3-Difference cordial labeling of some union of graphs

R. Ponraj and M.Maria Adaickalam
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78.
Keywords and phrases: Path, Complete graph, Complete bipartite graph, Star.

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function where k is an integer, $2 \leq k \leq|V(G)|$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called k-difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labelled with $x, x \in\{1,2, \ldots k\}, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1 . A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate the 3-difference cordial labeling behavior some union of graphs.

1 Introduction

Graphs considered here are finite and simple. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. For a graph G, the splitting graph of $G, \operatorname{spl}(G)$, is obtained from G by adding for each vertex v of G a new vertex v^{\prime} so that v^{\prime} is adjacent to every vertex that is adjacent to v. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. If $x=u v$ is an edge of G and w is not a vertex of of G, then x is subdivided when it is replaced by the lines $u w$ and $w v$. If every edges of G is subdivided, the resulting graph is the subdivision graph $S(G)$. The graph $P_{n}+K_{1}$ is called a fan F_{n}. The graph $P_{n}+2 K_{1}$ is called a double fan $D F_{n}$. Cahit [1], introduced the concept of cordial labeling of graphs. Recently Ponraj et al. [4], introduced k-difference cordial labeling of graphs and 3-difference cordial labeling of wheel, helms, flower graph, sunflower graph, lotus inside a circle, closed helm, double wheel, $K_{1, n} \odot K_{2}, P_{n} \odot 3 K_{1}, m C_{4}, \operatorname{spl}\left(K_{1, n}\right), D S\left(B_{n, n}\right), C_{n} \odot K_{2}$, and some more graphs have been studied in [5, 6]. In this paper we investigate the 3-difference cordial labeling behavior of some union of graphs. Terms are not defined here follows from Harary [3].

$2 k$-Difference cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map where k is an integer, $2 \leq k \leq|V(G)|$. For each edge $u v$, assign the label $|f(u)-f(v)|$. f is called k-difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labelled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1. A graph which admits a k-difference cordial labeling is called a k-difference cordial graph.
Theorem 2.2. If G is $(p, q) 3$-difference cordial graph with $p \equiv 0(\bmod 2)$ and $q \equiv 0(\bmod 3)$, then $G \cup G$ also 3-difference cordial.

Proof. Let f be a 3-difference cordial labeling of G. Then $v_{f}(1)=v_{f}(2)=v_{f}(3)=\frac{p}{3}$ and $e_{f}(0)=e_{f}(1)=\frac{q}{2}$. Let h be a map from $V(G \cup G) \rightarrow\{1,2,3\}$ defined by $h(u)=f(u)$ for all $u \in V(G \cup G)$. Clearly $v_{h}(1)=v_{h}(2)=v_{h}(3)=\frac{2 p}{3}$ and $e_{h}(0)=e_{h}(1)=q$. Therefore h is a 3-difference cordial labeling of $G \cup G$.
Notation 1. We denote the vertex set of the star $K_{1, n}$ is $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and edge set of $K_{1, n}$ is $V\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$.

First we investigate the 3-difference cordial labeling behavior of union of graphs with the star.

Theorem 2.3. $P_{n} \cup K_{1, n}$ is 3-difference cordial.
Proof. Let P_{n} be the $v_{1} v_{2} \ldots v_{n}$. Note that $P_{n} \cup K_{1, n}$ has $2 \mathrm{n}+1$ vertices and $2 \mathrm{n}-1$ edges.
Case 1. $n \equiv 0(\bmod 3)$.
Assign the labels $1,3,2$ to the first three vertices of the path v_{1}, v_{2}, v_{3} respectively. Then we assign the labels $1,3,2$ to the next three vertices of the path v_{4}, v_{5}, v_{6} respectively. Continuing in this way, we assign the next three vertices and so on. Next we move to the graph $K_{1, n}$. First we assign the label 1 to the vertices $u_{i}\left(1 \leq i \leq \frac{n}{3}\right)$. Next we assign the label 2 to the vertices $u_{\frac{n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. Then we assign the label 3 to the vertices $u_{\frac{2 n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. Finally we assign the label 1 to the central vertex u.
Case 2. $n \equiv 1(\bmod 3)$.
Assign the labels $u_{i}, v_{i}, u(1 \leq i \leq n-1)$ as in case 1 . Then assign the labels 1,2 to the vertices v_{n} and u_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$.
As in case 2 , assign the labels to the vertices $u_{i}, v_{i}, u(1 \leq i \leq n-1)$. Finally assign the labels 3,3 to the vertices u_{n} and v_{n} respectively. The vertex and edge condition are given in table 1 and 2 respectively.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0,2(\bmod 3)$	n	$n-1$
$n \equiv 1(\bmod 3)$	$n-1$	n

Table 1.

values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n+3}{3}$	$\frac{2 n}{3}$	$\frac{2 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n+1}{3}$	$\frac{2 n+1}{3}$	$\frac{2 n+1}{3}$
$n \equiv 2(\bmod 3)$	$\frac{2 n+2}{3}$	$\frac{2 n-1}{3}$	$\frac{2 n+2}{3}$

Table 2.

