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Abstract. In this paper, we study algebraic identities which are (i) 2F (2" ") = F(x)0(z)"+
¢(x)D(a")+F (2")0(x)+¢(x)" D(x) (ii) F (") = F(2)(0(z*))"+ 321, (¢(2))"D(x) (0(2))"~*
(iii) F(z"*t) = (0(z*))"F(x) + >, (0(z*))" % (¢(x))'D(z), where F and D are additive
mappings on ring and ring with involution.

1 Introduction

Throughout this paper R denotes an associative ring with identity e and Z(R) denotes the center
of R. An additive mapping = — z* satisfying (z*)* = z and (zy)* = y*z* is called an invo-
lution. A ring equipped with an involution is called *-ring or ring with involution. A ring R is
said to be prime if for any a,b € R, aRb = {0} implies either a« = 0 or b = 0 and and is said
to be semiprime if for any a € R, aRa = 0 implies a = 0. Given an integer n > 1, aring R is
said to be n-torsion free if for any z € R, nx = 0 implies x = 0. An additive mapping D from
R to R is said to be a derivation if D(zy) = D(x)y + 2D(y) for all z,y € R and is said to be
a Jordan derivation if D(z?) = D(z)z + xD(z) for all z € R. We notice that every derivation
is a Jordan derivation but the converse need not be true. Herstein [9] proved a mile stone result
which states that a Jordan derivation on a prime ring R with characteristic different from two is
a derivation. A brief proof can be found in Cusack [6]. Cusack [6] generalized Herstein’s result
and proved that if R is a semi prime ring which is 2-torsion free then every Jordan derivation on
R is a derivation. We have divided this paper in two sections. In Section 1, R is any associative
ring where as in Section 2, R is any associative ring with involution.

Bresar [5] introduced the concept of generalized derivation mapping. An additive map-
ping F' on R is said to be generalized derivation if there exists a derivation D on R such that
F(zy) = F(x)y+zD(y) forall z,y € R. An additive mapping F on R is said to be a generalized
Jordan derivation if there exists a Jordan derivation D on R such that F(2?) = F(x)x + 2D(x)
for all x € R. Vukman [11] proved that if R is a 2-torsion free semi prime ring, then every
generalized Jordan derivation on R is a generalized derivation.

An additive mapping D : R — R s called (6, ¢)-derivation (resp. Jordan (6, ¢)-derivation) if
D(xy) = D(z)0(y) + ¢(x)D(y) (resp. D(x?) = D(z)0(z) + ¢(z)D(x)) holds for all z,y € R.
An additive mapping F' : R — R is said to be generalized (0, ¢)-derivation ( resp. general-
ized Jordan (6, ¢)-derivation) if there exists an (6, ¢)-derivation( resp. Jordan (6, ¢)-deviation)
D : R — Rsuch that F(zy) = F(2)0(y) + ¢(x)D(y) (resp. F(2?) = F(2)0(x) + ¢(x)D(z))
forall z,y € R.

Recently, Dhara and Sharma [7] proved an additive map satisfying an identity to be deriva-
tion. In 2013, Ashraf et al. [3] worked on additive mappings satisfying some algebraic identities.
In Section 1, we will prove an additive mapping satisfying an algebraic identity to be generalized
Jordan (6, ¢)-derivation.

In Section 2, we will study the results in rings with involution. Bresar and Vukman [4]
studied the notions of a *-derivation and a Jordan*-derivation. Let R be a *- ring. An addi-
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tive mapping D : R — R is said to be a *-derivation ( resp. Jordan *-derivation) if D(zy) =
D(x)y* + xD(y) ( resp. D(2*) = D(z)z* + xD(z)) holds for all x,y € R. Further, let
6, ¢ be the automorphisms on R. An additive mapping D : R — R is said to be (0, ¢)*-
derivation if D(zy) = D(x)8(y*) + ¢(z)D(y) and D is said to be a left (6, ¢)*-derivation if
D(zy) = 0(y*)D(x) + ¢(z)D(y) holds for all z,y € R.

