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Abstract. Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function where k
is an integer, 2 ≤ k ≤ |V (G)|. For each edge uv, assign the label |f(u)− f(v)|. f is called
k-difference cordial labeling of G if |vf (i)− vf (j)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 where vf (x)
denotes the number of vertices labelled with x, x ∈ {1, 2, . . . k}, ef (1) and ef (0) respectively de-
note the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cor-
dial labeling is called a k-difference cordial graph. In this paper we investigate the 3-difference
cordial labeling behavior some union of graphs.

1 Introduction

Graphs considered here are finite and simple. The union of two graphs G1 and G2 is the graph
G1∪G2 with V (G1 ∪G2) = V (G1)∪V (G2) and E (G1 ∪G2) = E (G1)∪E (G2). For a graph
G, the splitting graph of G, spl (G), is obtained from G by adding for each vertex v of G a new
vertex v′ so that v′ is adjacent to every vertex that is adjacent to v. Let G1, G2 respectively be
(p1, q1), (p2, q2) graphs. The corona of G1 with G2, G1�G2 is the graph obtained by taking one
copy of G1 and p1 copies of G2 and joining the ith vertex of G1 with an edge to every vertex in the
ith copy of G2. If x = uv is an edge of G and w is not a vertex of of G, then x is subdivided when
it is replaced by the lines uw and wv. If every edges of G is subdivided, the resulting graph is the
subdivision graph S(G). The graph Pn +K1 is called a fan Fn. The graph Pn + 2K1 is called a
double fan DFn. Cahit [1], introduced the concept of cordial labeling of graphs. Recently Ponraj
et al. [4], introduced k-difference cordial labeling of graphs and 3-difference cordial labeling of
wheel, helms, flower graph, sunflower graph, lotus inside a circle, closed helm, double wheel,
K1,n �K2, Pn � 3K1, mC4, spl(K1,n), DS(Bn,n), Cn �K2, and some more graphs have been
studied in [5, 6]. In this paper we investigate the 3-difference cordial labeling behavior of some
union of graphs. Terms are not defined here follows from Harary [3].

2 k-Difference cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is
an integer, 2 ≤ k ≤ |V (G)|. For each edge uv, assign the label |f(u)− f(v)|. f is called
k-difference cordial labeling of G if |vf (i)− vf (j)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 where vf (x)
denotes the number of vertices labelled with x, ef (1) and ef (0) respectively denote the number
of edges labelled with 1 and not labelled with 1. A graph which admits a k-difference cordial
labeling is called a k-difference cordial graph.

Theorem 2.2. If G is (p, q) 3-difference cordial graph with p ≡ 0 (mod 2) and q ≡ 0 (mod 3),
then G ∪G also 3-difference cordial.

Proof. Let f be a 3-difference cordial labeling of G. Then vf (1) = vf (2) = vf (3) = p
3 and

ef (0) = ef (1) = q
2 . Let h be a map from V (G ∪G)→ {1, 2, 3} defined by h(u) = f(u) for all

u ∈ V (G ∪ G). Clearly vh(1) = vh(2) = vh(3) = 2p
3 and eh(0) = eh(1) = q. Therefore h is a

3-difference cordial labeling of G ∪G.

Notation 1. We denote the vertex set of the star K1,n is V (K1,n) = {u, ui : 1 ≤ i ≤ n} and edge
set of K1,n is V (K1,n) = {uui : 1 ≤ i ≤ n}.
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First we investigate the 3-difference cordial labeling behavior of union of graphs with the
star.

Theorem 2.3. Pn ∪K1,n is 3-difference cordial.

Proof. Let Pn be the v1v2 . . . vn. Note that Pn ∪K1,n has 2n+1 vertices and 2n-1 edges.
Case 1. n ≡ 0 (mod 3).

Assign the labels 1,3,2 to the first three vertices of the path v1, v2, v3 respectively. Then we
assign the labels 1, 3, 2 to the next three vertices of the path v4, v5, v6 respectively. Continuing
in this way, we assign the next three vertices and so on. Next we move to the graph K1,n. First
we assign the label 1 to the vertices ui (1 ≤ i ≤ n

3 ). Next we assign the label 2 to the vertices
un

3 +i (1 ≤ i ≤ n
3 ). Then we assign the label 3 to the vertices u 2n

3 +i (1 ≤ i ≤ n
3 ). Finally we

assign the label 1 to the central vertex u.
Case 2. n ≡ 1 (mod 3).

