$ on certain classes of functions characterized by the generalized continuity modulus.

1 Introduction

In [5], Abilov et al. proved two estimates for the Fourier transform in the space of square integrable functions on certain classes of functions characterized by the generalized continuity modulus, using a translation operator.
In this paper, we consider a second-order singular differential operator \mathcal{B} on the half line which generalizes the Bessel operator \mathcal{B}_{α}, we prove two estimates in certain classes of functions characterized by a generalized continuity modulus and connected with the generalized Fourier-Bessel transform associated to \mathcal{B} in $L_{\alpha, n}^{2}$ analogs of the statements proved in [5]. For this purpose, we use a generalized translation operator.
In section 2, we give some definitions and preliminaries concerning the generalized FourierBessel transform. Two estimates are proved in section 3.

2 Preliminaries on the generalized Fourier-Bessel transform

Integral transforms and their inverses the Bessel transform are widely used to solve various problems in calculus, mechanics, mathematical physics, and computational mathematics (see [3, 4]).
We briefly overview the theory of generalized Fourier-Bessel transform and related harmonic analysis (see $[1,6]$)
Consider the second-order singular differential operator on the half line defined by

$$
\mathcal{B} f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x}-\frac{4 n(\alpha+n)}{x^{2}} f(x)
$$

where $\alpha>\frac{-1}{2}$ and $n=0,1,2, \ldots$. For $n=0$, we obtain the classical Bessel operator

$$
\mathcal{B}_{\alpha} f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x}
$$

Let M be the map defined by

$$
M f(x)=x^{2 n} f(x), \quad n=0,1, . .
$$

Let $L_{\alpha, n}^{p}, 1 \leq p<\infty$, be the class of measurable functions f on $[0, \infty[$ for which

$$
\|f\|_{p, \alpha, n}=\left\|M^{-1} f\right\|_{p, \alpha+2 n}<\infty
$$

where

$$
\|f\|_{p, \alpha}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{2 \alpha+1} d x\right)^{1 / p}
$$

If $p=2$, then we have $L_{\alpha, n}^{2}=L^{2}\left(\left[0, \infty\left[, x^{2 \alpha+1}\right)\right.\right.$.
For $\alpha>\frac{-1}{2}$, we introduce the normalized spherical Bessel function j_{α} defined by

$$
\begin{equation*}
j_{\alpha}(x)=\frac{2^{\alpha} \Gamma(\alpha+1) J_{\alpha}(x)}{x^{\alpha}} \tag{2.1}
\end{equation*}
$$

where $J_{\alpha}(x)$ is the Bessel function of the first Kind and $\Gamma(x)$ is the gamma-function (see [7]). The function $y=j_{\alpha}(x)$ satisfies the differential equation

$$
\mathcal{B}_{\alpha} y+y=0
$$

with the condition initial $y(0)=0$ and $y^{\prime}(0)=0$. The function $j_{\alpha}(x)$ is infinitely differentiable, even and moreover entire analytic.
In the terms of $j_{\alpha}(x)$, we have (see [2])

$$
\begin{align*}
1-j_{\alpha}(x) & =O(1), \quad x \geq 1 \tag{2.2}\\
1-j_{\alpha}(x) & =O\left(x^{2}\right), \quad 0 \leq x \leq 1 \tag{2.3}\\
\sqrt{h x} J_{\alpha}(h x) & =O(1), \quad h x \geq 0 \tag{2.4}
\end{align*}
$$

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$
\begin{equation*}
\varphi_{\lambda}(x)=x^{2 n} j_{\alpha+2 n}(\lambda x) \tag{2.5}
\end{equation*}
$$

From [1, 6] recall the following properties.

Proposition 2.1.

(1) φ_{λ} satisfies the differential equation

$$
\mathcal{B} \varphi_{\lambda}=-\lambda^{2} \varphi_{\lambda}
$$

(2) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$
\left|\varphi_{\lambda}(x)\right| \leq x^{2 n} e^{|I m \lambda \| x|}
$$

The generalized Fourier-Bessel transform that we call it the integral transform defined by

$$
\mathcal{F}_{\mathcal{B}} f(\lambda)=\int_{0}^{\infty} f(x) \varphi_{\lambda}(x) x^{2 \alpha+1} d x, \lambda \geq 0, f \in L_{\alpha, n}^{1}
$$