Next investigation is union of star with $K_{2, n}$.
Theorem 2.4. $K_{1, n} \cup K_{2, n}$ is 3-difference cordial.
Proof. Let $V\left(K_{2, n}\right)=\left\{v, w, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{v v_{i}, w v_{i}: 1 \leq i \leq n\right\}$.
Case 1. $n \equiv 0(\bmod 3)$.
Subcase 1a. $n \equiv 0(\bmod 6)$.
First we consider the graph $K_{1, n}$. Assign the labels $1,1,2$ to the first three vertices u_{1}, u_{2}, u_{3} respectively. Then assign the labels $2,2,1$ to the next three vertices u_{4}, u_{5}, u_{6} respectively. Next we assign the labels $1,1,2$ to the next three vertices u_{7}, u_{8}, u_{9} respectively and and assign the labels $2,2,1$ to the next three vertices u_{10}, u_{11}, u_{12} respectively. Continuing this way, we assign the next three vertices and so on. Clearly in this process, the last vertex u_{n} received the label 2 or 1 . Finally we assign the 1 to the vertex u. Now we move to the graph $K_{2, n}$. Assign the labels $3,3,2,3,3,1$ to the first six vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ respectively. Then we assign the labels $3,3,2,3,3,1$ to the next six vertices $v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}$ respectively. Proceeding like this, we assign the labels to the next six vertices and so on. Clearly the last vertex v_{n} received the label 1. Finally we assign the labels 2,3 to the vertices v and w respectively.

Subcase 1b. $n \equiv 3(\bmod 6)$.
Assign the label to the vertices $\mathbf{u}, \mathrm{v}, \mathrm{w}, u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$ as in subcase 1a. Finally assign the labels $1,1,2$ to the vertices u_{n-2}, u_{n-1}, u_{n} respectively and $3,3,2$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 2. $n \equiv 1(\bmod 3)$.

Subcase 2a. $n \equiv 4(\bmod 6)$.
Fix the labels $1,1,2,2$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ respectively. Then we assign the labels $2,2,1,1,1,2$ to the next six vertices $u_{5}, u_{6}, \ldots, u_{10}$ respectively. Now assign the labels $2,2,1,1,1,2$ to the next six vertices $u_{11}, u_{12}, \ldots, u_{15}$ respectively. Continuing in this way, we assign the next six vertices and so on. In this process, the last vertex u_{n} received the label 2 . Next we assign the label 1 to the vertex u. Now our attention move to the vertices of the graph $K_{2, n}$. Fix the label 1 to the vertex v_{1}. Then assign the labels $3,3,2,3,3,1$ to the next six vertices $v_{2}, v_{3}, \ldots, v_{7}$ respectively. Proceeding like this, we asign the next six vertices and so on. Clearly, in this process the vertex v_{n-3} received the label 1 . Next we assign the labels $3,3,2$ respectively to the vertices v_{n-2}, v_{n-1}, v_{n}. Finally we assign the labels 2,3 to the vertices v and w respectively.
Subcase 2b. $n \equiv 1(\bmod 6)$.
Assign the label to the vertices $\mathbf{u}, \mathrm{v}, \mathrm{w}, u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$ as in subcase 2a. Finally assign the labels $2,2,1$ to the vertices u_{n-2}, u_{n-1}, u_{n} respectively and $3,3,2$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$.
Subcase 3a. $n \equiv 2(\bmod 6)$.
Fix the labels 1,2 to the vertices u_{1}, u_{2} respectively. Then we assign the labels $1,1,2,2,2,1$ to the next six vertices $u_{3}, u_{4}, \ldots, u_{8}$ respectively. Now we assign the labels $1,1,2,2,2,1$ to the next six vertices $u_{9}, u_{10}, \ldots, u_{14}$ respectively. Continuing this process until we reach the last vertex u_{n}. In this pattern, the last vertex u_{n} labeled by the integer 1 . Then we assign the label 1 to the vertex u. Next we move to the graph $K_{2, n}$. Fix the labels 1,3 to the vertices v_{1}, v_{2} respectively. Then we assign the labels $3,3,2,3,3,1$ to the next six vertices $v_{3}, v_{4}, \ldots v_{8}$ respectively. Next we assign the labels $3,3,2,3,3,1$ to the next six vertices $v_{9}, v_{10}, \ldots v_{14}$ respectively. Continuing in this way, we assign the next six vertices and so on. Finally we assign the labels 2,3 to the vertices v, w respectively. The vertex and edge condition are given in table 3 and 4 .