An additive mapping F' : R — R is said to be a generalized *-derivation associated with
*-derivation D if F(xy) = F(x)y* + xD(y) holds for all z,y € R. Further, let 6, ¢ be automor-
phisms of R. An additive mapping ' : R — R is said to be a generalized (6, ¢)*-derivation (
resp. generalized Jordan (6, ¢)*-derivation ) with associated (6, ¢)*-derivation D ( resp. Jordan
(6, ¢)*-derivation ) if F(zy) = F(2)0(y*)+¢(x)D(y) (resp. F(z*) = F(2)0(x*) + ¢(x)D(x))
and F is said to be a left generalized (6, ¢)*-derivation ( resp. Jordan left generalized (0, $)*-
derivation ) with associated left (6, ¢)*-derivation D ( resp. Jordan left (6, ¢)*-derivation) if
F(zy) = 0(y*)F(x)+¢(z)D(y) (resp. F(2?) = §(x*)F(x)+¢(2)D(z)) holds for all 2,y € R.

Vukman [12] proved the following result: Let R be a 6-torsion free semiprime *-ring. Let D :
R — R be an additive mapping satisfying the relation D(zyx) = D(z)y*z*+xD(y)z*+xyD(x)
for all x,y € R. Then D is a Jordan *-derivation. Ali [1] extended this result to Jordan triple
(6, ¢)*-derivation.

Very recently, N.Rehman et al. [10] considered additive mappings satisfying some algebraic
identities on ring with involution. In Section 2, we will define some algebraic identities on ring
with involution.

2 Algebraic Identity on Ring

Dhara and Sharma [8] proved an additive map satisfying an identity to be generalized Jordan
derivation. Motivated by [8], we define an identity on a ring R and prove the following:

Theorem 2.1. Let n > 1 be any fixed integer, R be an (n+ 1)!-torsion free any ring with identity
element and 0, ¢ be two automorphisms on R. If F : R — Rand D : R — R are additive
mappings such that 2F (z"*!) = F(x)(0(x))" + ¢(x)D(z") + F(2™)0(x) + (¢(x))"D(z) for
all z € R, then D is a Jordan (0, ¢)-derivation and F is a generalized Jordan (0, ¢)-derivation.

Proof. We have the identity
2F (™) = F(2)(0(2))" + ¢(2) D(«") + F(2")0() + (¢(x))" D(z) (2.1)

holds for all z € R . Replacing = by e in (2.1), where e is an identity of R, we get 2F (¢) =
2F(e) + 2D(e) which implies 2D(e) = 0. Since R is (n + 1)!-torsion free, we get D(e) = 0.
Now replacing x by = + le in (5), where [ is any positive integer, we get

2F {(z+1e)"™'} = F(z +1e)(0(x) + le)™ + (¢(x) + le)D {(z + le)"}

(2.2)
+ F{(x+1e)"} (6(x) + le) + (¢(z) + le)"D(z + le)

Expanding the powers of (z + le) and using D(e) = 0, we get

1 1
2F{.’I,‘n+1++<n+ )ln—lx2+(n:; )ln$+ln+le}

n—1

n —

= F(z +le) {(O(x))” Foot (n " 2)1”2(9(x))2 + ( " l)znle(x) + l"e}

+ (¢(z) + le)D {x” ot (n " 2) "222 4 <n " l)l"_lx n l”e} (2.3)

—i—F{x” 4ot ( " 2)1”2x2+ < " 1>l”1x+l"e} (0(x) + le)
n—

n —

n—1

sl (1) (" )rew + e b
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Using (2.1), the above relation can be written as

Lf1(0(2), ¢(x), €) + Pf2(0(x), d(x), ) + ...0" fa(0(x), 6(2),€) = 0 (2.4)

for all x € R. Now, replacing [ by 1,2, ...,n in (2.4) and considering the resulting system of n
homogenous equations, we get that the resulting matrix of the system is a Van der Monde matrix

1 1 ... 1
2 22 .. 2n
n n% ... n"

Since the determinent of the matrix is equal to a product of positive integers, each of which is
less than n and R is (n + 1)! torsion free. It follows that the system has only a zero solution.
Thus f;(0(x), ¢(z),e) =0forallx € Randi = 1,2,...,n. Now, f,(0(z), #(z),e) = 0 implies
that

(n+ 1)F(xz) =(n+ 1)F(e)f(z) + (n+ 1)D(x) (2.5)

Again since R is (n + 1)!-torsion free, we get F((z) = F(e)0(z) + D(z) for all z € R. Now,
fn1(0(z), ¢(), €) = O gives

2" D) pa2) = np@)o@) + B 0()? + o)D) + "D i)
+ nF(2)0(z) + wF(xz) + ng(x)D(x)

' (2.6)

Multiplying both sides by 2 in above equation, we get
2n(n + 1)F(z?) = 4nF(2)0(x) + 4ng(x) D(z) + n(n — 1)F(2?) en

+n(n—1)F(e)(8(z))* 4+ n(n — 1)D(z?)