(see [1]). Let $f \in L_{\alpha, n}^{1}$ such that $\mathcal{F}_{\mathcal{B}}(f) \in L_{\alpha+2 n}^{1}=L^{1}\left(\left[0, \infty\left[, x^{2 \alpha+4 n+1} d x\right)\right.\right.$. Then the inverse generalized Fourier-Bessel transform is given by the formula

$$
f(x)=\int_{0}^{\infty} \mathcal{F}_{\mathcal{B}} f(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda)
$$

where

$$
d \mu_{\alpha+2 n}(\lambda)=a_{\alpha+2 n} \lambda^{2 \alpha+4 n+1} d \lambda, \quad a_{\alpha}=\frac{1}{4^{\alpha}(\Gamma(\alpha+1))^{2}}
$$

(see [1]).
Proposition 2.2. [1]
(1) For every $f \in L_{\alpha, n}^{1} \cap L_{\alpha, n}^{2}$ we have the Plancherel formula

$$
\int_{0}^{+\infty}|f(x)|^{2} x^{2 \alpha+1} d x=\int_{0}^{+\infty}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

(2) The generalized Fourier-Bessel transform $\mathcal{F}_{\mathcal{B}}$ extends uniquely to an isometric isomorphism from $L_{\alpha, n}^{2}$ onto $L^{2}\left(\left[0,+\infty\left[, \mu_{\alpha+2 n}\right)\right.\right.$.

Define the generalized translation operator $T^{h}, h \geq 0$ by the relation

$$
T^{h} f(x)=(x h)^{2 n} \tau_{\alpha+2 n}^{h}\left(M^{-1} f\right)(x), x \geq 0
$$

where $\tau_{\alpha+2 n}^{h}$ is the Bessel translation operators of order $\alpha+2 n$ defined by

$$
\tau_{\alpha}^{h} f(x)=c_{\alpha} \int_{0}^{\pi} f\left(\sqrt{x^{2}+h^{2}-2 x h \cos t}\right) \sin ^{2 \alpha} t d t
$$

where

$$
c_{\alpha}=\left(\int_{0}^{\pi} \sin ^{2 \alpha} t d t\right)^{-1}=\frac{\Gamma(\alpha+1)}{\Gamma(\pi) \Gamma\left(\alpha+\frac{1}{2}\right)}
$$

For $f \in L_{\alpha, n}^{2}$, we have

$$
\begin{align*}
\mathcal{F}_{\mathcal{B}}\left(T^{h} f\right)(\lambda) & =\varphi_{\lambda}(h) \mathcal{F}_{\mathcal{B}}(f)(\lambda) \tag{2.6}\\
\mathcal{F}_{\mathcal{B}}(\mathcal{B} f)(\lambda) & =-\lambda^{2} \mathcal{F}_{\mathcal{B}}(f)(\lambda) \tag{2.7}
\end{align*}
$$

(see [1, 6] for details).
Let $f \in L_{\alpha, n}^{2}$. The quantity

$$
w(f, \delta)_{2, \alpha, n}=\sup _{0<h \leq \delta}\left\|T^{h} f(x)-h^{2 n} f(x)\right\|_{2, \alpha, n}, \delta>0
$$

is called the modulus of continuity of the function f.
Let $W_{2, \phi}^{r}(\mathcal{B}), r=0,1, \ldots$, denote the class of functions $f \in L_{\alpha, n}^{2}$ that have generalized derivatives satisfying the estimate

$$
\omega\left(\mathcal{B}^{r} f, \delta\right)_{2, \alpha, n}=O(\phi(\delta)), \quad \delta \rightarrow 0
$$

where $\phi(x)$ is any nonnegative function given on $[0, \infty)$, and $\mathcal{B}^{0} f=f, \mathcal{B}^{r} f=\mathcal{B}\left(\mathcal{B}^{r-1} f\right)$, $r=1,2, \ldots$
i.e.,

$$
W_{2, \phi}^{r}(\mathcal{B})=\left\{f \in L_{\alpha, n}^{2}, \mathcal{B}^{r} f \in L_{\alpha, n}^{2} \text { and } \quad \omega\left(\mathcal{B}^{r} f, \delta\right)_{2, \alpha, n}=O(\phi(\delta)), \delta \rightarrow 0\right\}
$$

