On parity combination cordial graphs

R. Ponraj, Rajpal Singh and S.Sathish Narayanan
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78.
Keywords and phrases: path, cycle, star, helms, dragon.

Abstract

Let G be a (p, q) graph. Let f be an injective map from $V(G)$ to $\{1,2, \ldots, p\}$. For each edge $x y$, assign the label $\binom{x}{y}$ or $\binom{y}{x}$ according as $x>y$ or $y>x . f$ is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph). In this paper, we investigate the parity combination cordial labeling behavior of helms, P_{n}^{2}, dragon, $C_{n} \widehat{o} K_{1, m}$ and some more graphs.

1 Introduction

All graphs in this paper are finite, undirected and simple. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G. A general reference for graph theoretic ideas can be seen in [3]. A labeling of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). Most graph labeling methods trace their origin to one introduced by Rosa [4] in year 1967. Labeled graphs serves as a useful mathematical model for a broad range of application such as coding theory, X-ray crystallography analysis, communication network addressing systems, astronomy, radar, circuit design and database management [2]. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. In 1980, Cahit [1] introduced the cordial labeling of graphs. In [5], ponraj et al. introduced a notion, called combination parity cordial labeling. In this paper we present combination parity cordial labelings for helms, P_{n}^{2}, dragon, $C_{n} \widehat{\circ} K_{1, m}$ and some more graphs.

2 Some basic results and definitions

Definition 2.1. Let G be a (p, q) graph. Let f be an injective map from $V(G)$ to $\{1,2, \ldots, p\}$. For each edge $x y$, assign the label $\binom{x}{y}$ or $\binom{y}{x}$ according as $x>y$ or $y>x . f$ is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph).

Result 2.2. $\binom{n}{n-1}=\binom{n}{1}$ is even if n is even and odd if n is odd.
Result 2.3. $\binom{n}{2}$ is even if $n \equiv 0,1(\bmod 4)$ and odd if $n \equiv 2,3(\bmod 4)$.
Proof. Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 t$. Then $\binom{n}{2}=\frac{4 t(4 t-1)}{2}=2 t(4 t-1)$. Hence $\binom{n}{2}$ is even.
Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 t+1$. Then $\binom{n}{2}=\frac{(4 t+1) 4 t}{2}=2 t(4 t+1)$. Hence $\binom{n}{2}$ is even.
Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 t+2$. Then $\binom{n}{2}=\frac{(4 t+2)(4 t+1)}{2}=(2 t+1)(4 t+1)$. Hence $\binom{n}{2}$ is odd.
Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 t+3$. Then $\binom{n}{2}=\frac{(4 t+3)(4 t+2)}{2}=(2 t+1)(4 t+3)$. Hence $\binom{n}{2}$ is odd.

Result 2.4. If $n \equiv 0(\bmod 4)$ then $\binom{n}{3}$ is even.
Proof. Case 1. $n \equiv 0(\bmod 12)$.
Let $n=12 t$. Then $\binom{n}{3}=\frac{12 t(12 t-1)(12 t-2)}{6}=2 t(12 t-1)(12 t-2)$. Hence $\binom{n}{3}$ is even.
Case 2. $n \equiv 4(\bmod 12)$.
Let $n=12 t+4$. Then $\binom{n}{3}=\frac{(12 t+4)(12 t+3)(12 t+2)}{6}=2(3 t+1)(4 t+1)(12 t+2)$. Hence $\binom{n}{3}$ is even.
Case 3. $n \equiv 8(\bmod 12)$.
Let $n=12 t+8$. Then $\binom{n}{3}=\frac{(12 t+8)(12 t+7)(12 t+6)}{6}=2(3 t+2)(12 t+7)(4 t+2)$. Hence $\binom{n}{3}$ is even.
Result 2.5. $\binom{n}{r}=\binom{n}{n-r}$.
Definition 2.6. The graph P_{n}^{2} is obtained from the path P_{n} by adding edges that joins all vertices u and v with $d(u, v)=2$.
Definition 2.7. The helm H_{n} is the graph obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle.
Definition 2.8. The bistar $B_{m, n}$ is the graph obtained by making adjacent the two central vertices of $K_{1, m}$ and $K_{1, n}$.
Definition 2.9. The dragon $C_{m} @ P_{n}$ is the graph obtained by unifying an end vertex of a path P_{n} and a vertex of a cycle C_{n}.
Definition 2.10. The graph $C_{n} \widehat{\circ} K_{1, m}$ is obtained from C_{n} and $K_{1, m}$ by unifying a vertex of C_{n} and the central vertex of $K_{1, m}$.
Definition 2.11. The graph $C_{n} \widetilde{\circ} K_{1, m}$ is obtained from C_{n} and $K_{1, m}$ by unifying a vertex of C_{n} and a pendent vertex of $K_{1, m}$.
Definition 2.12. Two even cycles of the same order, say C_{n}, sharing a common vertex with m pendent edges attached at the common vertex is called a butterfly graph $B y_{m, n}$.

