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Communicated by Ayman Badawi

MSC 2010 Classi�cations: Primary 16N60, Secondary 16W25.

Keywords and phrases: semiprime ring, Lie ideal, generalized derivation, multiplicative generalized derivation.

This work is supported by the Scienti�c Research Project Fund of Cumhuriyet University under the project number

F-450.

Abstract. Let R be a semiprime ring and U is an Lie ideal of R such that U ̸⊆ Z(R). A map

F : R → R is called a multiplicative generalized derivation if there exists a map d : R → R
such that F (xy) = F (x)y+ xd(y), for all x, y ∈ R. In the present paper, we shall prove that d is
commuting map on U if any one of the following holds: i) F ([x, y]) = 0, ii) F ([x, y]) = ±[x, y],
iii) F ([x, y]) = ±(xoy) = 0, iv) F (xoy) = 0, v) F (xoy) = ±(xoy), vi) F (xoy) = ±[x, y], vii)
F ([x, y]) = ±[F (x), y], viii) F (xoy) = ±(F (x)oy), ix) F (xy) ± xy ∈ Z, x) F (xy) ± yx ∈ Z,
xi) F (xy)± [x, y] ∈ Z, xii) F (xy)± (xoy) ∈ Z, for all x, y ∈ U.

1 Introduction

Let R will be an associative ring with center Z. For any x, y ∈ R, as usual [x, y] = xy − yx and

xoy = xy + yx will denote the well-known Lie and Jordan products respectively. Recall that a

ring R is prime if for x, y ∈ R, xRy = 0 implies either x = 0 or y = 0 and R is semiprime if

for x ∈ R, xRx = 0 implies x = 0. An additive subgroup U of R is said to be a Lie ideal of

R if [u, r] ∈ U, for all u ∈ U, r ∈ R. An additive mapping d : R → R is called a derivation if

d(xy) = d(x)y+xd(y) holds for all x, y ∈ R. For a �xed a ∈ R, the mapping Ia : R → R given

by Ia(x) = [a, x] is a derivation which is said to be an inner derivation. An additive function

F : R → R is called a generalized inner derivation if F (x) = ax + xb for �xed a, b ∈ R. For
such a mapping F, it is easy to see that

F (xy) = F (x)y + x[y, b] = f(x)y + xIb(y) for all x, y ∈ R.

This observation leads to the following de�nition given by M. Bresar in [5]: An additive

mapping F : R → R is called a generalized derivation if there exists a derivation d : R → R
such that

F (xy) = F (x)y + xd(y), for all x, y ∈ R.

Familiar examples of generalized derivations are derivations and generalized inner derivations,

and the later include left multipliers and right multipliers (i.e., F (xy) = F (x)y for all x, y ∈ R).
The commutativity of prime or semiprime rings with derivation was initiated by Posner in

[13]. Thereafter, several authors have proved commutativity theorems of prime or semiprime

rings with derivations. In [6], the notion of multiplicative derivation was introduced by Daif

motivated by Martindale in [12]. d : R → R is called a multiplicative derivation if d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. These maps are not additive. In [11], Goldman and Semrl

gave the complete description of these maps. We have R = C[0, 1], the ring of all continuous

(real or complex valued) functions and de�ne a map d : R → R such as

d(f)(x) =

{
f(x) log |f(x)| , f(x) ̸= 0

0, otherwise

}
.

It is clear that d is multiplicative derivation, but d is not additive. Inspired by the de�nition

multiplicative derivation, the notion of multiplicative generalized derivation was extended by

Daif and Tamman El-Sayiad in [8] as follows:
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F : R → R is called a multiplicative generalized derivation if there exists a derivation

d : R → R such that F (xy) = F (x)y+ xd(y), for all x, y ∈ R. Dhara and Ali gave a slight gen-
eralization of this de�nition taking g is any map (not necessarily an additive map or a derivation)

in [9]. Every generalized derivation is a multiplicative generalized derivation. But the converse

is not ture in general ( see example [9, Example 1.1]). Hence, one may observe that the con-

cept of multiplicative generalized derivations includes the concept of derivations, multiplicative

derivation and the left multipliers. So, it should be interesting to extend some results concerning

these notions to multiplicative generalized derivations. But there are only few papers about this

subject. (see [8], [9], [10] for a partial bibliography).