Assign the labels ui, vi, u (1 ≤ i ≤ n − 1) as in case 1. Then assign the labels 1,2 to the
vertices vn and un respectively.
Case 3. n ≡ 2 (mod 3).

As in case 2, assign the labels to the vertices ui, vi, u (1 ≤ i ≤ n − 1). Finally assign the
labels 3,3 to the vertices un and vn respectively. The vertex and edge condition are given in table
1 and 2 respectively.

Nature of n ef (0) ef (1)
n ≡ 0, 2 (mod 3) n n− 1
n ≡ 1 (mod 3) n− 1 n

Table 1.

values of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 2n+3

3
2n
3

2n
3

n ≡ 1 (mod 3) 2n+1
3

2n+1
3

2n+1
3

n ≡ 2 (mod 3) 2n+2
3

2n−1
3

2n+2
3

Table 2.

Next investigation is union of star with K2,n.

Theorem 2.4. K1,n ∪K2,n is 3-difference cordial.

Proof. Let V (K2,n) = {v, w, vi : 1 ≤ i ≤ n} and E(K2,n) = {vvi, wvi : 1 ≤ i ≤ n}.
Case 1. n ≡ 0 (mod 3).
Subcase 1a. n ≡ 0 (mod 6).

First we consider the graph K1,n. Assign the labels 1,1,2 to the first three vertices u1, u2, u3
respectively. Then assign the labels 2,2,1 to the next three vertices u4, u5, u6 respectively. Next
we assign the labels 1,1,2 to the next three vertices u7, u8, u9 respectively and and assign the
labels 2,2,1 to the next three vertices u10, u11, u12 respectively. Continuing this way, we assign
the next three vertices and so on. Clearly in this process, the last vertex un received the label 2
or 1. Finally we assign the 1 to the vertex u. Now we move to the graph K2,n. Assign the labels
3,3,2,3,3,1 to the first six vertices v1, v2, v3, v4, v5, v6 respectively. Then we assign the labels
3,3,2,3,3,1 to the next six vertices v7, v8, v9, v10, v11, v12 respectively. Proceeding like this, we
assign the labels to the next six vertices and so on. Clearly the last vertex vn received the label
1. Finally we assign the labels 2,3 to the vertices v and w respectively.
Subcase 1b. n ≡ 3 (mod 6).

Assign the label to the vertices u, v, w, ui 1 ≤ i ≤ n− 3 and vi 1 ≤ i ≤ n− 3 as in subcase
1a. Finally assign the labels 1,1,2 to the vertices un−2, un−1, un respectively and 3,3,2 to the
vertices vn−2, vn−1, vn respectively.
Case 2. n ≡ 1 (mod 3).
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Subcase 2a. n ≡ 4 (mod 6).
Fix the labels 1,1,2,2 to the vertices u1, u2, u3, u4 respectively. Then we assign the labels

2,2,1,1,1,2 to the next six vertices u5, u6, . . . , u10 respectively. Now assign the labels 2,2,1,1,1,2
to the next six vertices u11, u12, . . . , u15 respectively. Continuing in this way, we assign the next
six vertices and so on. In this process, the last vertex un received the label 2. Next we assign
the label 1 to the vertex u. Now our attention move to the vertices of the graph K2,n. Fix the
label 1 to the vertex v1. Then assign the labels 3,3,2,3,3,1 to the next six vertices v2, v3, . . . , v7
respectively. Proceeding like this, we asign the next six vertices and so on. Clearly, in this
process the vertex vn−3 received the label 1. Next we assign the labels 3,3,2 respectively to the
vertices vn−2, vn−1, vn. Finally we assign the labels 2,3 to the vertices v and w respectively.
Subcase 2b. n ≡ 1 (mod 6).

Assign the label to the vertices u, v, w, ui 1 ≤ i ≤ n− 3 and vi 1 ≤ i ≤ n− 3 as in subcase
2a. Finally assign the labels 2,2,1 to the vertices un−2, un−1, un respectively and 3,3,2 to the
vertices vn−2, vn−1, vn respectively.
Case 3. n ≡ 2 (mod 3).
Subcase 3a. n ≡ 2 (mod 6).

