On parity combination cordial graphs

R. Ponraj, Rajpal Singh and S.Sathish Narayanan

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78.

Keywords and phrases: path, cycle, star, helms, dragon.

Abstract. Let G be a (p,q) graph. Let f be an injective map from V(G) to $\{1,2,\ldots,p\}$. For each edge xy, assign the label $\binom{x}{y}$ or $\binom{y}{x}$ according as x > y or y > x. f is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and $|e_f(0) - e_f(1)| \le 1$ where $e_f(0)$ and $e_f(1)$ denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph). In this paper, we investigate the parity combination cordial labeling behavior of helms, P_n^2 , dragon, $C_n \widehat{\circ} K_{1,m}$ and some more graphs.

1 Introduction

All graphs in this paper are finite, undirected and simple. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. A general reference for graph theoretic ideas can be seen in [3]. A labeling of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). Most graph labeling methods trace their origin to one introduced by Rosa [4] in year 1967. Labeled graphs serves as a useful mathematical model for a broad range of application such as coding theory, X-ray crystallography analysis, communication network addressing systems, astronomy, radar, circuit design and database management [2]. The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. In 1980, Cahit [1] introduced the cordial labeling of graphs. In [5], ponraj et al. introduced a notion, called combination parity cordial labeling. In this paper we present combination parity cordial labelings for helms, P_n^2 , dragon, $C_n \circ K_{1,m}$ and some more graphs.

2 Some basic results and definitions

Definition 2.1. Let G be a (p,q) graph. Let f be an injective map from V(G) to $\{1,2,\ldots,p\}$. For each edge xy, assign the label $\binom{x}{y}$ or $\binom{y}{x}$ according as x > y or y > x. f is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and $|e_f(0) - e_f(1)| \le 1$ where $e_f(0)$ and $e_f(1)$ denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph).

Result 2.2. $\binom{n}{n-1} = \binom{n}{1}$ is even if *n* is even and odd if *n* is odd.

Result 2.3. $\binom{n}{2}$ is even if $n \equiv 0, 1 \pmod{4}$ and odd if $n \equiv 2, 3 \pmod{4}$.

Proof. Case 1. $n \equiv 0 \pmod{4}$. Let n = 4t. Then $\binom{n}{2} = \frac{4t(4t-1)}{2} = 2t(4t-1)$. Hence $\binom{n}{2}$ is even. Case 2. $n \equiv 1 \pmod{4}$. Let n = 4t + 1. Then $\binom{n}{2} = \frac{(4t+1)4t}{2} = 2t(4t+1)$. Hence $\binom{n}{2}$ is even. Case 3. $n \equiv 2 \pmod{4}$. Let n = 4t + 2. Then $\binom{n}{2} = \frac{(4t+2)(4t+1)}{2} = (2t+1)(4t+1)$. Hence $\binom{n}{2}$ is odd. Case 4. $n \equiv 3 \pmod{4}$. Let n = 4t + 3. Then $\binom{n}{2} = \frac{(4t+3)(4t+2)}{2} = (2t+1)(4t+3)$. Hence $\binom{n}{2}$ is odd.

Result 2.4. If $n \equiv 0 \pmod{4}$ then $\binom{n}{3}$ is even.

Proof. Case 1. $n \equiv 0 \pmod{12}$. Let n = 12t. Then $\binom{n}{3} = \frac{12t(12t-1)(12t-2)}{6} = 2t(12t-1)(12t-2)$. Hence $\binom{n}{3}$ is even. Case 2. $n \equiv 4 \pmod{12}$. Let n = 12t + 4. Then $\binom{n}{3} = \frac{(12t+4)(12t+3)(12t+2)}{6} = 2(3t+1)(4t+1)(12t+2)$. Hence $\binom{n}{3}$ is even. Case 3. $n \equiv 8 \pmod{12}$. Let n = 12t + 8. Then $\binom{n}{3} = \frac{(12t+8)(12t+7)(12t+6)}{6} = 2(3t+2)(12t+7)(4t+2)$. Hence $\binom{n}{3}$ is

Let n = 12t + 8. Then $\binom{n}{3} = \frac{(12t+8)(12t+7)(12t+6)}{6} = 2(3t+2)(12t+7)(4t+2)$. Hence $\binom{n}{3}$ is even.