3 Main Results

First we look into the graph $G \cup P_{n}$ where G is a parity combination cordial graph.
Theorem 3.1. Let G be a (p, q) parity combination cordial graph. Then $G \cup P_{n}$ is also parity combination cordial if $n \neq 2,4$.
Proof. Let $P_{n}: u_{1} u_{2} \ldots u_{n}$ be the path and $v_{1}, v_{2}, \ldots, v_{p}$ be the vertices of G. Since G is a parity combination cordial graph, there exists a parity combination cordial labeling, say f.
Therefore $e_{f}(0)=e_{f}(1)=\frac{q}{2}$ if q is even, and if q is odd then $e_{f}(0)=\frac{q+1}{2}$ and $e_{f}(1)=\frac{q-1}{2}$ (or) $e_{f}(0)=\frac{q-1}{2}$ and $e_{f}(1)=\frac{q+1}{2}$
Now, define an injective function $g: V\left(G \cup P_{n}\right) \rightarrow\{1,2, \ldots, p+n\}$ by $g\left(v_{i}\right)=f\left(v_{i}\right), 1 \leq i \leq p$ and $g\left(u_{j}\right)=p+j, 1 \leq j \leq n$.

Case 1. p is even.

Then $p+1$ is odd. Now $\binom{p+i+1}{p+i}=p+i+1$ where $1 \leq i \leq n-1$. But p is even. Therefore the path contributes $\frac{n-1}{2}$ zeros and $\frac{n-1}{2} 1$'s if n is odd and $\frac{n}{2}$ zeros, $\frac{n}{2}-11$'s if n is even.

$$
\begin{aligned}
& \text { (i.e) Number of edges with label zero in } P_{n}=\left\{\begin{array}{cll}
\frac{n-1}{2} & \text { if } & \mathrm{n} \text { is odd } \\
\frac{n}{2} & \text { if } \mathrm{n} \text { is even }
\end{array}\right. \\
& \text { Number of edges with label } 1 \text { in } P_{n}=\left\{\begin{array}{cll}
\frac{n-1}{2} & \text { if } & \mathrm{n} \text { is odd } \\
\frac{n}{2}-1 & \text { if } & \mathrm{n} \text { is even }
\end{array}\right.
\end{aligned}
$$

Subcase 1a. q is even. If n is odd, then

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{q}{2}+\frac{n-1}{2}\right)-\left(\frac{q}{2}+\frac{n-1}{2}\right)\right|=0 .
$$

For the case when n is even, we have $\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n}{2}+\frac{q}{2}\right)-\left(\frac{n}{2}-1+\frac{q}{2}\right)\right|=1$.
Subcase 1b. q is odd. Here we have the following possible cases in G.
(i) $e_{f}(0)=\frac{q+1}{2}$ and $e_{f}(1)=\frac{q-1}{2}$.
(ii) $e_{f}(0)=\frac{q-1}{2}$ and $e_{f}(1)=\frac{q+1}{2}$.