Fix the labels 1,2 to the vertices u1, u2 respectively. Then we assign the labels 1,1,2,2,2,1 to
the next six vertices u3, u4, . . . , u8 respectively. Now we assign the labels 1,1,2,2,2,1 to the next
six vertices u9, u10, . . . , u14 respectively. Continuing this process until we reach the last vertex
un. In this pattern, the last vertex un labeled by the integer 1. Then we assign the label 1 to the
vertex u. Next we move to the graph K2,n. Fix the labels 1,3 to the vertices v1, v2 respectively.
Then we assign the labels 3,3,2,3,3,1 to the next six vertices v3, v4, . . . v8 respectively. Next we
assign the labels 3,3,2,3,3,1 to the next six vertices v9, v10, . . . v14 respectively. Continuing in this
way, we assign the next six vertices and so on. Finally we assign the labels 2,3 to the vertices
v,w respectively. The vertex and edge condition are given in table 3 and 4.

Nature of n ef (0) ef (1)
n ≡ 0, 2, 4 (mod 6) 3n

2
3n
2

n ≡ 1 (mod 6) 3n−1
2

3n+1
2

n ≡ 3, 5 (mod 6) 3n+1
2

3n−1
2

Table 3.

Nature of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 2n+3

3
2n+3

3
2n+3

3

n ≡ 1 (mod 3) 2n+4
3

2n+4
3

2n+1
3

n ≡ 2 (mod 3) 2n+5
3

2n+2
3

2n+2
3

Table 4.

We now investigate union of star with subdivision of star.

Theorem 2.5. K1,n ∪ S(K1,n) is 3-difference cordial.

Proof. Let V (S(K1,n)) = {v, vi, wi : 1 ≤ i ≤ n} and E(S(K1,n)) = {vvi, viwi : 1 ≤ i ≤ n}.
Case 1. n is even.

Assign 1 to the vertices u, u1, u2, . . . un
2

. Then assign the label 2 to the vertices un
2 +1, un

2 +2,
. . .un. Next we move to the graph S(K1,n). Assign 2 to the vertex v. Then assign the label
2 to the vertices v1, v2, . . . vn

2
and 3 to the vertices vn

2 +1, vn
2 +2, . . . vn and wn

2 +1, wn
2 +2, . . . wn.

Finally assign the label 1 to the vertices w1, w2, . . . wn
2

.
Case 2. n is odd.

Assign the label 1 to the vertex u. Then assign the integer 3 to the vertex u1, u2, . . . un+1
2

.
Then assign the label 2 to the remaining vertices of the star K1,n. Then we move to the graph
S(K1,n). Now we assign the label 2 to the vertex v. Then we assign the label 2 to the vertices
v1, v2, . . . vn+1

2
and 1 to the vertices vn+1

2 +1, vn+1
2 +2, . . . vn. Then assign the label 1 to the vertices
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w1, w2, . . . wn+1
2

and 3 to the vertices wn+1
2 +1, wn+1

2 +2, . . . wn. Then f is a 3-difference cordial
labeling follows from vf (1) = vf (2) = n+ 1 and vf (3) = n and the table 5.

values of n ef (0) ef (1)
n is odd 3n+1

2
3n−1

2

n is even 3n
2

3n
2

Table 5.

Next is union of two stars.

Theorem 2.6. If n ≡ 0, 1 (mod 3), then K1,n ∪K1,n is 3-difference cordial.

Proof. Let u, v be the central vertex of the first and second star respectively. Let ui (1 ≤ i ≤ n)
and vi (1 ≤ i ≤ n) be the pendent vertices of first and second copies of the star K1,n.
Case 1. n ≡ 0 (mod 3).

Assign the label 1 to the vertices ui, vi (1 ≤ i ≤ n
3 ) and assign the label 2 to the vertices

un
3 +i, vn

3 +i (1 ≤ i ≤ n
3 ). Next we assign the label 3 to the vertices u 2n

3 +i, v 2n
3 +i (1 ≤ i ≤ n

3 ).
Finally we assign the labels 1,2 to the vertices u and v respectively.
Case 2. n ≡ 1 (mod 3).