Result 2.5. $\binom{n}{r} = \binom{n}{n-r}$.

Definition 2.6. The graph P_n^2 is obtained from the path P_n by adding edges that joins all vertices u and v with d(u, v) = 2.

Definition 2.7. The helm H_n is the graph obtained from a wheel by attaching a pendant edge at each vertex of the *n*-cycle.

Definition 2.8. The bistar $B_{m,n}$ is the graph obtained by making adjacent the two central vertices of $K_{1,m}$ and $K_{1,n}$.

Definition 2.9. The dragon $C_m@P_n$ is the graph obtained by unifying an end vertex of a path P_n and a vertex of a cycle C_n .

Definition 2.10. The graph $C_n \circ K_{1,m}$ is obtained from C_n and $K_{1,m}$ by unifying a vertex of C_n and the central vertex of $K_{1,m}$.

Definition 2.11. The graph $C_n \widetilde{\circ} K_{1,m}$ is obtained from C_n and $K_{1,m}$ by unifying a vertex of C_n and a pendent vertex of $K_{1,m}$.

Definition 2.12. Two even cycles of the same order, say C_n , sharing a common vertex with m pendent edges attached at the common vertex is called a butterfly graph $By_{m,n}$.

3 Main Results

First we look into the graph $G \cup P_n$ where G is a parity combination cordial graph.

Theorem 3.1. Let G be a (p,q) parity combination cordial graph. Then $G \cup P_n$ is also parity combination cordial if $n \neq 2, 4$.

Proof. Let $P_n : u_1 u_2 \dots u_n$ be the path and v_1, v_2, \dots, v_p be the vertices of G. Since G is a parity combination cordial graph, there exists a parity combination cordial labeling, say f.

Therefore $e_f(0) = e_f(1) = \frac{q}{2}$ if q is even, and if q is odd then $e_f(0) = \frac{q+1}{2}$ and $e_f(1) = \frac{q-1}{2}$ (or) $e_f(0) = \frac{q-1}{2}$ and $e_f(1) = \frac{q+1}{2}$

Now, define an injective function $g: V(G \cup P_n) \to \{1, 2, \dots, p+n\}$ by $g(v_i) = f(v_i), 1 \le i \le p$ and $g(u_j) = p + j, 1 \le j \le n$.

Case 1. p is even.

Then p+1 is odd. Now $\binom{p+i+1}{p+i} = p+i+1$ where $1 \le i \le n-1$. But p is even. Therefore the path contributes $\frac{n-1}{2}$ zeros and $\frac{n-1}{2}$ 1's if n is odd and $\frac{n}{2}$ zeros, $\frac{n}{2} - 1$ 1's if n is even.

(i.e) Number of edges with label zero in $P_n = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$

Number of edges with label 1 in $P_n = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} - 1 & \text{if } n \text{ is even} \end{cases}$

Subcase 1a. q is even. If n is odd, then

 $|e_g(0) - e_g(1)| = |(\frac{q}{2} + \frac{n-1}{2}) - (\frac{q}{2} + \frac{n-1}{2})| = 0.$

For the case when n is even, we have $|e_g(0) - e_g(1)| = \left|\left(\frac{n}{2} + \frac{q}{2}\right) - \left(\frac{n}{2} - 1 + \frac{q}{2}\right)\right| = 1$. **Subcase 1b.** q is odd. Here we have the following possible cases in G. (i) $e_f(0) = \frac{q+1}{2}$ and $e_f(1) = \frac{q-1}{2}$. (ii) $e_f(0) = \frac{q-1}{2}$ and $e_f(1) = \frac{q+1}{2}$.