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0,2,4(\bmod 6)$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1(\bmod 6)$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$
$n \equiv 3,5(\bmod 6)$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$

Table 3.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n+3}{3}$	$\frac{2 n+3}{3}$	$\frac{2 n+3}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n+4}{3}$	$\frac{2 n+4}{3}$	$\frac{2 n+1}{3}$
$n \equiv 2(\bmod 3)$	$\frac{2 n+5}{3}$	$\frac{2 n+2}{3}$	$\frac{2 n+2}{3}$

Table 4.

We now investigate union of star with subdivision of star.
Theorem 2.5. $K_{1, n} \cup S\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$.
Case 1. n is even.
Assign 1 to the vertices $u, u_{1}, u_{2}, \ldots u_{\frac{n}{2}}$. Then assign the label 2 to the vertices $u_{\frac{n}{2}+1}, u_{\frac{n}{2}+2}$, $\ldots u_{n}$. Next we move to the graph $S\left(K_{1, n}^{2}\right)$. Assign 2 to the vertex v. Then assign the label 2 to the vertices $v_{1}, v_{2}, \ldots v_{\frac{n}{2}}$ and 3 to the vertices $v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, \ldots v_{n}$ and $w_{\frac{n}{2}+1}, w_{\frac{n}{2}+2}, \ldots w_{n}$. Finally assign the label 1 to the vertices $w_{1}, w_{2}, \ldots w_{\frac{n}{2}}$.
Case 2. n is odd.
Assign the label 1 to the vertex \mathbf{u}. Then assign the integer 3 to the vertex $u_{1}, u_{2}, \ldots u_{\frac{n+1}{2}}$. Then assign the label 2 to the remaining vertices of the star $K_{1, n}$. Then we move to the graph $S\left(K_{1, n}\right)$. Now we assign the label 2 to the vertex v . Then we assign the label 2 to the vertices $v_{1}, v_{2}, \ldots v_{\frac{n+1}{2}}$ and 1 to the vertices $v_{\frac{n+1}{2}+1}, v_{\frac{n+1}{2}+2}, \ldots v_{n}$. Then assign the label 1 to the vertices
$w_{1}, w_{2}, \ldots w_{\frac{n+1}{2}}$ and 3 to the vertices $w_{\frac{n+1}{2}+1}, w_{\frac{n+1}{2}+2}, \ldots w_{n}$. Then f is a 3-difference cordial labeling follows from $v_{f}(1)=v_{f}(2)=n+1$ and $v_{f}(3)=n$ and the table 5 .

values of n	$e_{f}(0)$	$e_{f}(1)$
n is odd	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$
n is even	$\frac{3 n}{2}$	$\frac{3 n}{2}$

Table 5.

Next is union of two stars.
Theorem 2.6. If $n \equiv 0,1(\bmod 3)$, then $K_{1, n} \cup K_{1, n}$ is 3-difference cordial.
Proof. Let u, v be the central vertex of the first and second star respectively. Let $u_{i}(1 \leq i \leq n)$ and $v_{i}(1 \leq i \leq n)$ be the pendent vertices of first and second copies of the star $K_{1, n}$.
Case 1. $n \equiv 0(\bmod 3)$.
Assign the label 1 to the vertices $u_{i}, v_{i}\left(1 \leq i \leq \frac{n}{3}\right)$ and assign the label 2 to the vertices $u_{\frac{n}{3}+i}, v_{\frac{n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. Next we assign the label 3 to the vertices $u_{\frac{2 n}{3}+i}, v_{\frac{2 n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. Finally we assign the labels 1,2 to the vertices u and v respectively.
Case 2. $n \equiv 1(\bmod 3)$.
Assign the label 1 to the vertices $u_{i},\left(1 \leq i \leq \frac{n+2}{3}\right)$. Then assign the label 2 to the vertex $u_{\frac{n+2}{3}+i},\left(1 \leq i \leq \frac{n-1}{3}\right)$. Next we assign the label 3 to the vertices $u_{\frac{2 n+1}{3}+i}\left(1 \leq i \leq \frac{n-1}{3}\right)$. Next we move to the next copy of the star $K_{1, n}$. Assign the label 3 to the vertices $v_{i},\left(1 \leq i \leq \frac{n+2}{3}\right)$. Then assign the label 2 to the vertices $v_{\frac{n+2}{3}+i},\left(1 \leq i \leq \frac{n-1}{3}\right)$. Next we assign the label 1 to the vertex $v_{\frac{2 n+1}{3}+i}\left(1 \leq i \leq \frac{n-1}{3}\right)$. Finally we assign the labels 1,2 to the vertices u and v respectively. The edge condition is $e_{f}(0)=e_{f}(1)=1$ and the vertex condition is given in table 6.

values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n+3}{3}$	$\frac{2 n+3}{3}$	$\frac{2 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n+4}{3}$	$\frac{2 n+1}{3}$	$\frac{2 n+1}{3}$

Table 6.