3 Main Results

The goal of this work is to prove several new estimates for the integral

$$
J_{N}^{2}(f)=\int_{N}^{\infty}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

in certain classes of functions in $L_{\alpha, n}^{2}$.
Lemma 3.1. For $f \in W_{2, \phi}^{r}(\mathcal{B})$, we have

$$
\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n}^{2}=h^{4 n} \int_{0}^{\infty} \lambda^{4 r}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{2}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

where $r=0,1,2, \ldots$
Proof. From formula (2.7), we obtain

$$
\begin{equation*}
\mathcal{F}_{\mathcal{B}}\left(\mathcal{B}^{r} f\right)(\lambda)=(-1)^{r} \lambda^{2 r} \mathcal{F}_{\mathcal{B}} f(\lambda) ; r=0,1, \ldots \tag{3.1}
\end{equation*}
$$

By using the formula (2.6), we conclude that

$$
\begin{equation*}
\mathcal{F}_{\mathcal{B}}\left(T^{h} f-h^{2 n} f\right)(\lambda)=h^{2 n}\left(j_{\alpha+2 n}(\lambda h)-1\right) \mathcal{F}_{\mathcal{B}} f(\lambda) \tag{3.2}
\end{equation*}
$$

Now by formulas (3.1), (3.2) and Plancherel equality, we have the result.

Theorem 3.2. Given r and $f \in W_{2, \phi}^{r}(\mathcal{B})$. Then there exist constant $c>0$ such that, for all $N>0$,

$$
J_{N}(f)=O\left(N^{-2 r+2 n} \phi(c / N)\right)
$$

Proof. Firstly, we have

$$
\begin{equation*}
J_{N}^{2}(f) \leq \int_{N}^{\infty}|j| d \mu+\int_{N}^{\infty}|1-j| d \mu \tag{3.3}
\end{equation*}
$$

with $j=j_{p}(\lambda h), p=\alpha+2 n$ and $d \mu=\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$. The parameter $h>0$ will be chosen in an instant.
In view of formulas (2.1) and (2.4), there exist a constant $c_{1}>0$ such that

$$
|j| \leq c_{1}(\lambda h)^{-p-\frac{1}{2}}
$$

Then

$$
\int_{N}^{\infty}|j| d \mu \leq c_{1}(h N)^{-p-\frac{1}{2}} J_{N}^{2}(f)
$$

Choose a constant c_{2} such that the number $c_{3}=1-c_{1} c_{2}^{-p-\frac{1}{2}}$ is positif.
Setting $h=c_{2} / N$ in the inequality (3.3), we have

$$
\begin{equation*}
c_{3} J_{N}^{2}(f) \leq \int_{N}^{\infty}|1-j| d \mu \tag{3.4}
\end{equation*}
$$

By Hölder inequality the second term in (3.4) satisfies

$$
\begin{aligned}
\int_{N}^{\infty}|1-j| d \mu & =\int_{N}^{\infty}|1-j| \cdot 1 \cdot d \mu \\
& \leq\left(\int_{N}^{\infty}|1-j|^{2} d \mu\right)^{1 / 2}\left(\int_{N}^{\infty} d \mu\right)^{1 / 2} \\
& \leq\left(\int_{N}^{\infty} \lambda^{-4 r}|1-j|^{2} \lambda^{4 r} d \mu\right)^{1 / 2} J_{N}(f) \\
& \leq N^{-2 r}\left(\int_{N}^{\infty}|1-j|^{2} \lambda^{4 r} d \mu\right)^{1 / 2} J_{N}(f)
\end{aligned}
$$

From Lemma 3.1, we conclude that

$$
\int_{N}^{\infty}|1-j|^{2} \lambda^{4 r} d \mu \leq h^{-4 n}\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n}^{2}
$$

Therefore

$$
\int_{N}^{\infty}|1-j| d \mu \leq N^{-2 r} h^{-2 n}\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n} J_{N}(f)
$$

For $f \in W_{2, \phi}^{r}(\Lambda)$ there exist a constant $c_{4}>0$ such that

$$
\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n} \leq c_{4} \phi(h)
$$

For $h=c_{2} / N$, we obtain

$$
c_{3} J_{N}^{2}(f) \leq c_{2}^{-2 n} N^{2 n-2 r} c_{4} \phi\left(c_{2} / N\right) J_{N}(f)
$$

Hence

$$
c_{2}^{2 n} c_{3} J_{N}(f) \leq c_{4} N^{-2 r+2 n} \phi\left(c_{2} / N\right)
$$

for all $N>0$. The theorem is proved with $c=c_{2}$.