Consider the first case. Suppose n is odd, then

$$|e_g(0) - e_g(1)| = \left| \left(\frac{n-1}{2} + \frac{q+1}{2} \right) - \left(\frac{n-1}{2} + \frac{q-1}{2} \right) \right| = 1$$

If n is even and $p \equiv 0 \pmod{4}$ then relabel the vertices u_2 , u_3 by p+3, p+2 respectively. Now $\binom{p+3}{p+1} = \binom{p+3}{2}$ and since $p \equiv 0 \pmod{4}$, $\binom{p+3}{2}$ is odd and hence $\binom{p+3}{p+1}$ is odd. Also $\binom{p+3}{p+2} = \binom{p+3}{1} = p+3$, which is odd, $\binom{p+4}{p+2} = \binom{p+4}{2}$, and since $p \equiv 0 \pmod{4}$, $\binom{p+4}{2}$ is even. Hence $e_g(0) = \frac{g+1}{2} + \frac{n}{2} - 1$, $e_g(1) = \frac{g-1}{2} + \frac{n}{2}$. This forces $|e_g(0) - e_g(1)| = 0$.

If n is even and $p \equiv 2 \pmod{4}$ then assign the labels as in before and then interchange the labels of the vertices u_2 and u_3 . That is, label the vertices of P_n as in previous case, $p \equiv 0 \pmod{4}$. Now $\binom{p+3}{p+1} = \binom{p+3}{2}$. Since $p \equiv 2 \pmod{4}$, $p+3 \equiv 1 \pmod{4}$ and by the result 2.3, $\binom{p+3}{p+1} = \binom{p+3}{2}$ is even. Also $\binom{p+3}{p+2} = \binom{p+3}{1} = p+3$, which is odd. Finally, $\binom{p+4}{p+2} = \binom{p+4}{2}$ and since $p \equiv 2 \pmod{4}$, $p+4 \equiv 2 \pmod{4}$ and therefore $\binom{p+4}{2}$ is odd. Hence $e_g(0) = \frac{q+1}{2} + \frac{n}{2} - 1$, $e_g(1) = \frac{q-1}{2} + \frac{n}{2}$. This implies $|e_g(0) - e_g(1)| = 0$.

Now we look into the second case. If n is odd, then

$$|e_g(0) - e_g(1)| = \left| \left(\frac{n-1}{2} + \frac{q-1}{2} \right) - \left(\frac{n-1}{2} + \frac{q+1}{2} \right) \right| = 1.$$

For even values of *n*, we have $|e_g(0) - e_g(1)| = \left| \left(\frac{n}{2} + \frac{q-1}{2} \right) - \left(\frac{n}{2} + \frac{q+1}{2} - 1 \right) \right| = 0.$ **Case 2.** *p* is odd.

In this case p + 1 is even. Hence $\binom{p+i+1}{p+i} = p + i + 1$ where $1 \le i \le n-1$. But p is odd. Hence the path P_n contributes $\frac{n-1}{2}$ zero's and $\frac{n-1}{2}$ 1's if n is odd and $\frac{n}{2} - 1$ zero's, $\frac{n}{2}$ 1's if n is even.

> (i.e) Number of edges with the label zero in $P_n = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} - 1 & \text{if } n \text{ is even} \end{cases}$ Number of edges with the label 1 in $P_n = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$

Subcase 2a. q is odd. Here we have the following possible cases in G.

(i) $e_f(0) = \frac{q+1}{2}$ and $e_f(1) = \frac{q-1}{2}$. (ii) $e_f(0) = \frac{q-1}{2}$ and $e_f(1) = \frac{q+1}{2}$.

Consider the first case. Suppose n is odd, then

$$|e_g(0) - e_g(1)| = \left| \left(\frac{n-1}{2} + \frac{q+1}{2} \right) - \left(\frac{n-1}{2} + \frac{q-1}{2} \right) \right| = 1.$$

For the case when n is even,

$$|e_g(0) - e_g(1)| = \left| \left(\frac{n}{2} - 1 + \frac{q+1}{2} \right) - \left(\frac{n}{2} + \frac{q-1}{2} \right) \right| = 0.$$

Now consider the second case. If n is odd, then

 $|e_g(0) - e_g(1)| = \left| \left(\frac{n-1}{2} + \frac{q-1}{2} \right) - \left(\frac{n-1}{2} + \frac{q+1}{2} \right) \right| = 1.$