Assign the label 1 to the vertices ui, (1 ≤ i ≤ n+2
3 ). Then assign the label 2 to the vertex

un+2
3 +i, (1 ≤ i ≤ n−1

3 ). Next we assign the label 3 to the vertices u 2n+1
3 +i (1 ≤ i ≤ n−1

3 ). Next
we move to the next copy of the star K1,n. Assign the label 3 to the vertices vi, (1 ≤ i ≤ n+2

3 ).
Then assign the label 2 to the vertices vn+2

3 +i, (1 ≤ i ≤ n−1
3 ). Next we assign the label 1

to the vertex v 2n+1
3 +i (1 ≤ i ≤ n−1

3 ). Finally we assign the labels 1,2 to the vertices u and v
respectively. The edge condition is ef (0) = ef (1) = 1 and the vertex condition is given in table
6.

values of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 2n+3

3
2n+3

3
2n
3

n ≡ 1 (mod 3) 2n+4
3

2n+1
3

2n+1
3

Table 6.

Next investigation is about union of graphs with splitting graph of the star.

Theorem 2.7. spl(K1,n) ∪K1,n is 3-difference cordial.

Proof. Let V (spl(K1,n)) = {v, w, vi, wi : 1 ≤ i ≤ n} and E(spl(K1,n) = {vvi, vwi, wwi : 1 ≤
i ≤ n}. Note that spl(K1,n) ∪K1,n has 3n + 3 vertices and 4n edges. Assign the labels 1, 2, 3
to the vertices u, v, w respectively. We now assign the label 3 to ui (1 ≤ i ≤ n), assign the label
1 to the vertices vi (1 ≤ i ≤ n). Finally assign the label 2 to the vertices wi (1 ≤ i ≤ n). It
is easy to verify that ef (0) = ef (1) = 2n and vf (1) = vf (2) = vf (3) = n + 1. Hence f is a
3-difference cordial labeling.

Now our attention is move to union of graphs with splitting graph of the star.

Theorem 2.8. spl(K1,n) ∪ Pn is 3-difference cordial.

Proof. Let u1u2 . . . un be the path. Let V (spl(K1,n)) = {v, w, vi, wi : 1 ≤ i ≤ n} and
E(spl(K1,n)) = {vvi, vwi, wwi : 1 ≤ i ≤ n}. Clearly spl(K1,n) ∪ Pn has 3n + 2 vertices
and 4n-1 edges. Define a function f : V (G)→ {1, 2, 3} by f(v) = 2, f(w) = 1,

f(ui) = 1, 1 ≤ i ≤ n

f(vi) = 3, 1 ≤ i ≤ n

f(wi) = 2, 1 ≤ i ≤ n

Clearly ef (0) = 2n, ef (1) = 2n− 1 and vf (1) = vf (2) = n+ 1 and vf (3) = n. Hence f is
3-difference cordial labeling.
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Theorem 2.9. K3,n ∪ spl(K1,n) is 3-difference cordial.

Proof. Let V (K3,n) = {u, v, w, ui : 1 ≤ i ≤ n} and E(K3,n) = {uui, vui, wui : 1 ≤ i ≤ n}.
Let V (spl(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and E(spl(K1,n)) = {xxi, xyi, yyi : 1 ≤ i ≤ n}.
Clearly K3,n ∪ spl(K1,n) has 3n+5 vertices and 6n edges. Define a map f : V (G) → {1, 2, 3}
by f(u) = 1, f(v) = 2, f(w) = 3, f(x) = 2, f(y) = 1,

f(ui) = 1, 1 ≤ i ≤ n

f(xi) = 3, 1 ≤ i ≤ n

f(yi) = 2, 1 ≤ i ≤ n

Clearly ef (0) = ef (1) = 3n and vf (1) = vf (2) = n + 2 and vf (3) = n + 1. Hence f is
3-difference cordial labeling.

Theorem 2.10. DFn ∪ spl(K1,n) is 3-difference cordial.

Proof. Let V (DFn) = {u, v, ui : 1 ≤ i ≤ n} and E(DFn) = {uui, vui, uiui+1 : 1 ≤ i ≤ n},
V (spl(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and E(spl(K1,n)) = {xxi, xyi, yyi : 1 ≤ i ≤ n}.
Assign the label 1 to the vertex u. Then assign the label 2 to all the vertices vi (1 ≤ i ≤ n) and
assign the label 3 to the vertex v. Now we move move to the graph spl(K1,n). First we assign
the label 1 to the vertex x. Then assign the label 3 to all the vertices xi (1 ≤ i ≤ n) and assign
the label 1 to all the vertices yi (1 ≤ i ≤ n). Finally assign the label 2 to the vertex y. Clearly
vf (1) = n+ 2 and vf (3) = n+ 1, ef (0) = 3n − 1 and ef (1) = 3n. Hence f is a 3-difference
cordial labeling.