In [7], Daif and Bell proved that R is semiprime ring, U is a nonzero ideal of R and d is

a derivation of R such that d([x, y]) = ±[x, y], for all x, y ∈ U, then U ⊆ Z. This theorem
considered for generalized derivations by Quadri et al. in [15] and extended by Dhara proving

F ([x, y])± [x, y] ∈ Z, for all x, y ∈ U, when F is a generalized derivation of R in [9].

On the other hand, in [2], Ashraf and Rehman showed that R is prime ring with a nonzero

ideal U of R and d is a derivation of R such that d(xy) ± xy ∈ Z, for all x, y ∈ U, then R is

commutative. Ashraf et al. proved this result for a generalized derivation of R in [1].

In the present paper, we shall extend above results for Lie ideals of semiprime rings with

multiplicative generalized derivation of R. Also, we will investigate these results for Jordan

product.

2 Results

We will make some extensive use of the basic commutator identities:

[x, yz] = y[x, z] + [x, y]z
[xy, z] = [x, z]y + x[y, z]
xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z
(xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].
Moreover, we shall require the following lemmas.

Lemma 2.1. [4, Lemma 4] If U ̸⊆ Z(R) is a Lie ideal of a 2-torsion free prime ring R and

a, b ∈ R such that aUb = {0}, then a = 0 or b = 0.

Lemma 2.2. [4, Lemma 2]Let R be a prime ring with characteristic not two. If U a noncentral

Lie ideal of R , then CR(U) = Z.

Lemma 2.3. [4, Lemma 5]Let R be a prime ring with characteristic not two and U a nonzero

Lie ideal of R. If d is a nonzero derivation of R such that d(U) = 0, then U ⊆ Z.

Lemma 2.4. [3, Theorem 7]Let R be a prime ring with characteristic not two and U a nonzero

Lie ideal of R. If d is a nonzero derivation of R such that [d(u), u] ∈ Z for all u ∈ U, then
U ⊆ Z.

Lemma 2.5. [2, Lemma 2]Let R be a 2-torsion free semiprime ring, U is a Lie ideal of R
such that U ̸⊆ Z(R) and a ∈ U. If aUa = 0, then a2 = 0 and there exists a nonzero ideal

K = R[U,U ]R of R generated by [U,U ] such that [K,R] ⊆ U and Ka = aK = 0.

Corollary 2.6. Let R be a 2-torsion free semiprime ring, U a Lie ideal of R such that U * Z(R)
and a, b ∈ U .

(i) If aUa = 0, then a = 0.

(ii) If aU = 0( or Ua = 0), then a = 0

(iii) If U is square-closed, and aUb = 0, then ab = 0 and ba = 0.

Theorem 2.7. LetR be a 2-torsion free semiprime ring andU a square-closed Lie ideal ofR such

that U ̸⊆ Z(R). Suppose thatR admits a multiplicative generalized derivation F associated with

a nonzero map d such that d(x) ∈ U, for all x ∈ U. If
(i) F ([x, y]) = 0, for all x, y ∈ U, or
(ii) F ([x, y]) = ±[x, y], for all x, y ∈ U, or
(iii) F ([x, y]) = ±(xoy), for all x, y ∈ U,
then d is commuting map on U.
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Proof. (i) By the hypothesis, we have

F ([x, y]) = 0, for all x, y ∈ U.

Replacing yx by y in the above equation and using this equation, we get

[x, y]d(x) = 0, for all x, y ∈ U. (2.1)

Writing d(x)y for y in (2.1) and using (2.1), we obtain that

[x, d(x)]yd(x) = 0, for all x, y ∈ U. (2.2)

Replacing y by yx in (2.2), we �nd that

[x, d (x)]yxd (x) = 0, for all x, y ∈ U. (2.3)

Multiplying (2.2) on the right by x, we have

[x, d (x)]yd (x)x = 0, for all x, y ∈ U. (2.4)

Subtracting (2.4) from (2.3), we arrive at

[x, d (x)]y[x, d (x)] = 0, for all x, y ∈ U.