Suppose n is even and $p \equiv 1 \pmod{4}$ then relabel u_1, u_2, u_3 by p+3, p+1, p+2 respectively. Since $p \equiv 1 \pmod{4}$, $p+3 \equiv 0 \pmod{4}$. Hence $\binom{p+3}{p+1} = \binom{p+3}{2}$ is even. Also $\binom{p+2}{p+1} = p+2$, which is odd and $\binom{p+4}{p+2} = \binom{p+4}{2}$. But $p+4 \equiv 1 \pmod{4}$. Therefore $p+4 \equiv 2 \pmod{4}$ is even. Hence $e_g(0) = \frac{g-1}{2} + \frac{n}{2}$ and $e_g(1) = \frac{g+1}{2} + \frac{n}{2} - 1$. If n is even and $p \equiv 3 \pmod{4}$, n > 4, then relabel the vertices u_1, u_2, u_3, u_4, u_5 by p+1,

If n is even and $p \equiv 3 \pmod{4}$, n > 4, then relabel the vertices u_1, u_2, u_3, u_4, u_5 by p + 1, p+3, p+5, p+2, p+4 respectively. Since $p+3 \equiv 2 \pmod{4}$, by the result 2.3, $\binom{p+3}{p+1} = \binom{p+3}{2}$

is odd. Since $p + 5 \equiv 0 \pmod{4}$, by the result 2.3, $\binom{p+5}{p+3} = \binom{p+5}{2}$ is even. Since $p + 5 \equiv 0$ (mod 4), by the result 2.4, $\binom{p+5}{p+2} = \binom{p+5}{3}$ is even. Since $p + 4 \equiv 3 \pmod{4}$, by the result 2.3, $\binom{p+4}{p+2} = \binom{p+4}{2}$ is odd. Since $p+6 \equiv 1 \pmod{4}$, by the result 2.3, $\binom{p+6}{p+4} = \binom{p+6}{2}$ is even. This implies $e_g(0) = \frac{q-1}{2} + \frac{n}{2}$ and $e_g(1) = \frac{q+1}{2} + \frac{n}{2} - 1$. Hence $|e_g(0) - e_g(1)| = 0$. **Subcase 2b.** q is even. If n is even, then

$$|e_g(0) - e_g(1)| = |(\frac{n}{2} + \frac{q}{2} - 1) - (\frac{n}{2} + \frac{q}{2})| = 1.$$

Suppose *n* is odd, then $|e_g(0) - e_g(1)| = \left| \left(\frac{n-1}{2} + \frac{q}{2} \right) - \left(\frac{n-1}{2} + \frac{q}{2} \right) \right| = 0.$ By the cases 1 and 2, $G \cup P_n$ is parity combination cordial, if $n \neq 2, 4$.

We now investigate the square of a path.

Theorem 3.2. The graph P_n^2 is parity combination cordial.

 $\textit{Proof. Let } V(P_n^2) = \{u_i : 1 \leq i \leq n\} \textit{ and } E(P_n^2) = \{u_i u_{i+1} : 1 \leq i \leq n-1\} \cup \{u_i u_{i+2} : 1 \leq i \leq n-1\} \cup$ $i \le n-2$ }. Clearly the number of vertices and edges of P_n^2 are n and 2n-3 respectively. Define a function $f: V(P_n^2) \to \{1, 2, \dots, n\}$ by $f(u_i) = i, 1 \le i \le n$. Using the results 2.2 and 2.3, it is evident that $e_f(0) = n - 1$ and $e_f(1) = n - 2$.

Hence P_n^2 is a parity combination cordial graph.

Next investigation is about helms and dragon.

Theorem 3.3. The helm H_n is parity combination cordial.

Proof. Let $V(H_n) = \{u\} \cup \{u_i, v_i : 1 \le i \le n\}$ and $E(H_n) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_i, v_i : 1 \le i \le n-1\}$ $\{uu_i, u_iv_i : 1 \le i \le n\}$. The number of vertices and edges of H_n are 2n+1 and 3n respectively. Case 1. n is odd.