Consider the first case. Suppose n is odd, then

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n-1}{2}+\frac{q+1}{2}\right)-\left(\frac{n-1}{2}+\frac{q-1}{2}\right)\right|=1
$$

If n is even and $p \equiv 0(\bmod 4)$ then relabel the vertices u_{2}, u_{3} by $p+3, p+2$ respectively. Now $\binom{p+3}{p+1}=\binom{p+3}{2}$ and since $p \equiv 0(\bmod 4),\binom{p+3}{2}$ is odd and hence $\binom{p+3}{p+1}$ is odd. Also $\binom{p+3}{p+2}=$ $\binom{p+3}{1}=p+3$, which is odd, $\binom{p+4}{p+2}=\binom{p+4}{2}$, and since $p \equiv 0(\bmod 4),\binom{p+4}{2}$ is even. Hence $e_{g}(0)=\frac{q+1}{2}+\frac{n}{2}-1, e_{g}(1)=\frac{q-1}{2}+\frac{n}{2}$. This forces $\left|e_{g}(0)-e_{g}(1)\right|=0$.

If n is even and $p \equiv 2(\bmod 4)$ then assign the labels as in before and then interchange the labels of the vertices u_{2} and u_{3}. That is, label the vertices of P_{n} as in previous case, $p \equiv 0$ $(\bmod 4)$. Now $\binom{p+3}{p+1}=\binom{p+3}{2}$. Since $p \equiv 2(\bmod 4), p+3 \equiv 1(\bmod 4)$ and by the result 2.3 , $\binom{p+3}{p+1}=\binom{p+3}{2}$ is even. Also $\binom{p+3}{p+2}=\binom{p+3}{1}=p+3$, which is odd. Finally, $\binom{p+4}{p+2}=\binom{p+4}{2}$ and since $p \equiv 2(\bmod 4), p+4 \equiv 2(\bmod 4)$ and therefore $\binom{p+4}{2}$ is odd. Hence $e_{g}(0)=\frac{q+1}{2}+\frac{n}{2}-1$, $e_{g}(1)=\frac{q-1}{2}+\frac{n}{2}$. This implies $\left|e_{g}(0)-e_{g}(1)\right|=0$.

Now we look into the second case. If n is odd, then

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n-1}{2}+\frac{q-1}{2}\right)-\left(\frac{n-1}{2}+\frac{q+1}{2}\right)\right|=1
$$

For even values of n, we have $\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n}{2}+\frac{q-1}{2}\right)-\left(\frac{n}{2}+\frac{q+1}{2}-1\right)\right|=0$.
Case 2. p is odd.
In this case $p+1$ is even. Hence $\binom{p+i+1}{p+i}=p+i+1$ where $1 \leq i \leq n-1$. But p is odd. Hence the path P_{n} contributes $\frac{n-1}{2}$ zero's and $\frac{n-1}{2} 1$'s if n is odd and $\frac{n}{2}-1$ zero's, $\frac{n}{2} 1$'s if n is even.
(i.e) Number of edges with the label zero in $P_{n}=\left\{\begin{array}{clc}\frac{n-1}{2} & \text { if } & \mathrm{n} \text { is odd } \\ \frac{n}{2}-1 & \text { if } & \mathrm{n} \text { is even }\end{array}\right.$

$$
\text { Number of edges with the label } 1 \text { in } P_{n}=\left\{\begin{array}{cl}
\frac{n-1}{2} & \text { if } \mathrm{n} \text { is odd } \\
\frac{n}{2} & \text { if } \mathrm{n} \text { is even }
\end{array}\right.
$$

Subcase 2a. q is odd. Here we have the following possible cases in G.
(i) $e_{f}(0)=\frac{q+1}{2}$ and $e_{f}(1)=\frac{q-1}{2}$.
(ii) $e_{f}(0)=\frac{q-1}{2}$ and $e_{f}(1)=\frac{q+1}{2}$.