Theorem 3.3. Let $\phi(t)=t^{\nu}$, then

$$
J_{N}(f)=O\left(N^{-2 r-\nu+2 n}\right) \Leftrightarrow f \in W_{2, \phi}^{r}(\mathcal{B})
$$

where, $r=0,1, \ldots ; 0<\nu<2$.
Proof. We prove sufficiency by using Theorem 3.2 let $f \in W_{2, \phi}^{r}(\mathcal{B})$ then

$$
J_{N}(f)=O\left(N^{-2 r-\nu+2 n}\right)
$$

To prove necessity let

$$
J_{N}(f)=O\left(N^{-2 r-\nu+2 n}\right)
$$

i.e.

$$
\int_{N}^{\infty}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)=O\left(N^{-4 r-2 \nu+4 n}\right)
$$

It is easy to show, that there exists a function $f \in L_{\alpha, n}^{2}$ such that $\mathcal{B}^{r} f \in L_{\alpha, n}^{2}$ and

$$
\begin{equation*}
\mathcal{B}^{r} f(x)=(-1)^{r} \int_{0}^{\infty} \lambda^{2 r} \mathcal{F}_{\mathcal{B}} f(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda) \tag{3.5}
\end{equation*}
$$

From formula (3.5) and Plancherel equality, we have

$$
\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n}^{2}=h^{4 n} \int_{0}^{\infty} \lambda^{4 r}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{2}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

This integral is divided into two

$$
\int_{0}^{\infty}=\int_{0}^{N}+\int_{N}^{\infty}=I_{1}+I_{2}
$$

where $N=\left[h^{-1}\right]$, We estimate them separately.
From (2.2), we have the estimate

$$
\begin{aligned}
I_{2} & \leq c_{5} \int_{|\lambda| \geq N} \lambda^{4 r}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =c_{5} \sum_{l=0}^{\infty} \int_{N+l \leq|\lambda| \leq N+l+1} \lambda^{4 r}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \leq c_{5} \sum_{l=0}^{\infty} a_{l}\left(u_{l}-u_{l+1}\right)
\end{aligned}
$$

with $a_{l}=(N+l+1)^{4 r}$ and $u_{l}=\int_{|\lambda| \geq N+l}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$.
For all integers $m \geq 1$, the Abel transformation shows

$$
\begin{aligned}
\sum_{l=0}^{m} a_{l}\left(u_{l}-u_{l+1}\right) & =a_{0} u_{0}+\sum_{l=1}^{m}\left(a_{l}-a_{l-1}\right) u_{l}-a_{m} u_{m+1} \\
& \leq a_{0} u_{0}+\sum_{l=1}^{n}\left(a_{l}-a_{l-1}\right) u_{l}
\end{aligned}
$$

because $a_{m} u_{m+1} \geq 0$. Moreover by the finite increments theorem, we have

$$
a_{l}-a_{l-1} \leq 4 r(N+l+1)^{4 r-1}
$$

Furthermore by the hypothesis of f there exists $c_{6}>0$ such that, for all $N>0$

$$
J_{N}^{2}(f) \leq c_{6} N^{-4 r-2 \nu+4 n}
$$

For $N \geq 1$, we have

$$
\begin{aligned}
\sum_{l=1}^{m}\left(a_{l}-a_{l-1}\right) u_{l} & \leq c_{6}\left(1+\frac{1}{N}\right)^{4 r} N^{-2 \nu+4 n}+4 r c_{6} \sum_{l=1}^{m}\left(1+\frac{1}{N+l}\right)^{4 r-1}(N+l)^{-1-2 \nu+4 n} \\
& \leq 2^{2 r} c_{6} N^{-2 \nu+4 n}+4 r 2^{4 r-1} c_{6} \sum_{l=1}^{m}(N+l)^{-1-2 \nu+4 n}
\end{aligned}
$$

Finally, by the integral comparison test we have

$$
\sum_{l=1}^{m}(N+l)^{-1-2 \nu+4 n} \leq \int_{N}^{\infty} x^{-1-2 \nu+4 n} d x=\frac{1}{2 \nu-4 n} N^{-2 \nu+4 n}
$$

