SOME ALGEBRAIC IDENTITIES IN RINGS AND RINGS WITH INVOLUTION

Chirag Garg and R. K. Sharma
Communicated by Ayman Badawi

MSC 2010 Classifications: $16 W 25,16$ N60, $16 U 80$.
Keywords and phrases: Generalized Jordan (θ, ϕ)-derivation, Generalized Jordan left $(\theta, \phi)^{*}$-derivation, Generalized Jordan $(\theta, \phi)^{*}$-derivation.

Abstract. In this paper, we study algebraic identities which are (i) $2 F\left(x^{n+1}\right)=F(x) \theta(x)^{n}+$ $\phi(x) D\left(x^{n}\right)+F\left(x^{n}\right) \theta(x)+\phi(x)^{n} D(x)(i i) F\left(x^{n+1}\right)=F(x)\left(\theta\left(x^{*}\right)\right)^{n}+\sum_{i=1}^{n}(\phi(x))^{i} D(x)\left(\theta\left(x^{*}\right)\right)^{n-i}$ (iii) $F\left(x^{n+1}\right)=\left(\theta\left(x^{*}\right)\right)^{n} F(x)+\sum_{i=1}^{n}\left(\theta\left(x^{*}\right)\right)^{n-i}(\phi(x))^{i} D(x)$, where F and D are additive mappings on ring and ring with involution.

1 Introduction

Throughout this paper R denotes an associative ring with identity e and $Z(R)$ denotes the center of R. An additive mapping $x \mapsto x^{*}$ satisfying $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ is called an involution. A ring equipped with an involution is called ${ }^{*}$-ring or ring with involution. A ring R is said to be prime if for any $a, b \in R, a R b=\{0\}$ implies either $a=0$ or $b=0$ and and is said to be semiprime if for any $a \in R, a R a=0$ implies $a=0$. Given an integer $n>1$, a ring R is said to be n-torsion free if for any $x \in R, n x=0$ implies $x=0$. An additive mapping D from R to R is said to be a derivation if $D(x y)=D(x) y+x D(y)$ for all $x, y \in R$ and is said to be a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ for all $x \in R$. We notice that every derivation is a Jordan derivation but the converse need not be true. Herstein [9] proved a mile stone result which states that a Jordan derivation on a prime ring R with characteristic different from two is a derivation. A brief proof can be found in Cusack [6]. Cusack [6] generalized Herstein's result and proved that if R is a semi prime ring which is 2-torsion free then every Jordan derivation on R is a derivation. We have divided this paper in two sections. In Section $1, R$ is any associative ring where as in Section $2, R$ is any associative ring with involution.

Brešar [5] introduced the concept of generalized derivation mapping. An additive mapping F on R is said to be generalized derivation if there exists a derivation D on R such that $F(x y)=F(x) y+x D(y)$ for all $x, y \in R$. An additive mapping F on R is said to be a generalized Jordan derivation if there exists a Jordan derivation D on R such that $F\left(x^{2}\right)=F(x) x+x D(x)$ for all $x \in R$. Vukman [11] proved that if R is a 2-torsion free semi prime ring, then every generalized Jordan derivation on R is a generalized derivation.

An additive mapping $D: R \rightarrow R$ is called (θ, ϕ)-derivation (resp. Jordan (θ, ϕ)-derivation) if $D(x y)=D(x) \theta(y)+\phi(x) D(y)\left(\right.$ resp. $\left.D\left(x^{2}\right)=D(x) \theta(x)+\phi(x) D(x)\right)$ holds for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is said to be generalized (θ, ϕ)-derivation (resp. generalized Jordan (θ, ϕ)-derivation) if there exists an (θ, ϕ)-derivation (resp. Jordan (θ, ϕ)-deviation) $D: R \rightarrow R$ such that $F(x y)=F(x) \theta(y)+\phi(x) D(y)\left(\right.$ resp. $\left.F\left(x^{2}\right)=F(x) \theta(x)+\phi(x) D(x)\right)$ for all $x, y \in R$.