Define a map $f: V(H_n) \to \{1, 2, ..., 2n + 1\}$ by f(u) = 1,

$$\begin{array}{lll} f(u_i) &=& 2i, & 1 \le i \le n \\ f(v_i) &=& 2i+1, & 1 \le i \le n. \end{array}$$

From the results 2.2 and 2.3, we notice that $e_f(0) = \frac{3n-1}{2}$ and $e_f(1) = \frac{3n+1}{2}$. Case 2. n is even.

Assign the labels to the vertices of H_n as in case 1. Then interchange the labels of the vertices u_3 and v_3 . In this case $e_f(0) = e_f(1) = \frac{3n}{2}$.

Hence H_n is a parity combination cordial graph.

Example 3.4. A parity combination cordial labeling of H_8 is given in FIGURE 1.

Figure 1.

Theorem 3.5. The dragon $C_m @P_n$ is a parity combination cordial graph.

Proof. Let v_1, v_2, \ldots, v_m be the vertices of C_m and u_1, u_2, \ldots, u_n be the vertices of P_n . Without loss of generality unify the vertices u_1 and v_1 .

Case 1. m and n are odd.

Define an injective map $f: V(C_m@P_n) \rightarrow \{1, 2, \dots, m+n-1\}$ as follows:

$$f(v_i) = i - 1, \qquad 2 \le i \le m$$

 $f(u_i) = m - 1 + i, \quad 1 \le i \le n.$

Case 2. m is odd and n is even.

Assign the labels to the vertices of the dragon, as in case 1.

Case 3. m is even and n is odd.

Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_3 and u_4 .

Case 4. m and n are even.

Assign the labels to the vertices of the dragon, as in case 1.

Table 1 shows that f is a parity combination cordial labeling of $C_m @P_n$.

Nature of m and n	$e_f(0)$	$e_f(1)$
m and n are odd	$\frac{m+n}{2}-1$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m is even and n is odd	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m and n are even	$\frac{m+n}{2}$	$\frac{m+n}{2}-1$

Table 1.

Now we investigate the parity combination cordial labeling behavior of bistar and butterfly graphs.

Theorem 3.6. The bistar $B_{m,n}$ is parity combination cordial.

Proof. Let $V(B_{m,n}) = \{u, v, u_i, v_j : 1 \le i \le m, 1 \le j \le n\}$ and $E(B_{m,n}) = \{uv, uu_i, vv_j : 1 \le i \le m, 1 \le j \le n\}$. **Case 1.** $m \equiv 0, 4 \pmod{12}$ and $m + n \equiv 3 \pmod{4}$. Define a map $f : V(B_{m,n}) \to \{1, 2, \dots, m + n + 2\}$ by $f(u) = 1, f(v) = 2, f(v_1) = n + 3, f(u_1) = 3,$ $f(u_i) = n + 2 + i, 2 \le i \le m$ $f(v_i) = i + 2, 2 \le i \le n.$

In this case $e_f(0) = e_f(1) = \frac{m+n+1}{2}$. **Case 2.** $m \equiv 8 \pmod{12}$ and $m+n \equiv 1 \pmod{4}$. Similar to case 1. **Case 3.** $m \equiv 1,3 \pmod{6}$ and $m+n \equiv 1 \pmod{4}$. Define a map $f: V(B_{m,n}) \rightarrow \{1, 2, \dots, m+n+2\}$ by f(u) = 1, f(v) = 2, $f(v_i) = -m+2+i, 1 \leq i \leq m$

$$\begin{array}{rcl} f(u_i) &=& n+2+i, & 1 \leq i \leq m \\ f(v_j) &=& j+2, & 1 \leq j \leq n. \end{array}$$

In this case $e_f(0) = e_f(1) = \frac{m+n+1}{2}$. **Case 4.** $m \equiv 2 \pmod{12}$ and $m+n \equiv 1 \pmod{4}$. Similar to case 3. **Case 5.** $m \equiv 5 \pmod{6}$ and $m+n \equiv 3 \pmod{4}$. Similar to case 3. **Case 6.** $m \equiv 6, 10 \pmod{12}$ and $m + n \equiv 3 \pmod{4}$. Similar to case 3.