Example 2.11. A 3-difference cordial labeling of DF4 ∪ spl(K1,4) is displayed in the below
figure.

Figure 1.

We now investigate the 3-difference cordial labeling behavior of union of graphs with subdi-
vided star.

Theorem 2.12. S(K1,n) ∪ S(Bn,n) is 3-difference cordial.

Proof. Let V (S(K1,n)) = {u, ui, vi : 1 ≤ i ≤ n} and E(S(K1,n)) = {uui, viui : 1 ≤ i ≤
n}. Let V (S(Bn,n)) = {w, x, y, wi, xi, yi, zi : 1 ≤ i ≤ n} and E(S(Bn,n)) = {wx, xy, wwi,
wixi, yyi, yizi : 1 ≤ i ≤ n}. Assign the label 1 to the vertex u. Then assign the label 2 to the
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vertices ui (1 ≤ i ≤ n) and assign the label 3 to the vertices vi (1 ≤ i ≤ n). Next we move to the
graph S(Bn,n). Now we assign the labels 1,2,3 to the vertices w,x,y respectively. Then assign
the label 3 to the vertices wi (1 ≤ i ≤ n) and assign the label 1 to the vertices xi (1 ≤ i ≤ n) and
the vertices zi (1 ≤ i ≤ n). Finally we assign the label 2 to the vertices yi (1 ≤ i ≤ n). Clearly
ef (0) = ef (1) = 3n+ 1 and vf (2) = vf (3) = 2n+ 1, vf (1) = 2n+ 2. Hence f is 3-difference
cordial labeling.

Theorem 2.13. K2,n ∪ S(K1,n) is 3-difference cordial.

Proof. Let V (S(K1,n)) = {u, ui, vi : 1 ≤ i ≤ n} and E(S(K1,n)) = {uui, uivi : 1 ≤ i ≤ n}.
Let V (K2,n) = {w, z, wi : 1 ≤ i ≤ n} and E(K2,n) = {wwi, zwi : 1 ≤ i ≤ n}. Clearly
K2,n ∪ S(K1,n) has 3n+3 vertices and 4n edges. Assign the label 1 to the vertex u. Then
we assign the label 3 to the vertices ui (1 ≤ i ≤ n) and assign the label 2 to the vertices vi
(1 ≤ i ≤ n). We now move to the graph K2,n. Assign the labels 2,3 to the vertices w and
z respectively. Finally we assign the label 1 to the vertices wi (1 ≤ i ≤ n). The edge and
vertex condition are ef (0) = ef (1) = 2n and vf (1) = vf (2) = vf (3) = n + 1. Hence f is a
3-difference cordial labeling.

Theorem 2.14. Fn ∪ S(K1,n) is 3-difference cordial.

Proof. Let V (Fn) = {u, ui : 1 ≤ i ≤ n} and E(Fn) = {uui, uiui+1 : 1 ≤ i ≤ n}. Let
V (S(K1,n)) = {v, vi, wi : 1 ≤ i ≤ n} and E(S(K1,n)) = {vvi, viwi : 1 ≤ i ≤ n}. Assign the
label 1 to the vertex u. Then assign the label 2 to the vertices ui (1 ≤ i ≤ n). Next we move to
the graph S(K1,n). Now we assign the label 2 to the vertex v. Then assign the label 3 to all the
vertices vi (1 ≤ i ≤ n). Finally assign the label 3 to all the vertices wi (1 ≤ i ≤ n). The edge
and vertex condition of this labeling f is ef (0) = 2n− 1 and ef (1) = 2, vf (1) = vf (2) = n+ 1
and vf (3) = n. Hence f is a 3-difference cordial labeling of Fn ∪ S(K1,n).

Theorem 2.15. Wn ∪ S(K1,n) is 3-difference cordial.

Proof. Let V (Wn) = {u, ui, : 1 ≤ i ≤ n} and E(Wn) = {uui, uiui+1, unu1 : 1 ≤ i ≤ n}. Let
V (S(K1,n)) = {v, vi, wi : 1 ≤ i ≤ n} and E(S(K1,n)) = {vvi, viwi : 1 ≤ i ≤ n}. Clearly
Wn ∪ S(K1,n) has 3n+2 vertices and 4n edges. First we assign the label 2 to the vertex u. Then
we assign the label 1 to all the vertices of ui (1 ≤ i ≤ n). Next we move to the graph S(K1,n).
We assign the label 1 to the vertex v. Next we assign the label 3 to the vertices vi (1 ≤ i ≤ n).
Finally we assign the label 2 to all the vertices wi (1 ≤ i ≤ n). f is a 3-difference cordial
labeling follows from ef (0) = ef (1) = 2n and vf (1) = vf (2) = n+ 1, vf (3) = n.