By Corollary 1, we conclude that [x, d (x)] = 0, for all x ∈ R, and so d is commuting map on U.
(ii) Suppose that

F ([x, y]) = ±[x, y], for all x, y ∈ U. (2.5)

Replacing y by yx in (2.5) and using this equation, we arrive that

[x, y]d(x) = 0, for all x, y ∈ U.

Using the same arguments after (2.1) in the proof of Theorem 1 (i), we get the required result.

(iii) Assume that

F ([x, y]) = ±(xoy), for all x, y ∈ U. (2.6)

Replacing yx by y in (2.6) and using this equation, we get

[x, y]d(x) = 0, for all x, y ∈ U.

This equation is same as (2.1) in the proof of Theorem 1 (i). Hence, using the same arguments

in there, we get the required result.

Corollary 2.8. Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Sup-

pose that R admits a multiplicative generalized derivation F associated with a nonzero deriva-

tion d. If
(i) F ([x, y]) = 0, for all x, y ∈ U, or
(ii) F ([x, y]) = ±[x, y], for all x, y ∈ U, or
(iii) F ([x, y]) = ±(xoy), for all x, y ∈ U, then U ⊆ Z.

Proof. By the same techniques in the proof of Theorem 1, we obtain that

[x, y]d(x) = 0, for all x, y ∈ U.

Replacing y by yz, z ∈ U in the above equation, we have

[x, y]zd(x) = 0, for all x, y, z ∈ U. (2.7)

By Lemma 1, we get either [x, y] = 0 or d(x) = 0, for each x ∈ U. We set

K = {x ∈ U | [x, y] = 0, for all y ∈ U} and L = {x ∈ U | d(x) = 0} . Clearly each ofK and L
is additive subgroup of U . Morever, U is the set-theoretic union of K and L. But a group can

not be the set-theoretic union of two proper subgroups, henceK = U or L = U. In the �rst case,
we have U ⊆ Z by Lemma 2. In the latter case, we have U ⊆ Z by Lemma 3. This completes

the proof.
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Theorem 2.9. LetR be a 2-torsion free semiprime ring andU a square-closed Lie ideal ofR such

that U ̸⊆ Z(R). Suppose thatR admits a multiplicative generalized derivation F associated with

a nonzero map d such that d(x) ∈ U, for all x ∈ U. If
(i) F (xoy) = 0, for all x, y ∈ U, or
(ii) F (xoy) = ±(xoy), for all x, y ∈ U, or
(iii)F (xoy) = ±[x, y], for all x, y ∈ U,
then d is commuting map on U.

Proof. (i) Assume that

F (xoy) = 0, for all x, y ∈ U. (2.8)

Writing yx for y in (2.8) and using (2.8), we have

(xoy)d(x) = 0, for all x, y ∈ U. (2.9)

Taking d(x)y for y in (2.9) and using (2.9), we obtain that

[x, d(x)]yd(x) = 0, for all x, y ∈ U.

Using the same arguments after (2.2) in the proof of Theorem 1 (i), we get the required result.

(ii) We have

F (xoy) = ±(xoy), for all x, y ∈ U.

Replacing y by yx in this equation and using this, we arrive that

(xoy)d(x) = 0, for all x, y ∈ U.

Using the same arguments after (2.9) in the proof of Theorem 2 (i), we conclude the required

result.

(iii) Suppose that

F (xoy) = ±[x, y], for all x, y ∈ U. (2.10)

Replacing yx by y in (2.10) and using this, we get

(xoy)d(x) = 0, for all x, y ∈ U.

This equation is same as (2.9) in the proof of Theorem 2 (i). Hence, using the same arguments

in there, we get the required result.

Corollary 2.10. Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Sup-

pose that R admits a multiplicative generalized derivation F associated with a nonzero deriva-

tion d. If
(i) F (xoy) = 0, for all x, y ∈ U, or
(ii) F (xoy) = ±(xoy), for all x, y ∈ U, or
(iii) F (xoy) = ±[x, y], for all x, y ∈ U, then U ⊆ Z.