Consider the first case. Suppose n is odd, then

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n-1}{2}+\frac{q+1}{2}\right)-\left(\frac{n-1}{2}+\frac{q-1}{2}\right)\right|=1
$$

For the case when n is even,

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n}{2}-1+\frac{q+1}{2}\right)-\left(\frac{n}{2}+\frac{q-1}{2}\right)\right|=0
$$

Now consider the second case. If n is odd, then
$\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n-1}{2}+\frac{q-1}{2}\right)-\left(\frac{n-1}{2}+\frac{q+1}{2}\right)\right|=1$.
Suppose n is even and $p \equiv 1(\bmod 4)$ then relabel u_{1}, u_{2}, u_{3} by $p+3, p+1, p+2$ respectively. Since $p \equiv 1(\bmod 4), p+3 \equiv 0(\bmod 4)$. Hence $\binom{p+3}{p+1}=\binom{p+3}{2}$ is even. Also $\binom{p+2}{p+1}=p+2$, which is odd and $\binom{p+4}{p+2}=\binom{p+4}{2}$. But $p+4 \equiv 1(\bmod 4)$. Therefore $p+4 \equiv 2(\bmod 4)$ is even. Hence $e_{g}(0)=\frac{q-1}{2}+\frac{n}{2}$ and $e_{g}(1)=\frac{q+1}{2}+\frac{n}{2}-1$.

If n is even and $p \equiv 3(\bmod 4), n>4$, then relabel the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ by $p+1$, $p+3, p+5, p+2, p+4$ respectively. Since $p+3 \equiv 2(\bmod 4)$, by the result $2.3,\binom{p+3}{p+1}=\binom{p+3}{2}$
is odd. Since $p+5 \equiv 0(\bmod 4)$, by the result $2.3,\binom{p+5}{p+3}=\binom{p+5}{2}$ is even. Since $p+5 \equiv 0$ $(\bmod 4)$, by the result $2.4,\binom{p+5}{p+2}=\binom{p+5}{3}$ is even. Since $p+4 \equiv 3(\bmod 4)$, by the result 2.3 , $\binom{p+4}{p+2}=\binom{p+4}{2}$ is odd. Since $p+6 \equiv 1(\bmod 4)$, by the result $2.3,\binom{p+6}{p+4}=\binom{p+6}{2}$ is even. This implies $e_{g}(0)=\frac{q-1}{2}+\frac{n}{2}$ and $e_{g}(1)=\frac{q+1}{2}+\frac{n}{2}-1$. Hence $\left|e_{g}(0)-e_{g}(1)\right|=0$.
Subcase 2b. q is even. If n is even, then

$$
\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n}{2}+\frac{q}{2}-1\right)-\left(\frac{n}{2}+\frac{q}{2}\right)\right|=1 .
$$

Suppose n is odd, then $\left|e_{g}(0)-e_{g}(1)\right|=\left|\left(\frac{n-1}{2}+\frac{q}{2}\right)-\left(\frac{n-1}{2}+\frac{q}{2}\right)\right|=0$.
By the cases 1 and 2, $G \cup P_{n}$ is parity combination cordial, if $n \neq 2,4$.
We now investigate the square of a path.
Theorem 3.2. The graph P_{n}^{2} is parity combination cordial.
Proof. Let $V\left(P_{n}^{2}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}^{2}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i+2}: 1 \leq\right.$ $i \leq n-2\}$. Clearly the number of vertices and edges of P_{n}^{2} are n and $2 n-3$ respectively. Define a function $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2, \ldots, n\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq n$. Using the results 2.2 and 2.3 , it is evident that $e_{f}(0)=n-1$ and $e_{f}(1)=n-2$.

Hence P_{n}^{2} is a parity combination cordial graph.
Next investigation is about helms and dragon.
Theorem 3.3. The helm H_{n} is parity combination cordial.
Proof. Let $V\left(H_{n}\right)=\{u\} \cup\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. The number of vertices and edges of H_{n} are $2 n+1$ and $3 n$ respectively.
Case 1. n is odd.
Define a map $f: V\left(H_{n}\right) \rightarrow\{1,2, \ldots, 2 n+1\}$ by $f(u)=1$,

$$
\begin{array}{ll}
f\left(u_{i}\right)=2 i, & \\
f\left(v_{i}\right)=2 i \leq i \leq n \\
=2 i, & \\
1 \leq i \leq n
\end{array}
$$

From the results 2.2 and 2.3, we notice that $e_{f}(0)=\frac{3 n-1}{2}$ and $e_{f}(1)=\frac{3 n+1}{2}$.
Case 2. n is even.
Assign the labels to the vertices of H_{n} as in case 1. Then interchange the labels of the vertices u_{3} and v_{3}. In this case $e_{f}(0)=e_{f}(1)=\frac{3 n}{2}$.