Recently, Dhara and Sharma [7] proved an additive map satisfying an identity to be derivation. In 2013, Ashraf et al. [3] worked on additive mappings satisfying some algebraic identities. In Section 1, we will prove an additive mapping satisfying an algebraic identity to be generalized Jordan (θ, ϕ)-derivation.

In Section 2, we will study the results in rings with involution. Bresar and Vukman [4] studied the notions of a *-derivation and a Jordan*-derivation. Let R be a^{*} - ring. An addi-
tive mapping $D: R \rightarrow R$ is said to be a *-derivation (resp. Jordan ${ }^{*}$-derivation) if $D(x y)=$ $D(x) y^{*}+x D(y)$ (resp. $\left.D\left(x^{2}\right)=D(x) x^{*}+x D(x)\right)$ holds for all $x, y \in R$. Further, let θ, ϕ be the automorphisms on R. An additive mapping $D: R \rightarrow R$ is said to be $(\theta, \phi)^{*}$ derivation if $D(x y)=D(x) \theta\left(y^{*}\right)+\phi(x) D(y)$ and D is said to be a left $(\theta, \phi)^{*}$-derivation if $D(x y)=\theta\left(y^{*}\right) D(x)+\phi(x) D(y)$ holds for all $x, y \in R$.

An additive mapping $F: R \rightarrow R$ is said to be a generalized ${ }^{*}$-derivation associated with ${ }^{*}$-derivation D if $F(x y)=F(x) y^{*}+x D(y)$ holds for all $x, y \in R$. Further, let θ, ϕ be automorphisms of R. An additive mapping $F: R \rightarrow R$ is said to be a generalized $(\theta, \phi)^{*}$-derivation (resp. generalized Jordan $(\theta, \phi)^{*}$-derivation) with associated $(\theta, \phi)^{*}$-derivation D (resp. Jordan $(\theta, \phi)^{*}$-derivation) if $F(x y)=F(x) \theta\left(y^{*}\right)+\phi(x) D(y)\left(\right.$ resp. $\left.F\left(x^{2}\right)=F(x) \theta\left(x^{*}\right)+\phi(x) D(x)\right)$ and F is said to be a left generalized $(\theta, \phi)^{*}$-derivation (resp. Jordan left generalized $(\theta, \phi)^{*}$ derivation) with associated left $(\theta, \phi)^{*}$-derivation D (resp. Jordan left $(\theta, \phi)^{*}$-derivation) if $F(x y)=\theta\left(y^{*}\right) F(x)+\phi(x) D(y)\left(\right.$ resp. $\left.F\left(x^{2}\right)=\theta\left(x^{*}\right) F(x)+\phi(x) D(x)\right)$ holds for all $x, y \in R$.

Vukman [12] proved the following result: Let R be a 6-torsion free semiprime ${ }^{*}$-ring. Let D : $R \rightarrow R$ be an additive mapping satisfying the relation $D(x y x)=D(x) y^{*} x^{*}+x D(y) x^{*}+x y D(x)$ for all $x, y \in R$. Then D is a Jordan ${ }^{*}$-derivation. Ali [1] extended this result to Jordan triple $(\theta, \phi)^{*}$-derivation.

Very recently, N.Rehman et al. [10] considered additive mappings satisfying some algebraic identities on ring with involution. In Section 2, we will define some algebraic identities on ring with involution.