Proof. Using the same methods in the proof of Theorem 2, we have

(xoy)d(x) = 0, for all x, y ∈ U.

Taking y by yz, we get
[x, y]zd(x) = 0, for all x, y, z ∈ U.

This equation is same as equation (2.7) in the proof of Corollary 2. Hence, using the same

arguments in there, we get the required result.

Theorem 2.11. Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R
such that U ̸⊆ Z(R). Suppose that R admits a multiplicative generalized derivation F associ-

ated with a nonzero map d such that d(x) ∈ U, for all x ∈ U. If
(i) F ([x, y]) = ±[F (x), y], for all x, y ∈ U, or
(ii) F (xoy) = ±(F (x)oy), for all x, y ∈ U,
then d is commuting map on U.



MULTIPLICATIVE GENERALIZED DERIVATIONS 223

Proof. (i) By our hypothesis, we get

F ([x, y]) = ±[F (x), y], for all x, y ∈ U. (2.11)

Replacing y by yx in (2.11) and using this equation, we arrive that

[x, y]d(x) = ±y[F (x), x], for all x, y ∈ U. (2.12)

Writing d(x)y instead of y in (2.12) and using (2.12), we have

[x, d(x)]yd(x) = 0, for all x, y ∈ U. (2.13)

Using the same arguments after equation (2.2) in the proof of Theorem 1 (i), we get the required

results.

(ii) We get

F (xoy) = ±(F (x)oy), for all x, y ∈ U. (2.14)

Writting yx for y in (2.14) and using (2.14), we obtain that

(xoy)d(x) = ∓y[F (x), x], for all x, y ∈ U. (2.15)

Substituting d(x)y for y in (2.15) and using this equation, we �nd that

[x, d(x)]yd(x) = 0, for all x, y ∈ U.

Using the same arguments after equation (2.2) in the proof of Theorem 1 (i), we complete the

proof.

Corollary 2.12. Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Sup-

pose that R admits a multiplicative generalized derivation F associated with a nonzero deriva-

tion d. If
(i) F ([x, y]) = ±[F (x), y], for all x, y ∈ U, or
(ii) F (xoy) = ±(F (x)oy), for all x, y ∈ U, then U ⊆ Z.

Proof. i) Using the same methods in the proof of Theorem 3 (i), we obtain that

[x, y]d(x) = ±y[F (x), x], for all x, y ∈ U.

Replacing y by yz, z ∈ U in this equation and using this, we obtain

[x, y]zd(x) = 0, for all x, y, z ∈ U.

This equation is same as equation (2.7) in the proof of Corollary 2. Hence, using the same

arguments in there, we get the required result.

ii) By the same methods in the proof of Theorem 3 (ii), we get

(xoy)d(x) = ∓y[F (x), x], for all x, y ∈ U.

Taking y by yz in the last equation and using this equation, we �nd

[x, y]zd(x) = 0, for all x, y, z ∈ U.

This equation is same as equation (2.7) in the proof of Corollary 2. We hade done in there. The

result is obtained.

Theorem 2.13. Let R be a 2-torsion free semiprime ring, U a square-closed Lie ideal of R such

that U ̸⊆ Z(R). Suppose that R admits a multiplicative generalized derivation F associated

with a nonzero map d such that d(x) ∈ U, for all x ∈ U. If F (xy) ± xy ∈ Z, for all x, y ∈ U,
then d is commuting map on U.
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Proof. By the hypothesis, we get

F (xy)± xy ∈ Z, for all x, y ∈ U. (2.16)

Replacing yz by y in (2.16) and using this, we arrive that

(F (xy)± xy)z + xyd(z) ∈ Z, for all x, y, z ∈ U.

Commuting this equation with z and using F (xy)± xy ∈ Z, we obtain that

[xyd(z), z] = 0, for all x, y, z ∈ U. (2.17)

Taking xd(z) for x in this equation and using (2.17), we get

[x, z]d(z)yd(z) = 0, for all x, y, z ∈ U.