Using (n+1)! torsion freeness of R and F'(x) = F(e)f(x)+ D(x), we get D(2*) = D(z)0(z)+
¢(z)D(z),Vz € R, hence D is a Jordan (6, ¢)-derivation in R. Again using F'(z) = F(e)0(z)+

D(x), we get F(2?) = F(e)(0(x))? + D(x)0(x) + ¢(x)D(z) = F(2)0(x) + ¢(z)D(z),Vz € R
which implies that F is a generalized Jordan (6, ¢)-derivation in R. Thus the proof of theorem
is completed. o

3 Algebraic Identities on Ring with Involution

In 2014, N.Rehman et al. [10] considered the additive mappings ' : R - Rand D : R — R
satisfying the condition F(z"*!) = (F(z))(z*)" + Y i, ' D(z)(z*)"~ for all z € R and
proved that if R is an (n + 1)!-torsion free *-ring with identity, then D is a Jordan *-derivation
and F' is a generalized Jordan *-derivation on R. We will extend the results of A. Ansari et al.
[2] to ring with involution as follows:

Theorem 3.1. Let n > 1 be any fixed integer, R be an (n+ 1)!-torsion free any ring with identity
element and 0, ¢ be two automorphisms on R. If F : R — Rand D : R — R are additive
mappings such that F(z"™) = F(2)(0(z*))" + Y1, (¢(2)) D(x)(0(z*))"~¢ for all z € R,
then D is a Jordan (0, )*-derivation and F is a generalized Jordan (0, ¢)*-derivation.

Proof. We have the identity

n

F(z") = F(x)(0(")" + ) _(6(x))' D(x)(0(x*))" (3.1)

i=1
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for all x € R. We replace z by e in (3.1). Clearly e* = e so that f(e*) = ¢(e) = e. Hence, by
n-torsion freeness of R, nD(e) = 0 implies D(e) = 0. Again replacing = by x + le in (3.1),
where [ is any positive integer, we obtain

F((x + 1)) = F(z + 1) (0((x +1e)"))"

+ 3 (60 + 1)) D) B(( + 1))
(3.2)
() +LF () (0(a°) + 1e)"

+

(6(a) +16)' D(@)(6(a") + 1e)" "

i=1

for all z € R. By expanding the powers of (z + le), we get

1 1
F(m"+1 + (n—lf— )x”l + <n-2i- )x"llz + ..+ l”“e)

— (P(z) +1F()) ((9(:5*))" + (”) O(z*)1 + (g) @)L+ .+ z%)

#3 ((0@y + (1)@t (5) ey + v i) D) (0 o

+ (” . Z) (O(x*)" =1+ (”;Z) (O(x")" 2P 4+ z"ie)

for all z € R. (3.3) can be rewritten as

+ (F(z) +1F(e)) (T) (O(z")) '+ (”) (O() 22 + ...+ zne)
+ 3 (o) ) (0 (Yo e (7 ) o

Fee l“ﬁ) + Xn: ((i) (¢(x)) M+ (;)(¢(x))i212 ot zie)D(az) ((a(x*))"i

(3.4)
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for all z € R. Using (3.1), we have

1
F((n;r l)x"l + (ngr )m"_1l2 + .+ l"“e)

= IF(e)(0(a™))" + (F() + lF(e))((TIL) (O(z*)" 11 + (Z) O(x*)" 22 + .. + l"e>

+ (¢(x))'D(x) <<" 1_ ’> (B(z* )"+ (" 2_ ’) Oz )22 4 L+ znie>

i=1

+ Z ((J (6(x))™ 1 + (2) (6(2)) 722 + ... + zz‘e)D(x) (<a<x*))n_i

(3.5)

for all z € R, where we denote (;') = 0 for & < 0 and for & > n. The above relation can be
written as

LA1(0(z%), ¢(x), €) + P f2(0(z*), p(z), €) + .01" fu(B(x"), ¢(x),e) = 0 (3.6)

forall x € R. We proceed in similar way as in the proof of Theorem (2.1), we get f;(0(z*), ¢(x),e) =
0,:=1,2,...,n. Now, f,(0(z*), #(x),e) = 0 implies that