Case 7. *m* and *n* are not in the previous cases. Define a map $f: V(B_{m,n}) \rightarrow \{1, 2, \dots, m+n+2\}$ by f(u) = 1, f(v) = 2,

$$\begin{array}{rcl} f(u_i) &=& i+2, & 1 \leq i \leq m \\ f(v_i) &=& m+2+j, & 1 \leq j \leq n. \end{array}$$

It is easy to verify that $|e_f(0) - e_f(1)| \le 1$.

Theorem 3.7. The butterfly graph $By_{m,n}$ is parity combination cordial.

Proof. Let $u_1u_2...u_nu_1$ and $v_1v_2...v_nv_1$ be the two copies of the cycle C_n . Without loss of generality, unify the vertices u_1 and v_1 . Let $w_1, w_2, ..., w_m$ be the pendent vertices. **Case 1.** $n \equiv 1 \pmod{2}$ and $m \equiv 1 \pmod{2}$.

Define a one to one map $f: V(By_{m,n}) \rightarrow \{1, 2, \dots, 2n + m - 1\}$ by

 $\begin{array}{rcl} f(u_i) & = & i, & 1 \leq i \leq n \\ f(v_i) & = & n+i-1, & 2 \leq i \leq n \\ f(w_i) & = & 2n-1+i, & 1 \leq i \leq m. \end{array}$

Case 2. $n \equiv 1 \pmod{2}$ and $m \equiv 0 \pmod{2}$. **Subcase 2a.** n = 3.

Assign the label 1 to u_1 , then put the labels 2, 3 to the vertices u_2 , u_3 respectively. For the other side vertices v_2 , v_3 , we put the labels 6 and 5 respectively. Now, the remaining vertices are labeled with the labels from $\{4, 7, 8, \ldots, 2n + m - 1\}$ in any order. **Subcase 2b.** n > 3.

Assign the labels to the vertices as in case 1. Then relabel the vertices u_2 , u_3 and u_4 with the labels 3, 4 and 2 respectively.

Case 3. $n \equiv 0 \pmod{2}$ and $m \equiv 1 \pmod{2}$.

Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_2 and u_3 .

Case 4. $n \equiv 0 \pmod{2}$ and $m \equiv 0 \pmod{2}$.

Similar to case 1.

Table 2 establish that f is a parity combination cordial labeling of $By_{m,n}$.

Values of m and n	$e_f(0)$	$e_f(1)$
$n \equiv 1 \pmod{2}$ and $m \equiv 1 \pmod{2}$	$\frac{2n+m-1}{2}$	$\frac{2n+m+1}{2}$
$n = 3 \text{ and } m \equiv 0 \pmod{2}$	$\frac{m+6}{2}$	$\frac{m+6}{2}$
$n \equiv 1 \pmod{2}, m \equiv 0 \pmod{2}, \text{ and } n > 3$	$\frac{2n+m}{2}$	$\frac{2n+m}{2}$
$n \equiv 0 \pmod{2}, m \equiv 1 \pmod{2}$	$\frac{2n+m+1}{2}$	$\frac{2n+m-1}{2}$
$n \equiv 0 \pmod{2}, m \equiv 0 \pmod{2}$	$\frac{2n+m}{2}$	$\frac{2n+m}{2}$

Table 2.

Final investigation is about the graphs which are obtained from a cycle and a star.

Theorem 3.8. The graph $C_n \circ K_{1,m}$ is a parity combination cordial graph.

Proof. Let $u_1u_2...u_nu_1$ be the cycle C_n and let u be the central vertex of the star $K_{1,m}$ and v_i $(1 \le i \le m)$ be the pendent vertices. Now unify the vertices u and u_1 . **Case 1.** n is even and m is odd.

Define an injective map $f: V(C_n \widehat{\circ} K_{1,m}) \to \{1, 2, \dots, m+n\}$ as follows:

$$\begin{aligned} f(v_i) &= i, & 1 \le i \le n \\ f(u_i) &= n+i, & 1 \le i \le m. \end{aligned}$$

Case 2. m and n are even.

Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_2 and u_3 .

Case 3. m and n are odd.