Substituting y[x, z] for y, we get

[x, z]d(z)y[x, z]d(z) = 0, for all x, y, z ∈ U.

By Corollary 1, we have

[x, z]d(z) = 0, for all x, y, z ∈ U.

Using the same arguments after (2.1) in the proof of Theorem 1 (i), we get the required result.

Theorem 2.14. Let R be a 2-torsion free semiprime ring, U a square-closed Lie ideal of R such

that U ̸⊆ Z(R). Suppose that R admits a multiplicative generalized derivation F associated

with a nonzero map d such that d(x) ∈ U, for all x ∈ U. If F (xy) ± yx ∈ Z, for all x, y ∈ U,
then d is commuting map on U .

Proof. We consider that

F (xy)− yx ∈ Z, for all x, y ∈ U. (2.18)

Substituting yz for y in the hypothesis, where z ∈ U , we get

F (xyz)− (yz)x = F (xy)z + xyd(z)− yzx = (F (xy)− yx)z + y[x, z] + xyd(z) ∈ Z. (2.19)

Commuting both sides of (2.19) with z and using equation (2.18), we obtain that

[y[x, z], z] + [xyd(z), z] = 0, for all x, y, z ∈ U. (2.20)

Replacing x by xz in (2.20), we get

[y[x, z], z]z + [xzyd(z), z] = 0 (2.21)

Right multiplying (2.20) by z and subtracting it from (2.21), we get

[x[yd(z), z], z] = 0, for all x, y, z ∈ U. (2.22)

Taking x by tx, t ∈ U in the above relation and using (2.22), we have

0 = [tx[yd(z), z], z] = t[x[yd(z), z], z] + [t, z]x[yd(z), z] (2.23)

= [t, z]x[yd(z), z].

Replacing t by yd(z), we have

[yd(z), z]x[yd(z), z] = 0 for all x, y, z ∈ U.

By Corollary 1, we get

[yd(z), z] = 0, for all y, z ∈ U.
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Replacing y with d(z)y, we get

[d(z)yd(z), z] = 0.

That is,

d(z)yd(z)z − zd(z)yd(z) = 0, for all y, z ∈ U. (2.24)

Taking y by yd(z)u, u ∈ U in this equation, we have

d(z)yd(z)ud(z)z − zd(z)yd(z)ud(z) = 0.

Using (2.24), we obtain

d(z)yzd(z)ud(z)− d(z)yd(z)zud(z) = 0.

That is,

d(z)y[d(z), z]ud(z) = 0, for all y, z ∈ U.

This implies that

[d(z), z]y[d(z), z]u[d(z), z] = 0, for all y, z, u ∈ U.

Right multiplying this equation by y[d(z), z], we get

[d(z), z]y[d(z), z]u[d(z), z]y[d(z), z] = 0, for all y, z, u ∈ U.

By Corollary 1, we obtain

[d(z), z]y[d(z), z] = 0, for all y, z ∈ U.

That is, [d(z), z] = 0, for all z ∈ U by Corollary 1. Hence, d is commuting on U. In a similar

manner, we can prove that the same conclusion holds for F (xy) + yx ∈ Z, for all x, y ∈ U.

Corollary 2.15. Let R be a 2-torsion free prime ring, U a square-closed Lie ideal of R. Suppose

that R admits a multiplicative generalized derivation F associated with a nonzero derivation d.
If

i) If F (xy)± xy ∈ Z, for all x, y ∈ U,
ii) If F (xy)± yx ∈ Z, for all x, y ∈ U , then U ⊆ Z.

Proof. i) By the same methods in the proof of Theorem 4, we obtain

[xyd(z), z] = 0, for all x, y, z ∈ U.

Replacing x by xd(z), z ∈ [U,U ] , we get

[x, z]d(z)yd(z) = 0, for all x, y ∈ U, z ∈ [U,U ] .

Thus, we get either [x, z]d(z) = 0 or d(z) = 0, for all x ∈ U by Lemma 1. Now, we assume that

[x, z]d(z) = 0, for all x ∈ U. Replacing x by xy, y ∈ U in this equation and using this, we have

[x, z]yd(z) = 0 for all x, y ∈ U. Hence, we get either [x, z] = 0 or d(z) = 0, for each z ∈ [U,U ]
by Lemma 1. Thus, we conclude that

[x, z] = 0 or d(z) = 0, for all x ∈ U, z ∈ [U,U ].