Letting $m \rightarrow \infty$ we see that, for $r \geq 0$ and $\nu>0$, there exists a constant c_{7} such that, for all $N \geq 1$ and for $h>0$,

$$
I_{2} \leq c_{7} N^{-2 \nu+4 n} .
$$

Now, we estimate I_{1}. From formula (2.3), we have

$$
\begin{aligned}
I_{1} & \leq c_{8} h^{4} \int_{|\lambda| \leq N} \lambda^{4 r+4}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =c_{8} h^{4} \sum_{l=0}^{N-1} \int_{l \leq|\lambda| \leq l+1} \lambda^{4 r+4}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \leq c_{8} h^{4} \sum_{l=0}^{N-1}(l+1)^{4 r+4}\left(v_{l}-v_{l+1}\right)
\end{aligned}
$$

with $v_{l}=\int_{|\lambda| \geq l}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$.
Using an Abel transformation and proceeding as with I_{2} we obtain

$$
\begin{aligned}
I_{1} & \leq c_{8} h^{4}\left(v_{0}+\sum_{l=1}^{N-1}\left((l+1)^{4 r+4}-l^{4 r+4}\right) v_{l}\right) \\
& \leq c_{8} h^{4}\left(v_{0}+(4 r+4) c_{6} \sum_{l=1}^{N-1}(l+1)^{4 r+3} l^{-4 r-2 \nu+4 n}\right)
\end{aligned}
$$

since $v_{l} \leq c_{6} l^{-4 r-2 \nu+4 n}$ by hypothesis. From the inequality $l+1 \leq 2 l$ we conclude

$$
I_{1} \leq c_{8} h^{4}\left(v_{0}+c_{9} \sum_{l=1}^{N-1} l^{3-2 \nu+4 n}\right)
$$

As a consequence of a series comparison for $\mu \geq 1$ and $\mu<1$ we have the inequality,

$$
\mu \sum_{l=1}^{N-1} l^{\mu-1}<N^{\mu}, \text { for } \quad \mu>0 \quad \text { and } \quad N \geq 2
$$

If $\mu=4-2 \nu+4 n>0$ for $\nu<2$ then we obtain

$$
I_{1} \leq c_{8} h^{4}\left(v_{0}+c_{10} N^{4-2 \nu+4 n}\right) \leq c_{8} h^{4}\left(v_{0}+c_{10} h^{-4+2 \nu-4 n}\right)
$$

since $N \leq 1 / h$. If h is sufficiently small then $v_{0} \leq c_{10} h^{-4+2 \nu-4 n}$. Then we have

$$
I_{1} \leq c_{11} h^{2 \nu-4 n}
$$

Combining the estimates for I_{1} and I_{2} gives

$$
\left\|T^{h} \mathcal{B}^{r} f(x)-h^{2 n} \mathcal{B}^{r} f(x)\right\|_{2, \alpha, n}=O\left(h^{\nu}\right),
$$

The necessity is proved.

References

[1] R. F. A1 Subaie and M. A. Mourou, The continuous wavelet transform for a Bessel type operator on the half line, Mathematics and Statistics 1(4): 196-203, (2013).
[2] V. A. Abilov and F. V. Abilova, Approximation of functions by Fourier-Bessel sums, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3-9 (2001).
[3] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker, New York,1971,Nauka, Moscow, (1976).
[4] A. G. Sveshnikov, A. N. Bogolyubov and V. V. Kratsov, Lectures on mathematical physics, Nauka, Moscow,(2004)[in Russian].
[5] V. A. Abilov, F. V. Abilova and M. K. Kerimov, Some remarks concerning the Fourier transform in the space $L_{2}(\mathbb{R})$ Zh. Vychisl. Mat. Mat. Fiz. 48, 939 âĂŞ945 (2008) [Comput. Math. Math. Phys. 48, 885âĂŞ891].
[6] R. F. Al Subaie and M. A. Mourou, Transmutation operators associated with a Bessel type operator on the half line and certain of their applications, Tamsii. oxf. J. Inf. Math. Scien 29 (3) (2013), pp. 329-349.
[7] B. M. Levitan, Expansion in Fourier series and integrals over Bessel functions, Uspekhi Math.Nauk, 6,No.2,102-143,(1951).

Author information

R. Daher, S. El ouadih and M. EL hamma, Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco.
E-mail: salahwadih@gmail.com

Received: October 23, 2015.
Accepted: March 22, 2016.