Assign the labels to the vertices as in case 1.

Case 4. m is odd and n is even.

Assign the labels to the vertices as in case 1.

Table 3 shows that f is a parity combination cordial labeling of $C_n \widehat{\circ} K_{1,m}$.

Nature of m and n	$e_f(0)$	$e_f(1)$
n is even and m is odd	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$
m and n are even	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m and n are odd	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$

Theorem 3.9. The graph $C_n \widetilde{\circ} K_{1,m}$ is parity combination cordial.

Proof. Let $u_1u_2...u_nu_1$ be the cycle C_n and let v be the central vertex of the star $K_{1,m}$ and v_i $(1 \le i \le m)$ be the pendent vertices. Now unify the vertices v_1 and u_1 . **Case 1.** $n \equiv 0 \pmod{4}$ and $m \equiv 1 \pmod{2}$.

Define an injective map $f: V(C_n \widetilde{\circ} K_{1,m}) \rightarrow \{1, 2, \dots, m+n\}$ by f(v) = 1,

$$f(u_i) = i+1, \quad 1 \le i \le n$$

 $f(v_i) = n+i, \quad 2 \le i \le m.$

Case 2. $n \equiv 0 \pmod{4}$ and $m \equiv 0 \pmod{2}$.

Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_1 and u_2 .

Case 3. $n \equiv 1 \pmod{4}$ and $m \equiv 1 \pmod{2}$. Similar to case 1. **Case 4.** $n \equiv 1 \pmod{4}$ and $m \equiv 0 \pmod{2}$. Similar to case 1. **Case 5.** $n \equiv 2 \pmod{4}$ and $m \equiv 1 \pmod{2}$. Similar to case 1. **Case 6.** $n \equiv 2 \pmod{4}$ and $m \equiv 0 \pmod{2}$. Similar to case 1. **Case 7.** $n \equiv 3 \pmod{4}$ and $m \equiv 1 \pmod{2}$. Similar to case 2. **Case 8.** $n \equiv 3 \pmod{4}$ and $m \equiv 0 \pmod{2}$. Similar to case 1. **Case 8.** $n \equiv 3 \pmod{4}$ and $m \equiv 0 \pmod{2}$. Similar to case 1. The table 4 shows that *f* is a parity combination cordial labeling of $C_n \widetilde{\circ} K_{1,m}$.

Example 3.10. The graph $C_7 \circ K_{1,9}$ is given in FIGURE 2.

**1 0 1	(0)	(4)
Values of m and n	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{4}$ and $m \equiv 1 \pmod{2}$	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$
$n \equiv 0 \pmod{4}$ and $m \equiv 0 \pmod{2}$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 1 \pmod{4}$ and $m \equiv 1 \pmod{2}$	$\frac{m+n}{2}$	$\frac{\frac{2}{m+n}}{2}$
$n \equiv 1 \pmod{4}$ and $m \equiv 0 \pmod{2}$	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
$n \equiv 2 \pmod{4}$ and $m \equiv 1 \pmod{2}$	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
$n \equiv 2 \pmod{4}$ and $m \equiv 0 \pmod{2}$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 3 \pmod{4}$ and $m \equiv 1 \pmod{2}$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 3 \pmod{4}$ and $m \equiv 0 \pmod{2}$	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$

Figure 2.

References

- [1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars combin.*, **23** (1987) 201-207.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 16 (2013) # Ds6.
- [3] F. Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
- [4] A. Rosa, On certain valuations of the vertices of a graph, *Theory of Graphs (Internat. Symposium, Rome, July 1966)*, Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
- [5] R.Ponraj, S.Sathish Narayanan and A.M.S.Ramasamy, Parity combination cordial labeling of graphs, *Jor*dan Journal of Mathematics and Statistics (JJMS), 8(4)(2015), 293-308.

Author information

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India. E-mail: ponrajmaths@gmail.com

Rajpal Singh, Department of Mathematics, Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012, India.

E-mail: rajpalsingh@gmail.com

S.Sathish Narayanan, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India. E-mail: sathishrvss@gmail.com

Received: October 7, 2015.

Accepted: March 22, 2016.