We set K = {z ∈ [U,U ] | [x, z] = 0, for all x ∈ U} and L = {z ∈ [U,U ] | d(z) = 0}.
Clearly each of K and L is additive subgroup of [U,U ]. Morever, [U,U ] is the set-theoretic

union ofK and L. But a group can not be the set-theoretic union of two proper subgroups, hence
K = [U,U ] or L = [U,U ]. In the former case, using Lemma 2, we have U ⊆ Z. In the latter

case, d([U,U ]) = 0. That is [U,U ] ⊂ Z by Lemma 3, and so again using Lemma 2, we get

U ⊆ Z. This completes the proof.

ii) Using the same techniques in the proof of Theorem 5, we get

[t, z]x[yd(z), z] = 0, for all x, y, z, t ∈ U.
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Taking t by yd(z), z ∈ [U,U ] , we get

[yd(z), z]x[yd(z), z] = 0, for all x, y ∈ U, z ∈ [U,U ] .

Using Lemma 1, we have

[yd(z), z] = 0, for all y ∈ U, z ∈ [U,U ] .

We conclude that

y[d(z), z] + [y, z]d(z) = 0, for all y ∈ U, z ∈ [U,U ] .

Replacing y by xy in the last equation and this equation, we have

[x, z]yd(z) = 0, for all x, y ∈ U, z ∈ [U,U ] .

By Lemma 1, we get either [x, z] = 0 or d(z) = 0, for each z ∈ [U,U ] . We had done this

situation in the last paragraph in the proof of Corollary 5. The proof is completed.

Theorem 2.16. Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R
such that U ̸⊆ Z(R). Suppose that R admits a multiplicative generalized derivation F associ-

ated with a nonzero map d such that d(x) ∈ U, for all x ∈ U. If
(i) F (xy)± [x, y] ∈ Z, for all x, y ∈ U, or
(ii) F (xy)± (xoy) ∈ Z, for all x, y ∈ U,
then d is commuting map on U.

Proof. (i) Assume that

F (xy)± [x, y] ∈ Z, for all x, y ∈ U.

De�ne the map G : R → R,G(r) = F (r) ± r, for all r ∈ R. G is a multiplicative generalized

derivation associated with a nonzero map d of R. By the hypothesis, we have G(xy)± yx ∈ Z,
for all x, y ∈ U. Hence, the conclusion is obtained by Theorem 5. Thus, d is commuting map on

U.
(ii) By the hypothesis, we get

F (xy)± (xoy) ∈ Z, for all x, y ∈ U.

De�ne the map G : R → R,G(r) = F (r) ± r, for all r ∈ R. G is a multiplicative generalized

derivation associated with a nonzero map d of R such that G(xy)± yx ∈ Z, for all x, y ∈ U. By
Theorem 5, we get d is commuting map on U.

Corollary 2.17. Let R be a 2-torsion free prime ring, U a square-closed Lie ideal of R and F be

a multiplicative generalized derivation associated with a nonzero derivation d of R. If

(i) F (xy)± [x, y] ∈ Z, for all x, y ∈ U, or
(ii) F (xy)± (xoy) ∈ Z, for all x, y ∈ U, then U ⊆ Z.

Proof. Using the same methods in the beginning of the proof in Theorem 6, we getG(xy)±yx ∈
Z, for all x, y ∈ U such that G : R → R,G(r) = F (r) ± r, for all r ∈ R. Also, G is a

multiplicative generalized derivation associated with a nonzero map d of R. Hence, we apply the
same techniques

[t, z]x[yd(z), z] = 0, for all x, y, z, t ∈ U.

This equation is the same Corollary 5 (ii). Also, we have proved in there. The proof is completed.
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Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey.
E-mail: eminekoc@cumhuriyet.edu.tr

Received: August 29, 2015.

Accepted: March 22, 2016.