(”: 1>F(x) = F(z) + (nﬁ I)F(e)G(x*) +nD(x) 3.7)
(3.7) implies that
(n+ 1)F(z) = F(z) + nF(e)0(z*) + nD(x) (3.8)

Since R is n-torsion free, we obtain
F(z) = F(e)0(z*) + D(x) 3.9
Again f,,_1(0(z*), ¢(x),e) = 0 implies that

n—1 n—1 n —

(”* I)F(xz) :( g >F(x)9(33*)+( ”2>F(e)(9(x*))2+ n(n;nﬂ?(@l)(@

+ 20D payoar)

for all z € R. (3.10) can be rewritten as

n(n+l)F(x2) =2nF(z)0(xz*)+n(n—1)F(e) (9(x*))2+n(n+1)¢($)D(x)+n(n—I)D(m)(%(fig
for all z € R. Since R is n-torsion free, we get ‘

(n+ 1)F(2?) = 2F(2)0(z*) + (n — 1) F(e)(0(z"))> + (n + 1)¢(2)D(z) + (n — l)D(m)(H?)(i;))
Using (3.9) in (3.12), we find
(n+ 1)F(?) = (n+1)F(e)(8(2*))* + (n+ 1)¢(2)D(z) + (n+ 1)D(z)0(2*)  (3.13)
forall z € R. Since R is (n + 1)-torsion free, so we have
F(2®) = F(e)(6(2"))* + ¢(z) D(x) + D(x)6(x") (3.14)
Replacing by 22 in (3.9), we obtain

F(z*) = F(e)(0(z*))* + D(z?) (3.15)



ALGEBRAIC IDENTITIES IN RINGS 243

Comparing (3.14) and (3.15), we find that
D(z*) = D(z)0(x*) + ¢(z) D(z) (3.16)
for all z € R. Using (3.16) in (3.15), we get

F(a?) = F(e)(0(z"))* + D(x)0(2") + ¢(x) D(x) = {F(e)0(z") + D(x)}(a") + ¢(z)D(x)

(3.17)
for all x € R. Again, using (3.9) in (3.17), we conclude F(2?) = F(z)0(z*) + ¢(z)D(z).
Thereby the proof of the theorem is completed. O

Corollary 3.2 ([10], Theorem 2.1). Let n > 1 be any fixed integer and R be an (n + 1)!-torsion
free any ring with identity element. If ' : R — R and D : R — R are additive mappings
such that F(z"™) = (F(z))(z*)" + >, 2'D(z)(x*)"~" for all * € R, then D is a Jordan
*-derivation and F is a generalized Jordan *-derivation.

Proof. Take § = ¢ = I, where [ is the identity map on R. O

Theorem 3.3. Let n > 1 be any fixed integer, R be an (n+ 1)!-torsion free any ring with identity
element and 6, ¢ be two automorphisms on R. If F : R — Rand D : R — R are additive

mappings such that F(z"*1) = (0(z*))"F(z) + i, (0(z*))" " (¢(x)) D (x) for all z € R,
then D is a Jordan left (0, ¢)*-derivation and F is a generalized Jordan left (0, )*-derivation.

Proof. We have the identity
F(a™h) = (™))" F(2) + Y_(6(2"))" " (¢(2))'D(x) (3.18)

for all x € R. We replace z by e in (3.1). Clearly e* = e so that #(e*) = ¢(e) = e. Hence, by
n-torsion freeness of R, nD(e) = 0 implies D(e) = 0. Again replacing x by (x + le) in (3.18),
where [ is any positive integer, we obtain

F((z41e)"™) = (0((x +1e)))"F(z + le)

+ z”: (x+1e)*)""(p(z + le)) ' D(x)
! (3.19)
(Q(x*) +le)"(F(z) + 1F(e))

+ Z(@(m*) +1e)" " (p(x) + le)'D(x)
i=1

for all x € R. By expanding the powers of = + le, we get

1 1
F(ac”+1 + (nJlr )x”l + (ngr )x"_1l2 + ...+ l”“e)

- ((e(z*))” + <T) (O(=")" 1+ (Z) (O(z*))" 212 + ... +zne> (F(z) +1F(e))
+ i ((0(:6*))“’ + (n N z) (0(z*)—-11 + <n N z) (B(a)y—i-2 (3.20)