2 Algebraic Identity on Ring

Dhara and Sharma [8] proved an additive map satisfying an identity to be generalized Jordan derivation. Motivated by [8], we define an identity on a ring R and prove the following:
Theorem 2.1. Let $n \geq 1$ be any fixed integer, R be an $(n+1)$!-torsion free any ring with identity element and θ, ϕ be two automorphisms on R. If $F: R \rightarrow R$ and $D: R \rightarrow R$ are additive mappings such that $2 F\left(x^{n+1}\right)=F(x)(\theta(x))^{n}+\phi(x) D\left(x^{n}\right)+F\left(x^{n}\right) \theta(x)+(\phi(x))^{n} D(x)$ for all $x \in R$, then D is a Jordan (θ, ϕ)-derivation and F is a generalized Jordan (θ, ϕ)-derivation.

Proof. We have the identity

$$
\begin{equation*}
2 F\left(x^{n+1}\right)=F(x)(\theta(x))^{n}+\phi(x) D\left(x^{n}\right)+F\left(x^{n}\right) \theta(x)+(\phi(x))^{n} D(x) \tag{2.1}
\end{equation*}
$$

holds for all $x \in R$. Replacing x by e in (2.1), where e is an identity of R, we get $2 F(e)=$ $2 F(e)+2 D(e)$ which implies $2 D(e)=0$. Since R is $(n+1)$!-torsion free, we get $D(e)=0$. Now replacing x by $x+l e$ in (5), where l is any positive integer, we get

$$
\begin{align*}
2 F\left\{(x+l e)^{n+1}\right\} & =F(x+l e)(\theta(x)+l e)^{n}+(\phi(x)+l e) D\left\{(x+l e)^{n}\right\} \tag{2.2}\\
& +F\left\{(x+l e)^{n}\right\}(\theta(x)+l e)+(\phi(x)+l e)^{n} D(x+l e)
\end{align*}
$$

Expanding the powers of $(x+l e)$ and using $D(e)=0$, we get

$$
\begin{align*}
2 F & \left\{x^{n+1}+\cdots+\binom{n+1}{n-1} l^{n-1} x^{2}+\binom{n+1}{n} l^{n} x+l^{n+1} e\right\} \\
& =F(x+l e)\left\{(\theta(x))^{n}+\cdots+\binom{n}{n-2} l^{n-2}(\theta(x))^{2}+\binom{n}{n-1} l^{n-1} \theta(x)+l^{n} e\right\} \\
& +(\phi(x)+l e) D\left\{x^{n}+\cdots+\binom{n}{n-2} l^{n-2} x^{2}+\binom{n}{n-1} l^{n-1} x+l^{n} e\right\} \tag{2.3}\\
& +F\left\{x^{n}+\cdots+\binom{n}{n-2} l^{n-2} x^{2}+\binom{n}{n-1} l^{n-1} x+l^{n} e\right\}(\theta(x)+l e) \\
& +\left\{(\phi(x))^{n}+\cdots+\binom{n}{n-2} l^{n-2}(\phi(x))^{2}+\binom{n}{n-1} l^{n-1} \phi(x)+l^{n} e\right\} D(x)
\end{align*}
$$

Using (2.1), the above relation can be written as

$$
\begin{equation*}
l f_{1}(\theta(x), \phi(x), e)+l^{2} f_{2}(\theta(x), \phi(x), e)+\ldots l^{n} f_{n}(\theta(x), \phi(x), e)=0 \tag{2.4}
\end{equation*}
$$

for all $x \in R$. Now, replacing l by $1,2, \ldots, n$ in (2.4) and considering the resulting system of n homogenous equations, we get that the resulting matrix of the system is a Van der Monde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 & 2^{2} & \ldots & 2^{n} \\
\vdots & \vdots & \ddots & \vdots \\
n & n^{2} & \ldots & n^{n}
\end{array}\right]
$$

Since the determinent of the matrix is equal to a product of positive integers, each of which is less than n and R is $(n+1)$! torsion free. It follows that the system has only a zero solution. Thus $f_{i}(\theta(x), \phi(x), e)=0$ for all $x \in R$ and $i=1,2, \ldots, n$. Now, $f_{n}(\theta(x), \phi(x), e)=0$ implies that

$$
\begin{equation*}
(n+1) F(x)=(n+1) F(e) \theta(x)+(n+1) D(x) \tag{2.5}
\end{equation*}
$$