Hence H_{n} is a parity combination cordial graph.
Example 3.4. A parity combination cordial labeling of H_{8} is given in Figure 1.

Figure 1.

Theorem 3.5. The dragon $C_{m} @ P_{n}$ is a parity combination cordial graph.
Proof. Let $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of C_{m} and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}. Without loss of generality unify the vertices u_{1} and v_{1}.
Case 1. m and n are odd.
Define an injective map $f: V\left(C_{m} @ P_{n}\right) \rightarrow\{1,2, \ldots, m+n-1\}$ as follows:

$$
\begin{array}{lll}
f\left(v_{i}\right)=i-1, & & 2 \leq i \leq m \\
f\left(u_{i}\right)=m-1+i, & & 1 \leq i \leq n .
\end{array}
$$

Case 2. m is odd and n is even.
Assign the labels to the vertices of the dragon, as in case 1.
Case 3. m is even and n is odd.
Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_{3} and u_{4}.
Case 4. m and n are even.
Assign the labels to the vertices of the dragon, as in case 1.
Table 1 shows that f is a parity combination cordial labeling of $C_{m} @ P_{n}$.

Nature of m and n	$e_{f}(0)$	$e_{f}(1)$
m and n are odd	$\frac{m+n}{2}-1$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m is even and n is odd	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m and n are even	$\frac{m+n}{2}$	$\frac{m+n}{2}-1$

Table 1.

Now we investigate the parity combination cordial labeling behavior of bistar and butterfly graphs.

Theorem 3.6. The bistar $B_{m, n}$ is parity combination cordial.
Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(B_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}\right.$: $1 \leq i \leq m, 1 \leq j \leq n\}$.
Case 1. $m \equiv 0,4(\bmod 12)$ and $m+n \equiv 3(\bmod 4)$.
Define a map $f: V\left(B_{m, n}\right) \rightarrow\{1,2, \ldots, m+n+2\}$ by $f(u)=1, f(v)=2, f\left(v_{1}\right)=n+3$, $f\left(u_{1}\right)=3$,

$$
\begin{array}{lll}
f\left(u_{i}\right)=n+2+i, & & 2 \leq i \leq m \\
f\left(v_{j}\right) & =j+2, & \\
2 \leq j \leq n .
\end{array}
$$

In this case $e_{f}(0)=e_{f}(1)=\frac{m+n+1}{2}$.
Case 2. $m \equiv 8(\bmod 12)$ and $m+n \equiv 1(\bmod 4)$.
Similar to case 1 .
Case 3. $m \equiv 1,3(\bmod 6)$ and $m+n \equiv 1(\bmod 4)$.
Define a map $f: V\left(B_{m, n}\right) \rightarrow\{1,2, \ldots, m+n+2\}$ by $f(u)=1, f(v)=2$,

$$
\begin{array}{lll}
f\left(u_{i}\right)=n+2+i, & & 1 \leq i \leq m \\
f\left(v_{j}\right)=j+2, & & 1 \leq j \leq n .
\end{array}
$$

In this case $e_{f}(0)=e_{f}(1)=\frac{m+n+1}{2}$.
Case 4. $m \equiv 2(\bmod 12)$ and $m+n \equiv 1(\bmod 4)$.
Similar to case 3.
Case 5. $m \equiv 5(\bmod 6)$ and $m+n \equiv 3(\bmod 4)$.
Similar to case 3 .