Next investigation is about union of graphs with splitting graph of the star.
Theorem 2.7. $\operatorname{spl}\left(K_{1, n}\right) \cup K_{1, n}$ is 3-difference cordial.
Proof. Let $V\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{v, w, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(\operatorname{spl}\left(K_{1, n}\right)=\left\{v v_{i}, v w_{i}, w w_{i}: 1 \leq\right.\right.$ $i \leq n\}$. Note that $\operatorname{spl}\left(K_{1, n}\right) \cup K_{1, n}$ has $3 n+3$ vertices and $4 n$ edges. Assign the labels $1,2,3$ to the vertices u, v, w respectively. We now assign the label 3 to $u_{i}(1 \leq i \leq n)$, assign the label 1 to the vertices $v_{i}(1 \leq i \leq n)$. Finally assign the label 2 to the vertices $w_{i}(1 \leq i \leq n)$. It is easy to verify that $e_{f}(0)=e_{f}(1)=2 n$ and $v_{f}(1)=v_{f}(2)=v_{f}(3)=n+1$. Hence f is a 3-difference cordial labeling.

Now our attention is move to union of graphs with splitting graph of the star.
Theorem 2.8. $\operatorname{spl}\left(K_{1, n}\right) \cup P_{n}$ is 3-difference cordial.
Proof. Let $u_{1} u_{2} \ldots u_{n}$ be the path. Let $V\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{v, w, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{v v_{i}, v w_{i}, w w_{i}: 1 \leq i \leq n\right\}$. Clearly $\operatorname{spl}\left(K_{1, n}\right) \cup P_{n}$ has $3 n+2$ vertices and 4n-1 edges. Define a function $f: V(G) \rightarrow\{1,2,3\}$ by $f(v)=2, f(w)=1$,

$$
\begin{aligned}
& f\left(u_{i}\right)=1, \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=3, \quad 1 \leq i \leq n \\
& f\left(w_{i}\right)=2, \quad 1 \leq i \leq n
\end{aligned}
$$

Clearly $e_{f}(0)=2 n, e_{f}(1)=2 n-1$ and $v_{f}(1)=v_{f}(2)=n+1$ and $v_{f}(3)=n$. Hence f is 3 -difference cordial labeling.

Theorem 2.9. $K_{3, n} \cup \operatorname{spl}\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(K_{3, n}\right)=\left\{u, v, w, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{3, n}\right)=\left\{u u_{i}, v u_{i}, w u_{i}: 1 \leq i \leq n\right\}$. Let $V\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{x, y, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{x x_{i}, x y_{i}, y y_{i}: 1 \leq i \leq n\right\}$. Clearly $K_{3, n} \cup \operatorname{spl}\left(K_{1, n}\right)$ has $3 \mathrm{n}+5$ vertices and 6 n edges. Define a map $f: V(G) \rightarrow\{1,2,3\}$ by $f(u)=1, f(v)=2, f(w)=3, f(x)=2, f(y)=1$,

$$
\begin{aligned}
& f\left(u_{i}\right)=1, \quad 1 \leq i \leq n \\
& f\left(x_{i}\right)=3, \quad 1 \leq i \leq n \\
& f\left(y_{i}\right)=2, \quad 1 \leq i \leq n
\end{aligned}
$$

Clearly $e_{f}(0)=e_{f}(1)=3 n$ and $v_{f}(1)=v_{f}(2)=n+2$ and $v_{f}(3)=n+1$. Hence f is 3-difference cordial labeling.

Theorem 2.10. $D F_{n} \cup \operatorname{spl}\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(D F_{n}\right)=\left\{u, v, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(D F_{n}\right)=\left\{u u_{i}, v u_{i}, u_{i} u_{i+1}: 1 \leq i \leq n\right\}$, $V\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{x, y, x_{i}, y_{i}: 1 \leq i \leq \bar{n}\right\}$ and $E\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{x x_{i}, x y_{i}, y y_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the vertex u . Then assign the label 2 to all the vertices $v_{i}(1 \leq i \leq n)$ and assign the label 3 to the vertex v. Now we move move to the graph $\operatorname{spl}\left(K_{1, n}\right)$. First we assign the label 1 to the vertex x . Then assign the label 3 to all the vertices $x_{i}(1 \leq i \leq n)$ and assign the label 1 to all the vertices $y_{i}(1 \leq i \leq n)$. Finally assign the label 2 to the vertex y. Clearly $v_{f}(1)=n+2$ and $v_{f}(3)=n+1, e_{f}(0)=3 n-1$ and $e_{f}(1)=3 n$. Hence f is a 3-difference cordial labeling.