Next is union of graphs with bistar.

Theorem 2.16. Bn,n ∪ S(Bn,n) is 3-difference cordial.

Proof. Let V (Bn,n) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(Bn,n) = {uv, uui, vvi : 1 ≤ i ≤ n}. Let
V (S(Bn,n)) = {w, x, y, wi, xi, yi, zi : 1 ≤ i ≤ n} and E(S(Bn,n)) = {wx, xy, wwi, wixi, yyi, yizi :
1 ≤ i ≤ n}. Note that Bn,n ∪ S(Bn,n)has 6n+5 vertices and 6n+3 edges. Assign the label 1,2 to
the verticesu,v respectively. Then assign the label 2 to the vertices ui (1 ≤ i ≤ n) and assign the
label 3 to the vertices vi (1 ≤ i ≤ n). Now we move to the next graph S(Bn,n). Assign the labels
1,3,2 to the vertices w,x,y respectively. Then assign the label 1 to the vertices wi (1 ≤ i ≤ n).
Next we assign the label 3 to the vertices xi (1 ≤ i ≤ n) and assign the label 2 to the vertices yi
(1 ≤ i ≤ n). Finally assign the label 1 to the vertices zi (1 ≤ i ≤ n). Obviously ef (0) = 3n+ 1
and ef (1) = 3n + 2, vf (1) = vf (2) = 2n + 2 and vf (3) = 2n + 1. Hence f is 3-difference
cordial labeling.

Theorem 2.17. K2,n ∪Bn,n is 3-difference cordial.

Proof. Let V (Bn,n) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(Bn,n) = {uv, vvi, uui : 1 ≤ i ≤ n}.
Let V (K2,n) = {w, x,wi : 1 ≤ i ≤ n} and E(K2,n) = {wwi, xwi : 1 ≤ i ≤ n}. Clearly
K2,n ∪ Bn,n has 3n+4 vertices and 4n+1 edges. Assign the labels 1,2 to the vertices u and v
respectively. Then assign the label 1 to the vertices ui (1 ≤ i ≤ n). Next we assign the label 3
to the vertices vi (1 ≤ i ≤ n). Then we move to the graph K2,n. We assign the labels 2,3 to the
vertices w and x respectively. Next we assign the label 2 to the vertices wi (1 ≤ i ≤ n). Since
ef (0) = 2n, ef (1) = 2n + 1, vf (1) = vf (3) = n + 1 and vf (2) = n + 2, f is a 3-difference
cordial labeling.
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The final investigation is about Pn∪Pn, Cn�K1∪Pn�K1 and Fn∪Fn where Fn = Pn+K1
and it is called fan.

Theorem 2.18. (Cn �K1) ∪ (Pn �K1) is 3-difference cordial.

Proof. Let n = 3t+ r where 0 ≤ r ≤ 3. Assign the label 3 to all the cycle vertices and assign
the label 2 to all the pendent vertices of Cn �K1. Next we move to the graph Pn �K1. Assign
the labels 1,2,3 to the first three vertices of the Pn. Next we assign the labels 1,2,3 to the next
three vertices of the path. Continuing in this way, assign the next three vertices and so on. If
r = 0, we have labeled all the vertices of the path. If r = 1, assign the label 1 to the next non
labeled vertex of the path. If r = 2, then we assign the labels 1,2 to the non labeled vertices of
the path respectively. Finally assign the label 1 to all the pendent vertices of Pn �K1. Clearly
ef (0) = 2n− 1 and ef (1) = 2n and the vertex condition is shown in the table 7.

Nature of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 4n

3
4n
3

4n
3

n ≡ 1 (mod 3) 4n+2
3

4n−1
3

4n−1
3

n ≡ 2 (mod 3) 4n+1
3

4n+1
3

4n−2
3

Table 7.

Theorem 2.19. Fn ∪ Fn is 3-difference cordial.