7

b +z"—ie) ((qb(x))i + (1)(¢(x))i—1z + (;) (6(@))i~22 + .+ zie)p(x)
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for all z € R. (3.20) can be rewritten as

F(z"h) + F((”T 1)m"l - (n; 1):5"_1l2 + ..+ l"“e)
= (0(27))" (F(x) + 1F(e))

+ ((T) (O(z"))" 11+ (Z) (O(z*)" 721 + ... +l”e) (F(z) +1F(e))

n

#3 (0+ ("] et (7 ey

i=1

(3.21)
ot z"—ie) (6(@))D(a) + 3 ((e(x*))"—i + (” . ’) (0(z*))"~11

i=1
("5 oy (] ey (5) @y
+ ..+ lie>D(x)

for all z € R. Using (3.18), we have

F((”Jlr l)x”l + ("er 1)3:"_112 T+ zn+le>

= (0(z*))"LF () + ((T) (O(z*))" 11 + (g) (O(c*)" 22 + .. + z%) (F(z) +1F(e))

3 (o= ("] eyt (7 ey

i=1

N Xn; ((” N 1) (6" + (” N Z) (622 + .+ l“’e) (6(x))' D ()
+

SEE zn—ie> ((i) ()" + (;) (p(2)) 217 + ... + lie> D(x)
(3.22)

for all z € R, where we denote (;) = 0 for £ < 0 and for & > n. The above relation can be
written as

L1(0(2%), ¢(x),€) + Po(0(a"), d(x), €) + ..1" fu(0(27), 6(x),€) = O (3.23)

for all x € R. We proceed in the similar way as in the proof of Theorem (2.1), we get
fi(0(z*),¢(x),e) =0, =1,2,...,n. Now, f,(0(z*), ¢(x),e) = 0 implies that

(” - 1>F(x) — Pla) + (n " 1) 0(x*)F(c) + nD(z) (3.24)
(3.24) implies that
(n+1)F(z) = F(z) +nb(z*)F(e) + nD(x) (3.25)
Since R is n-torsion free, we obtain
F(z) =6(z*)F(e) + D(x) (3.26)
Again f,,_1(0(z*), ¢(x),e) = 0 implies that
n+1 ) n . n a2 n(n+1)
F(a®) = 0(z*)F(z) + (6(z7))"F(e) + ¢(z)D(x)
(n—l) n—l) <n—2> 2 (3.27)
+ M= o D)

2
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for all z € R. (3.27) can be rewritten as
n(n+1)F(2?) = 2n0(z*)F(z)+n(n—1)(0(z*))*F(e)+n(n+1)¢(z) D(z)+n(n—1)0(z*)D(z)
for all 2 € R. Since R is n-torsion free, we get o2
(n+ 1)F(2?) = 20(z*)F(z) + (n — 1)(0(z*))>F(e) + (n + 1)¢(x)D(z) + (n — 1)0(z*)D(x)
Using (3.26), (3.29) becomes ¢
(n+ 1)F(2?) = (n+ 1)(0(z*))*F(e) + (n + 1)p(2)D(x) + (n + 1)0(z*)D(x)  (3.30)
for all z € R. Since R is (n + 1)-torsion free, so we have
F(2®) = (6(z*))*F(e) + ¢(x)D(x) + 6(z*) D(x) (331
Replacing z by 22 in (3.26), we obtain
F(2*) = (6(z*))*F(e) + D(2?) (3.32)
Comparing (3.31) and (3.32), we find that
D(z*) = 0(z*)D(x) + ¢(z) D(x) (3.33)
for all z € R. Using (3.33) in (3.32), we get

F(a?) = (0(z")) F(e) + 0(a*) D(x) + ¢() D(x) = 0(z*){0(z") F(e) + D(x)} + ¢(2) D(x)

(3.34)
for all z € R. Again, using (3.26) in (3.34), we conclude F(2?) = 0(x*)F(x) + ¢(z)D(z).
Thereby the proof of the theorem is completed. O

Corollary 3.4. Let n > 1 be any fixed integer, R be an (n+ 1)!-torsion free any ring with identity
element and ¢ be an automorphismon R. If F : R — Rand D : R — R are additive mappings
such that F(z"*Y) = (a*)"F(x) + > i, (z*)" " (¢(2)) ' D(x) for all x € R, then D is a Jordan
skew left *-derivation and F is a generalized Jordan skew left *-derivation.

Proof. Take § = I, where [ is the identity map on R. O
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