Example 2.11. A 3-difference cordial labeling of $D F_{4} \cup \operatorname{spl}\left(K_{1,4}\right)$ is displayed in the below figure.

Figure 1.

We now investigate the 3-difference cordial labeling behavior of union of graphs with subdivided star.

Theorem 2.12. $S\left(K_{1, n}\right) \cup S\left(B_{n, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{u u_{i}, v_{i} u_{i}: 1 \leq i \leq\right.$ $n\}$. Let $V\left(S\left(B_{n, n}\right)\right)=\left\{w, x, y, w_{i}, x_{i}, y_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=\left\{w x, x y, w w_{i}\right.$, $\left.w_{i} x_{i}, y y_{i}, y_{i} z_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the vertex u . Then assign the label 2 to the
vertices $u_{i}(1 \leq i \leq n)$ and assign the label 3 to the vertices $v_{i}(1 \leq i \leq n)$. Next we move to the graph $S\left(B_{n, n}\right)$. Now we assign the labels $1,2,3$ to the vertices $\mathrm{w}, \mathrm{x}, \mathrm{y}$ respectively. Then assign the label 3 to the vertices $w_{i}(1 \leq i \leq n)$ and assign the label 1 to the vertices $x_{i}(1 \leq i \leq n)$ and the vertices $z_{i}(1 \leq i \leq n)$. Finally we assign the label 2 to the vertices $y_{i}(1 \leq i \leq n)$. Clearly $e_{f}(0)=e_{f}(1)=3 n+1$ and $v_{f}(2)=v_{f}(3)=2 n+1, v_{f}(1)=2 n+2$. Hence f is 3 -difference cordial labeling.
Theorem 2.13. $K_{2, n} \cup S\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Let $V\left(K_{2, n}\right)=\left\{w, z, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{w w_{i}, z w_{i}: 1 \leq i \leq n\right\}$. Clearly $K_{2, n} \cup S\left(K_{1, n}\right)$ has $3 \mathrm{n}+3$ vertices and 4 n edges. Assign the label 1 to the vertex u . Then we assign the label 3 to the vertices $u_{i}(1 \leq i \leq n)$ and assign the label 2 to the vertices v_{i} $(1 \leq i \leq n)$. We now move to the graph $K_{2, n}$. Assign the labels 2,3 to the vertices w and z respectively. Finally we assign the label 1 to the vertices $w_{i}(1 \leq i \leq n)$. The edge and vertex condition are $e_{f}(0)=e_{f}(1)=2 n$ and $v_{f}(1)=v_{f}(2)=v_{f}(3)=n+1$. Hence f is a 3-difference cordial labeling.
Theorem 2.14. $F_{n} \cup S\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(F_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{u u_{i}, u_{i} u_{i+1}: 1 \leq i \leq n\right\}$. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the vertex u. Then assign the label 2 to the vertices $u_{i}(1 \leq i \leq n)$. Next we move to the graph $S\left(K_{1, n}\right)$. Now we assign the label 2 to the vertex v . Then assign the label 3 to all the vertices $v_{i}(1 \leq i \leq n)$. Finally assign the label 3 to all the vertices $w_{i}(1 \leq i \leq n)$. The edge and vertex condition of this labeling f is $e_{f}(0)=2 n-1$ and $e_{f}(1)=2, v_{f}(1)=v_{f}(2)=n+1$ and $v_{f}(3)=n$. Hence f is a 3-difference cordial labeling of $F_{n} \cup S\left(K_{1, n}\right)$.
Theorem 2.15. $W_{n} \cup S\left(K_{1, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(W_{n}\right)=\left\{u, u_{i},: 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{u u_{i}, u_{i} u_{i+1}, u_{n} u_{1}: 1 \leq i \leq n\right\}$. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$. Clearly $W_{n} \cup S\left(K_{1, n}\right)$ has $3 \mathrm{n}+2$ vertices and 4 n edges. First we assign the label 2 to the vertex u . Then we assign the label 1 to all the vertices of $u_{i}(1 \leq i \leq n)$. Next we move to the graph $S\left(K_{1, n}\right)$. We assign the label 1 to the vertex v . Next we assign the label 3 to the vertices $v_{i}(1 \leq i \leq n)$. Finally we assign the label 2 to all the vertices $w_{i}(1 \leq i \leq n) . f$ is a 3 -difference cordial labeling follows from $e_{f}(0)=e_{f}(1)=2 n$ and $v_{f}(1)=v_{f}(2)=n+1, v_{f}(3)=n$.