Again since R is $(n+1)$!-torsion free, we get $F(x)=F(e) \theta(x)+D(x)$ for all $x \in R$. Now, $f_{n-1}(\theta(x), \phi(x), e)=0$ gives

$$
\begin{align*}
2 \frac{n(n+1)}{2!} F\left(x^{2}\right) & =n F(x) \theta(x)+\frac{n(n-1)}{2!} F(e)(\theta(x))^{2}+n \phi(x) D(x)+\frac{n(n-1)}{2!} D\left(x^{2}\right) \\
& +n F(x) \theta(x)+\frac{n(n-1)}{2!} F\left(x^{2}\right)+n \phi(x) D(x) \tag{2.6}
\end{align*}
$$

Multiplying both sides by 2 in above equation, we get

$$
\begin{align*}
2 n(n+1) F\left(x^{2}\right) & =4 n F(x) \theta(x)+4 n \phi(x) D(x)+n(n-1) F\left(x^{2}\right) \\
& +n(n-1) F(e)(\theta(x))^{2}+n(n-1) D\left(x^{2}\right) \tag{2.7}
\end{align*}
$$

Using $(n+1)$! torsion freeness of R and $F(x)=F(e) \theta(x)+D(x)$, we get $D\left(x^{2}\right)=D(x) \theta(x)+$ $\phi(x) D(x), \forall x \in R$, hence D is a Jordan (θ, ϕ)-derivation in R. Again using $F(x)=F(e) \theta(x)+$ $D(x)$, we get $F\left(x^{2}\right)=F(e)(\theta(x))^{2}+D(x) \theta(x)+\phi(x) D(x)=F(x) \theta(x)+\phi(x) D(x), \forall x \in R$ which implies that F is a generalized Jordan (θ, ϕ)-derivation in R. Thus the proof of theorem is completed.

3 Algebraic Identities on Ring with Involution

In 2014, N.Rehman et al. [10] considered the additive mappings $F: R \rightarrow R$ and $D: R \rightarrow R$ satisfying the condition $F\left(x^{n+1}\right)=(F(x))\left(x^{*}\right)^{n}+\sum_{i=1}^{n} x^{i} D(x)\left(x^{*}\right)^{n-i}$ for all $x \in R$ and proved that if R is an $(n+1)$!-torsion free *-ring with identity, then D is a Jordan ${ }^{*}$-derivation and F is a generalized Jordan ${ }^{*}$-derivation on R. We will extend the results of A. Ansari et al. [2] to ring with involution as follows:

Theorem 3.1. Let $n \geq 1$ be any fixed integer, R be an $(n+1)$!-torsion free any ring with identity element and θ, ϕ be two automorphisms on R. If $F: R \rightarrow R$ and $D: R \rightarrow R$ are additive mappings such that $F\left(x^{n+1}\right)=F(x)\left(\theta\left(x^{*}\right)\right)^{n}+\sum_{i=1}^{n}(\phi(x))^{i} D(x)\left(\theta\left(x^{*}\right)\right)^{n-i}$ for all $x \in R$, then D is a Jordan $(\theta, \phi)^{*}$-derivation and F is a generalized Jordan $(\theta, \phi)^{*}$-derivation.