Proof. Let V (Fn ∪ Fn) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(Fn ∪ Fn) = {uui, uiui+1, vvi, vivi+1
: 1 ≤ i ≤ n}. Note that Fn ∪ Fn has 2n+2 vertices and 4n-2 edges.
Case 1. n ≡ 0 (mod 3).
Subcase 1a. n ≡ 0 (mod 6).

Assign the labels 1,3,2,1,3,2 to the first six vertices u1, u2, . . . u6 respectively. Then assign the
labels 1,3,2,1,3,2 to the next six vertices u7, u8, u12 respectively. Continuing this way, we assign
the next six vertices and so on. In this process the last vertex received the label 2. Assign the
label 1 to the vertex u. Next we move to the vertices v and vi. Assign the labels 1,3,2,2,3,1 to the
first six vertices v1, v2, . . . v6 respectively. Then we assign the labels 1,3,2,2,3,1 to the next six
vertices v7, v8, . . . v12 respectively. Continuing this pattern, we reach the last vertex vn. Clearly
in this pattern the last vertex vn received the label 3. Finally assign the label 2 to the vertex v.
Subcase 1b. n ≡ 3 (mod 6).

As in subcase 1a, assign the label to the vertices u, v, ui 1 ≤ i ≤ n− 3 and vi 1 ≤ i ≤ n− 3.
Finally assign the labels 1,3,2 respectively to the vertices un−2, un−1, un and 1,3,2 to the vertices
vn−2, vn−1, vn respectively.
Case 2. n ≡ 1 (mod 3).
Subcase 2a. n ≡ 1 (mod 6).

Fix the label 3 to the vertex u1. Then assign the labels 1,2,3 to the next three vertices u2, u3, u4
respectively. Now we assign the labels 1,2,3 to the next three vertices v5, v6, v7 respectively.
Continuing in this way, we assign the next three vertices and so on. In this process the last vertex
vn labeled by the integer 3. Then we assign the label 1 to the vertex u. Now we move to the
second copy of Fn. Fix the label 2 to the vertex v1. Assign the labels 3,1,2,2,3,1 to the next
six vertices v2, v3, . . . v7 respectively. Then assign the labels 3,1,2,2,3,1 to the next six vertices
v7, v8, . . . v13 respectively. Proceeding like this, we assign the label to the next six vertices and
so on. Clearly in this pattern the last vertex vn labeled received the label 1. Finally we assign the
label 2 to the vertex v.
Subcase 2b. n ≡ 4 (mod 6).

As in subcase 2a, assign the label to the vertices u, v, ui 1 ≤ i ≤ n− 3 and vi 1 ≤ i ≤ n− 3.
Finally assign the labels 1,2,3 respectively to the vertices un−2, un−1, un and 3,1,2 to the vertices
vn−2, vn−1, vn respectively.
Case 3. n ≡ 2 (mod 3).
Subcase 3a. n ≡ 2 (mod 6).
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Fix the labels 2,1 to the vertices u1 and u2 respectively. Then we assign the labels 1,3,2,1,3,2
to the six vertices v4, v5, . . . v8 respectively. Now we assign the labels 1,3,2,1,3,2 to the next six
vertices v9, v10, . . . v14 respectively. Continuing this way, we assign the next six vertices and so
on. Clearly in this process the last vertex un labeled by the integer 2. Assign the label 1 to
the vertex. Now we move to the second copy of Fn. Fix the labels 3,2 to the vertices v1, v2
respectively. Assign the labels 1,3,2 to the next three vertices v3, v4, v5 respectively. Then assign
the labels 1,3,2 to the next three vertices v6, v7, v8 respectively. Proceeding like this, we assign
the label to the next three vertices and so on. In this pattern 2 is the label of the last vertex vn.
Finally assign the the label 2 to the vertex v.
Subcase 3b. n ≡ 5 (mod 6).

As in subcase 3a, assign the label to the vertices u, v, ui 1 ≤ i ≤ n− 3 and vi 1 ≤ i ≤ n− 3.
Finally assign the labels 1,3,2 respectively to the vertices un−2, un−1, un and 1,3,2 to the vertices
vn−2, vn−1, vn respectively.

Clearly all these cases the edge condition is ef (0) = ef (1) = 2n − 1. The vertex condition
is given in table 8.