Case 6. $m \equiv 6,10(\bmod 12)$ and $m+n \equiv 3(\bmod 4)$.
Similar to case 3.
Case 7. m and n are not in the previous cases.
Define a map $f: V\left(B_{m, n}\right) \rightarrow\{1,2, \ldots, m+n+2\}$ by $f(u)=1, f(v)=2$,

$$
\begin{array}{lll}
f\left(u_{i}\right)=i+2, & & 1 \leq i \leq m \\
f\left(v_{j}\right)=m+2+j, & & 1 \leq j \leq n
\end{array}
$$

It is easy to verify that $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Theorem 3.7. The butterfly graph $B y_{m, n}$ is parity combination cordial.
Proof. Let $u_{1} u_{2} \ldots u_{n} u_{1}$ and $v_{1} v_{2} \ldots v_{n} v_{1}$ be the two copies of the cycle C_{n}. Without loss of generality, unify the vertices u_{1} and v_{1}. Let $w_{1}, w_{2}, \ldots, w_{m}$ be the pendent vertices.
Case 1. $n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$.
Define a one to one map $f: V\left(B y_{m, n}\right) \rightarrow\{1,2, \ldots, 2 n+m-1\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =i, & & 1 \leq i \leq n \\
f\left(v_{i}\right) & =n+i-1, & & 2 \leq i \leq n \\
f\left(w_{i}\right) & =2 n-1+i, & & 1 \leq i \leq m
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 2)$ and $m \equiv 0(\bmod 2)$.
Subcase 2a. $n=3$.
Assign the label 1 to u_{1}, then put the labels 2,3 to the vertices u_{2}, u_{3} respectively. For the other side vertices v_{2}, v_{3}, we put the labels 6 and 5 respectively. Now, the remaining vertices are labeled with the labels from $\{4,7,8, \ldots, 2 n+m-1\}$ in any order.
Subcase 2b. $n>3$.
Assign the labels to the vertices as in case 1 . Then relabel the vertices u_{2}, u_{3} and u_{4} with the labels 3,4 and 2 respectively.
Case 3. $n \equiv 0(\bmod 2)$ and $m \equiv 1(\bmod 2)$.
Assign the labels to the vertices as in case 1 . Then interchange the labels of the vertices u_{2} and u_{3}.
Case 4. $n \equiv 0(\bmod 2)$ and $m \equiv 0(\bmod 2)$.
Similar to case 1.
Table 2 establish that f is a parity combination cordial labeling of $B y_{m, n}$.

Values of m and n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$	$\frac{2 n+m-1}{2}$	$\frac{2 n+m+1}{2}$
$n=3$ and $m \equiv 0(\bmod 2)$	$\frac{m+6}{2}$	$\frac{m+6}{2}$
$n \equiv 1(\bmod 2), m \equiv 0(\bmod 2)$, and $n>3$	$\frac{2 n+m}{2}$	$\frac{2 n+m}{2}$
$n \equiv 0(\bmod 2), m \equiv 1(\bmod 2)$	$\frac{2 n+m+1}{2}$	$\frac{2 n+m-1}{2}$
$n \equiv 0(\bmod 2), m \equiv 0(\bmod 2)$	$\frac{2 n+m}{2}$	$\frac{2 n+m}{2}$

Table 2.

Final investigation is about the graphs which are obtained from a cycle and a star.
Theorem 3.8. The graph $C_{n} \widehat{o} K_{1, m}$ is a parity combination cordial graph.
Proof. Let $u_{1} u_{2} \ldots u_{n} u_{1}$ be the cycle C_{n} and let u be the central vertex of the star $K_{1, m}$ and v_{i} $(1 \leq i \leq m)$ be the pendent vertices. Now unify the vertices u and u_{1}.
Case 1. n is even and m is odd.

Define an injective map $f: V\left(C_{n} \widehat{o} K_{1, m}\right) \rightarrow\{1,2, \ldots, m+n\}$ as follows:

$$
\begin{array}{lll}
f\left(v_{i}\right)=i, & & 1 \leq i \leq n \\
f\left(u_{i}\right) & =n+i, & 1 \leq i \leq m
\end{array}
$$

Case 2. m and n are even.
Assign the labels to the vertices as in case 1. Then interchange the labels of the vertices u_{2} and u_{3}.
Case 3. m and n are odd.
Assign the labels to the vertices as in case 1.
Case 4. m is odd and n is even.
Assign the labels to the vertices as in case 1.
Table 3 shows that f is a parity combination cordial labeling of $C_{n} \widehat{o} K_{1, m}$.