Proof. We have the identity

$$
\begin{equation*}
F\left(x^{n+1}\right)=F(x)\left(\theta\left(x^{*}\right)\right)^{n}+\sum_{i=1}^{n}(\phi(x))^{i} D(x)\left(\theta\left(x^{*}\right)\right)^{n-i} \tag{3.1}
\end{equation*}
$$

for all $x \in R$. We replace x by e in (3.1). Clearly $e^{*}=e$ so that $\theta\left(e^{*}\right)=\phi(e)=e$. Hence, by n-torsion freeness of $R, n D(e)=0$ implies $D(e)=0$. Again replacing x by $x+l e$ in (3.1), where l is any positive integer, we obtain

$$
\begin{align*}
F\left((x+l e)^{n+1}\right) & =F(x+l e)\left(\theta\left((x+l e)^{*}\right)\right)^{n} \\
& +\sum_{i=1}^{n}(\phi(x+l e))^{i} D(x)\left(\theta\left((x+l e)^{*}\right)\right)^{n-i} \\
& =(F(x)+l F(e))\left(\theta\left(x^{*}\right)+l e\right)^{n} \tag{3.2}\\
& +\sum_{i=1}^{n}(\phi(x)+l e)^{i} D(x)\left(\theta\left(x^{*}\right)+l e\right)^{n-i}
\end{align*}
$$

for all $x \in R$. By expanding the powers of $(x+l e)$, we get

$$
\begin{align*}
& F\left(x^{n+1}+\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& \quad=(F(x)+l F(e))\left(\left(\theta\left(x^{*}\right)\right)^{n}+\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right) \\
& \quad+\sum_{i=1}^{n}\left((\phi(x))^{i}+\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}+\ldots+l^{i} e\right) D(x)\left(\left(\theta\left(x^{*}\right)\right)^{n-i}\right. \tag{3.3}\\
& \left.\quad+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right)
\end{align*}
$$

for all $x \in R$. (3.3) can be rewritten as

$$
\begin{align*}
F & \left(x^{n+1}\right)+F\left(\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& =(F(x)+l F(e))\left(\theta\left(x^{*}\right)\right)^{n} \\
& +(F(x)+l F(e))\left(\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right) \\
& +\sum_{i=1}^{n}(\phi(x))^{i} D(x)\left(\left(\theta\left(x^{*}\right)\right)^{n-i}+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}\right. \\
& \left.+\ldots+l^{n-i} e\right)+\sum_{i=1}^{n}\left(\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}+\ldots+l^{i} e\right) D(x)\left(\left(\theta\left(x^{*}\right)\right)^{n-i}\right. \\
& \left.+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right) \tag{3.4}
\end{align*}
$$

for all $x \in R$. Using (3.1), we have

$$
\begin{align*}
F & \left(\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& =l F(e)\left(\theta\left(x^{*}\right)\right)^{n}+(F(x)+l F(e))\left(\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right) \\
& +\sum_{i=1}^{n}(\phi(x))^{i} D(x)\left(\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right) \\
& +\sum_{i=1}^{n}\left(\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}+\ldots+l^{i} e\right) D(x)\left(\left(\theta\left(x^{*}\right)\right)^{n-i}\right. \\
& \left.+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right) \tag{3.5}
\end{align*}
$$

for all $x \in R$, where we denote $\binom{n}{k}=0$ for $k<0$ and for $k>n$. The above relation can be written as

$$
\begin{equation*}
l f_{1}\left(\theta\left(x^{*}\right), \phi(x), e\right)+l^{2} f_{2}\left(\theta\left(x^{*}\right), \phi(x), e\right)+\ldots l^{n} f_{n}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0 \tag{3.6}
\end{equation*}
$$

for all $x \in R$. We proceed in similar way as in the proof of Theorem (2.1), we get $f_{i}\left(\theta\left(x^{*}\right), \phi(x), e\right)=$ $0, i=1,2, \ldots, n$. Now, $f_{n}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0$ implies that

$$
\begin{equation*}
\binom{n+1}{n} F(x)=F(x)+\binom{n}{n-1} F(e) \theta\left(x^{*}\right)+n D(x) \tag{3.7}
\end{equation*}
$$

(3.7) implies that

$$
\begin{equation*}
(n+1) F(x)=F(x)+n F(e) \theta\left(x^{*}\right)+n D(x) \tag{3.8}
\end{equation*}
$$