Next is union of graphs with bistar.
Theorem 2.16. $B_{n, n} \cup S\left(B_{n, n}\right)$ is 3-difference cordial.
Proof. Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Let $V\left(S\left(B_{n, n}\right)\right)=\left\{w, x, y, w_{i}, x_{i}, y_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=\left\{w x, x y, w w_{i}, w_{i} x_{i}, y y_{i}, y_{i} z_{i}:\right.$ $1 \leq i \leq n\}$. Note that $B_{n, n} \cup S\left(B_{n, n}\right)$ has $6 \mathrm{n}+5$ vertices and $6 \mathrm{n}+3$ edges. Assign the label 1,2 to the verticesu,v respectively. Then assign the label 2 to the vertices $u_{i}(1 \leq i \leq n)$ and assign the label 3 to the vertices $v_{i}(1 \leq i \leq n)$. Now we move to the next graph $S\left(B_{n, n}\right)$. Assign the labels $1,3,2$ to the vertices $\mathrm{w}, \mathrm{x}, \mathrm{y}$ respectively. Then assign the label 1 to the vertices $w_{i}(1 \leq i \leq n)$. Next we assign the label 3 to the vertices $x_{i}(1 \leq i \leq n)$ and assign the label 2 to the vertices y_{i} $(1 \leq i \leq n)$. Finally assign the label 1 to the vertices $z_{i}(1 \leq i \leq n)$. Obviously $e_{f}(0)=3 n+1$ and $e_{f}(1)=3 n+2, v_{f}(1)=v_{f}(2)=2 n+2$ and $v_{f}(3)=2 n+1$. Hence f is 3 -difference cordial labeling.
Theorem 2.17. $K_{2, n} \cup B_{n, n}$ is 3-difference cordial.
Proof. Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, v v_{i}, u u_{i}: 1 \leq i \leq n\right\}$. Let $V\left(K_{2, n}\right)=\left\{w, x, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{w w_{i}, x w_{i}: 1 \leq i \leq n\right\}$. Clearly $K_{2, n} \cup B_{n, n}$ has $3 \mathrm{n}+4$ vertices and $4 \mathrm{n}+1$ edges. Assign the labels 1,2 to the vertices u and v respectively. Then assign the label 1 to the vertices $u_{i}(1 \leq i \leq n)$. Next we assign the label 3 to the vertices $v_{i}(1 \leq i \leq n)$. Then we move to the graph $K_{2, n}$. We assign the labels 2,3 to the vertices w and x respectively. Next we assign the label 2 to the vertices $w_{i}(1 \leq i \leq n)$. Since $e_{f}(0)=2 n, e_{f}(1)=2 n+1, v_{f}(1)=v_{f}(3)=n+1$ and $v_{f}(2)=n+2, f$ is a 3-difference cordial labeling.

The final investigation is about $P_{n} \cup P_{n}, C_{n} \odot K_{1} \cup P_{n} \odot K_{1}$ and $F_{n} \cup F_{n}$ where $F_{n}=P_{n}+K_{1}$ and it is called fan.

Theorem 2.18. $\left(C_{n} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ is 3-difference cordial.
Proof. Let $n=3 t+r$ where $0 \leq r \leq 3$. Assign the label 3 to all the cycle vertices and assign the label 2 to all the pendent vertices of $C_{n} \odot K_{1}$. Next we move to the graph $P_{n} \odot K_{1}$. Assign the labels $1,2,3$ to the first three vertices of the P_{n}. Next we assign the labels $1,2,3$ to the next three vertices of the path. Continuing in this way, assign the next three vertices and so on. If $r=0$, we have labeled all the vertices of the path. If $r=1$, assign the label 1 to the next non labeled vertex of the path. If $r=2$, then we assign the labels 1,2 to the non labeled vertices of the path respectively. Finally assign the label 1 to all the pendent vertices of $P_{n} \odot K_{1}$. Clearly $e_{f}(0)=2 n-1$ and $e_{f}(1)=2 n$ and the vertex condition is shown in the table 7 .

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{4 n}{3}$	$\frac{4 n}{3}$	$\frac{4 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{4 n+2}{3}$	$\frac{4 n-1}{3}$	$\frac{4 n-1}{3}$
$n \equiv 2(\bmod 3)$	$\frac{4 n+1}{3}$	$\frac{4 n+1}{3}$	$\frac{4 n-2}{3}$

Table 7.