Values of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 2n+3

3
2n+3

3
2n
3

n ≡ 1 (mod 3) 2n+1
3

2n+4
3

2n+1
3

n ≡ 2 (mod 3) 2n+2
3

2n+2
3

2n+2
3

Table 8.

Theorem 2.20. Pn ∪ Pn is 3-difference cordial.

Proof. Let u1u2 . . . un be the first copy of the path and v1v2 . . . vn be the second copy of the path.
Case 1. n ≡ 0 (mod 3).
Subcase 1b. n ≡ 0 (mod 6).

Assign the labels 1,3,2 to the first three vertices of the path u1, u2, u3 respectively. Then
assign the labels 1,3,2 to the next three verties u4, u5, u6 of the path Pn. Proceeding like this,
we assign the next three vertices and so on. Note that in this process 2 is the label of the last
vertex un. Now our attention turn to the second copy of the path. Assign the labels 1,3,2,2,3,1
to the first six vertices v1, v2, . . . v6 respectively. Then assign the labels 1,3,2,2,3,1 to the next
six vertices of the second copy of the path v7, v8 . . . v12. Continuing this way until we reach the
vertex vn. It is obvious that the last vertex vn is received the label 1.
Subcase 1b. n ≡ 3 (mod 6).

Assign the label to the vertices ui 1 ≤ i ≤ n−3 and vi 1 ≤ i ≤ n−3 as in subcase 1a. Finally
assign the labels 1,3,2 respectively to the vertices un−2, un−1, un and 1,3,2 to the vertices vn−2,
vn−1, vn respectively.
Case 2. n ≡ 1 (mod 3).
Subcase 2a. n ≡ 1 (mod 6).

Fix the label 1 to the vertex u1. Next we aassign the labels 1,3,2 to the next three vertices
u2, u3, u4 of the path. Then assign the labels 1,3,2 to the next three vertices u5, u6, u7 respectively.
Proceeding like this we assign the next three vertices and so on. Now we move to the second
copy of the path Pn. Fix the label 2 to the first vertex v1. Then assign the labels 1,3,2,2,3,1 to the
next six vertices v2, v3, . . . v7 of the second path. Next we assign the labels 1,3,2,2,3,1 to the next
six vertices v8, v9, . . . v13 respectively. Continuing in this pattern until we reach the last vertex
vn. It is easy to verify that 1 is the label of the last vertex vn.
Subcase 2b. n ≡ 4 (mod 6).

Assign the label to the vertices ui 1 ≤ i ≤ n−3 and vi 1 ≤ i ≤ n−3 as in subcase 1a. Finally
assign the labels 1,3,2 respectively to the vertices un−2, un−1, un and 1,3,2 to the vertices vn−2,
vn−1, vn respectively.
Case 3. n ≡ 2 (mod 3).
Subcase 3a. n ≡ 2 (mod 6).

Consider the first copy of the path Pn. Fix the labels 1,3 to the vertices u1 and u2 respectively.
Then assign the labels 1,3,2 to the six vertices u3, u4, u5 respectively. Next we assign the labels
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1,3,2 to the next three vertices u6, u7, u8 respectively. Proceeding like this, we assign the next
three vertices and so on. It is obvious that, the last vertex un received the label 2. Next we turn to
the second copy of Pn. Fix the labels 2,3 to the vertices v1, v2 respectively. Then assign the labels
2,3,1,1,3,2 to the next six vertices v3, v4, . . . v8 respectively. Next we assign the labels 2,3,1,1,3,2
to the next six vertices of the second copy of the path v9, v10, . . . v14 respectively. Continuing in
this way until we reach the last vertex vn. In this process the vertex vn received the label 2.
Subcase 3b. n ≡ 5 (mod 6).

Assign the label to the vertices ui 1 ≤ i ≤ n−3 and vi 1 ≤ i ≤ n−3 as in subcase 1a. Finally
assign the labels 1,3,2 respectively to the vertices un−2, un−1, un and 2,3,1 to the vertices vn−2,
vn−1, vn respectively.

Hence f is a 3-difference cordial labeling follows from the edge condition ef (0) = ef (1) =
n− 1 and the vertex condition in table 9.

Nature of n vf (1) vf (2) vf (3)
n ≡ 0 (mod 3) 2n

3
2n
3

2n
3

n ≡ 1 (mod 3) 2n+1
3

2n+1
3

2n−2
3

n ≡ 2 (mod 3) 2n−1
3

2n−1
3

2n+2
3

Table 9.
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