Nature of m and n	$e_{f}(0)$	$e_{f}(1)$
n is even and m is odd	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$
m and n are even	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m and n are odd	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$

Table 3.

Theorem 3.9. The graph $C_{n} \widetilde{\circ} K_{1, m}$ is parity combination cordial.
Proof. Let $u_{1} u_{2} \ldots u_{n} u_{1}$ be the cycle C_{n} and let v be the central vertex of the star $K_{1, m}$ and v_{i} $(1 \leq i \leq m)$ be the pendent vertices. Now unify the vertices v_{1} and u_{1}.
Case 1. $n \equiv 0(\bmod 4)$ and $m \equiv 1(\bmod 2)$.
Define an injective map $f: V\left(C_{n} \widetilde{\circ} K_{1, m}\right) \rightarrow\{1,2, \ldots, m+n\}$ by $f(v)=1$,

$$
\begin{aligned}
& f\left(u_{i}\right)=i+1, \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=n+i, \quad 2 \leq i \leq m
\end{aligned}
$$

Case 2. $n \equiv 0(\bmod 4)$ and $m \equiv 0(\bmod 2)$.
Assign the labels to the vertices as in case 1 . Then interchange the labels of the vertices u_{1} and u_{2}.
Case 3. $n \equiv 1(\bmod 4)$ and $m \equiv 1(\bmod 2)$.
Similar to case 1.
Case 4. $n \equiv 1(\bmod 4)$ and $m \equiv 0(\bmod 2)$.
Similar to case 1.
Case 5. $n \equiv 2(\bmod 4)$ and $m \equiv 1(\bmod 2)$.
Similar to case 1.
Case 6. $n \equiv 2(\bmod 4)$ and $m \equiv 0(\bmod 2)$.
Similar to case 1.
Case 7. $n \equiv 3(\bmod 4)$ and $m \equiv 1(\bmod 2)$.
Similar to case 2.
Case 8. $n \equiv 3(\bmod 4)$ and $m \equiv 0(\bmod 2)$.
Similar to case 1.
The table 4 shows that f is a parity combination cordial labeling of $C_{n} \widetilde{\circ} K_{1, m}$.

Example 3.10. The graph $C_{7} \widetilde{\circ} K_{1,9}$ is given in Figure 2.

Values of m and n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 4)$ and $m \equiv 1(\bmod 2)$	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$
$n \equiv 0(\bmod 4)$ and $m \equiv 0(\bmod 2)$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 1(\bmod 4)$ and $m \equiv 1(\bmod 2)$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 1(\bmod 4)$ and $m \equiv 0(\bmod 2)$	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
$n \equiv 2(\bmod 4)$ and $m \equiv 1(\bmod 2)$	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
$n \equiv 2(\bmod 4)$ and $m \equiv 0(\bmod 2)$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 3(\bmod 4)$ and $m \equiv 1(\bmod 2)$	$\frac{m+n}{2}$	$\frac{m+n}{2}$
$n \equiv 3(\bmod 4)$ and $m \equiv 0(\bmod 2)$	$\frac{m+n+1}{2}$	$\frac{m+n-1}{2}$

Table 4.

Figure 2.

References

[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2013) \# Ds6.
[3] F. Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
[4] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
[5] R.Ponraj, S.Sathish Narayanan and A.M.S.Ramasamy, Parity combination cordial labeling of graphs, Jordan Journal of Mathematics and Statistics (JJMS), 8(4)(2015), 293-308.

Author information

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India.

E-mail: ponrajmaths@gmail.com
Rajpal Singh, Department of Mathematics, Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012, India.
E-mail: rajpalsingh@gmail.com
S.Sathish Narayanan, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India.

E-mail: sathishrvss@gmail.com
Received: October 7, 2015.
Accepted: March 22, 2016.