Theorem 2.19. $F_{n} \cup F_{n}$ is 3-difference cordial.
Proof. Let $V\left(F_{n} \cup F_{n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(F_{n} \cup F_{n}\right)=\left\{u u_{i}, u_{i} u_{i+1}, v v_{i}, v_{i} v_{i+1}\right.$ $: 1 \leq i \leq n\}$. Note that $F_{n} \cup F_{n}$ has $2 \mathrm{n}+2$ vertices and $4 \mathrm{n}-2$ edges.
Case 1. $n \equiv 0(\bmod 3)$.
Subcase 1a. $n \equiv 0(\bmod 6)$.
Assign the labels $1,3,2,1,3,2$ to the first six vertices $u_{1}, u_{2}, \ldots u_{6}$ respectively. Then assign the labels $1,3,2,1,3,2$ to the next six vertices u_{7}, u_{8}, u_{12} respectively. Continuing this way, we assign the next six vertices and so on. In this process the last vertex received the label 2. Assign the label 1 to the vertex u. Next we move to the vertices v and v_{i}. Assign the labels $1,3,2,2,3,1$ to the first six vertices $v_{1}, v_{2}, \ldots v_{6}$ respectively. Then we assign the labels $1,3,2,2,3,1$ to the next six vertices $v_{7}, v_{8}, \ldots v_{12}$ respectively. Continuing this pattern, we reach the last vertex v_{n}. Clearly in this pattern the last vertex v_{n} received the label 3. Finally assign the label 2 to the vertex v.
Subcase 1b. $n \equiv 3(\bmod 6)$.
As in subcase 1a, assign the label to the vertices $\mathbf{u}, \mathbf{v}, u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$. Finally assign the labels $1,3,2$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and 1,3,2 to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 2. $n \equiv 1(\bmod 3)$.
Subcase 2a. $n \equiv 1(\bmod 6)$.
Fix the label 3 to the vertex u_{1}. Then assign the labels $1,2,3$ to the next three vertices u_{2}, u_{3}, u_{4} respectively. Now we assign the labels $1,2,3$ to the next three vertices v_{5}, v_{6}, v_{7} respectively. Continuing in this way, we assign the next three vertices and so on. In this process the last vertex v_{n} labeled by the integer 3. Then we assign the label 1 to the vertex u. Now we move to the second copy of F_{n}. Fix the label 2 to the vertex v_{1}. Assign the labels $3,1,2,2,3,1$ to the next six vertices $v_{2}, v_{3}, \ldots v_{7}$ respectively. Then assign the labels $3,1,2,2,3,1$ to the next six vertices $v_{7}, v_{8}, \ldots v_{13}$ respectively. Proceeding like this, we assign the label to the next six vertices and so on. Clearly in this pattern the last vertex v_{n} labeled received the label 1 . Finally we assign the label 2 to the vertex v.
Subcase 2b. $n \equiv 4(\bmod 6)$.
As in subcase 2 a , assign the label to the vertices $\mathbf{u}, \mathbf{v}, u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$. Finally assign the labels $1,2,3$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and $3,1,2$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$.
Subcase 3a. $n \equiv 2(\bmod 6)$.

Fix the labels 2,1 to the vertices u_{1} and u_{2} respectively. Then we assign the labels $1,3,2,1,3,2$ to the six vertices $v_{4}, v_{5}, \ldots v_{8}$ respectively. Now we assign the labels $1,3,2,1,3,2$ to the next six vertices $v_{9}, v_{10}, \ldots v_{14}$ respectively. Continuing this way, we assign the next six vertices and so on. Clearly in this process the last vertex u_{n} labeled by the integer 2. Assign the label 1 to the vertex. Now we move to the second copy of F_{n}. Fix the labels 3,2 to the vertices v_{1}, v_{2} respectively. Assign the labels $1,3,2$ to the next three vertices v_{3}, v_{4}, v_{5} respectively. Then assign the labels $1,3,2$ to the next three vertices v_{6}, v_{7}, v_{8} respectively. Proceeding like this, we assign the label to the next three vertices and so on. In this pattern 2 is the label of the last vertex v_{n}. Finally assign the the label 2 to the vertex v.
Subcase 3b. $n \equiv 5(\bmod 6)$.
As in subcase 3a, assign the label to the vertices $\mathbf{u}, \mathrm{v}, u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$. Finally assign the labels $1,3,2$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and $1,3,2$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.

Clearly all these cases the edge condition is $e_{f}(0)=e_{f}(1)=2 n-1$. The vertex condition is given in table 8.

Values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n+3}{3}$	$\frac{2 n+3}{3}$	$\frac{2 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n+1}{3}$	$\frac{2 n+4}{3}$	$\frac{2 n+1}{3}$
$n \equiv 2(\bmod 3)$	$\frac{2 n+2}{3}$	$\frac{2 n+2}{3}$	$\frac{2 n+2}{3}$

Table 8.

Theorem 2.20. $P_{n} \cup P_{n}$ is 3-difference cordial.
Proof. Let $u_{1} u_{2} \ldots u_{n}$ be the first copy of the path and $v_{1} v_{2} \ldots v_{n}$ be the second copy of the path. Case 1. $n \equiv 0(\bmod 3)$.
Subcase 1b. $n \equiv 0(\bmod 6)$.
Assign the labels $1,3,2$ to the first three vertices of the path u_{1}, u_{2}, u_{3} respectively. Then assign the labels $1,3,2$ to the next three verties u_{4}, u_{5}, u_{6} of the path P_{n}. Proceeding like this, we assign the next three vertices and so on. Note that in this process 2 is the label of the last vertex u_{n}. Now our attention turn to the second copy of the path. Assign the labels $1,3,2,2,3,1$ to the first six vertices $v_{1}, v_{2}, \ldots v_{6}$ respectively. Then assign the labels $1,3,2,2,3,1$ to the next six vertices of the second copy of the path $v_{7}, v_{8} \ldots v_{12}$. Continuing this way until we reach the vertex v_{n}. It is obvious that the last vertex v_{n} is received the label 1 .
Subcase 1b. $n \equiv 3(\bmod 6)$.
Assign the label to the vertices $u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$ as in subcase 1a. Finally assign the labels $1,3,2$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and 1,3,2 to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 2. $n \equiv 1(\bmod 3)$.
Subcase 2a. $n \equiv 1(\bmod 6)$.
Fix the label 1 to the vertex u_{1}. Next we aassign the labels $1,3,2$ to the next three vertices u_{2}, u_{3}, u_{4} of the path. Then assign the labels $1,3,2$ to the next three vertices u_{5}, u_{6}, u_{7} respectively. Proceeding like this we assign the next three vertices and so on. Now we move to the second copy of the path P_{n}. Fix the label 2 to the first vertex v_{1}. Then assign the labels $1,3,2,2,3,1$ to the next six vertices $v_{2}, v_{3}, \ldots v_{7}$ of the second path. Next we assign the labels $1,3,2,2,3,1$ to the next six vertices $v_{8}, v_{9}, \ldots v_{13}$ respectively. Continuing in this pattern until we reach the last vertex v_{n}. It is easy to verify that 1 is the label of the last vertex v_{n}.
Subcase 2b. $n \equiv 4(\bmod 6)$.
Assign the label to the vertices $u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$ as in subcase 1a. Finally assign the labels $1,3,2$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and $1,3,2$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$.
Subcase 3a. $n \equiv 2(\bmod 6)$.
Consider the first copy of the path P_{n}. Fix the labels 1,3 to the vertices u_{1} and u_{2} respectively. Then assign the labels $1,3,2$ to the six vertices u_{3}, u_{4}, u_{5} respectively. Next we assign the labels

1,3,2 to the next three vertices u_{6}, u_{7}, u_{8} respectively. Proceeding like this, we assign the next three vertices and so on. It is obvious that, the last vertex u_{n} received the label 2 . Next we turn to the second copy of P_{n}. Fix the labels 2,3 to the vertices v_{1}, v_{2} respectively. Then assign the labels $2,3,1,1,3,2$ to the next six vertices $v_{3}, v_{4}, \ldots v_{8}$ respectively. Next we assign the labels $2,3,1,1,3,2$ to the next six vertices of the second copy of the path $v_{9}, v_{10}, \ldots v_{14}$ respectively. Continuing in this way until we reach the last vertex v_{n}. In this process the vertex v_{n} received the label 2 . Subcase 3b. $n \equiv 5(\bmod 6)$.

Assign the label to the vertices $u_{i} 1 \leq i \leq n-3$ and $v_{i} 1 \leq i \leq n-3$ as in subcase 1a. Finally assign the labels $1,3,2$ respectively to the vertices u_{n-2}, u_{n-1}, u_{n} and $2,3,1$ to the vertices v_{n-2}, v_{n-1}, v_{n} respectively.

Hence f is a 3-difference cordial labeling follows from the edge condition $e_{f}(0)=e_{f}(1)=$ $n-1$ and the vertex condition in table 9.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{2 n}{3}$	$\frac{2 n}{3}$	$\frac{2 n}{3}$
$n \equiv 1(\bmod 3)$	$\frac{2 n+1}{3}$	$\frac{2 n+1}{3}$	$\frac{2 n-2}{3}$
$n \equiv 2(\bmod 3)$	$\frac{2 n-1}{3}$	$\frac{2 n-1}{3}$	$\frac{2 n+2}{3}$

Table 9.

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987), 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2012) \#Ds6.
[3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] R.Ponraj, M.Maria Adaickalam and R.Kala, k-difference cordial labeling of graphs, (submitted).
[5] R.Ponraj and M.Maria Adaickalam, 3-difference cordiality of some graphs, (submitted).
[6] R.Ponraj and M.Maria Adaickalam, 3-difference cordial labeling of some cycle related graphs, Journal of algorithms and computation, accepted for publication.

Author information

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India.

E-mail: ponrajmaths@gmail.com
M.Maria Adaickalam, Department of Economics and Statistics, Government of Tamilnadu, Chennai-600 006, India.
E-mail: mariaadaickalam@gmail.com
Recived: October 22, 2015.
Accepted: March 29, 2016.