Since R is n-torsion free, we obtain

$$
\begin{equation*}
F(x)=F(e) \theta\left(x^{*}\right)+D(x) \tag{3.9}
\end{equation*}
$$

Again $f_{n-1}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0$ implies that

$$
\begin{align*}
\binom{n+1}{n-1} F\left(x^{2}\right) & =\binom{n}{n-1} F(x) \theta\left(x^{*}\right)+\binom{n}{n-2} F(e)\left(\theta\left(x^{*}\right)\right)^{2}+\frac{n(n+1)}{2} \phi(x) D(x) \tag{3.10}\\
& +\frac{n(n-1)}{2} D(x) \theta\left(x^{*}\right)
\end{align*}
$$

for all $x \in R$. (3.10) can be rewritten as

$$
\begin{equation*}
n(n+1) F\left(x^{2}\right)=2 n F(x) \theta\left(x^{*}\right)+n(n-1) F(e)\left(\theta\left(x^{*}\right)\right)^{2}+n(n+1) \phi(x) D(x)+n(n-1) D(x) \theta\left(x^{*}\right) \tag{3.11}
\end{equation*}
$$

for all $x \in R$. Since R is n-torsion free, we get
$(n+1) F\left(x^{2}\right)=2 F(x) \theta\left(x^{*}\right)+(n-1) F(e)\left(\theta\left(x^{*}\right)\right)^{2}+(n+1) \phi(x) D(x)+(n-1) D(x) \theta\left(x^{*}\right)$
Using (3.9) in (3.12), we find

$$
\begin{equation*}
(n+1) F\left(x^{2}\right)=(n+1) F(e)\left(\theta\left(x^{*}\right)\right)^{2}+(n+1) \phi(x) D(x)+(n+1) D(x) \theta\left(x^{*}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in R$. Since R is $(n+1)$-torsion free, so we have

$$
\begin{equation*}
F\left(x^{2}\right)=F(e)\left(\theta\left(x^{*}\right)\right)^{2}+\phi(x) D(x)+D(x) \theta\left(x^{*}\right) \tag{3.14}
\end{equation*}
$$

Replacing x by x^{2} in (3.9), we obtain

$$
\begin{equation*}
F\left(x^{2}\right)=F(e)\left(\theta\left(x^{*}\right)\right)^{2}+D\left(x^{2}\right) \tag{3.15}
\end{equation*}
$$

Comparing (3.14) and (3.15), we find that

$$
\begin{equation*}
D\left(x^{2}\right)=D(x) \theta\left(x^{*}\right)+\phi(x) D(x) \tag{3.16}
\end{equation*}
$$

for all $x \in R$. Using (3.16) in (3.15), we get

$$
\begin{equation*}
F\left(x^{2}\right)=F(e)\left(\theta\left(x^{*}\right)\right)^{2}+D(x) \theta\left(x^{*}\right)+\phi(x) D(x)=\left\{F(e) \theta\left(x^{*}\right)+D(x)\right\} \theta\left(x^{*}\right)+\phi(x) D(x) \tag{3.17}
\end{equation*}
$$

for all $x \in R$. Again, using (3.9) in (3.17), we conclude $F\left(x^{2}\right)=F(x) \theta\left(x^{*}\right)+\phi(x) D(x)$. Thereby the proof of the theorem is completed.

Corollary 3.2 ([10], Theorem 2.1). Let $n \geq 1$ be any fixed integer and R be an $(n+1)$!-torsion free any ring with identity element. If $F: R \rightarrow R$ and $D: R \rightarrow R$ are additive mappings such that $F\left(x^{n+1}\right)=(F(x))\left(x^{*}\right)^{n}+\sum_{i=1}^{n} x^{i} D(x)\left(x^{*}\right)^{n-i}$ for all $x \in R$, then D is a Jordan *-derivation and F is a generalized Jordan ${ }^{*}$-derivation.

Proof. Take $\theta=\phi=I$, where I is the identity map on R.

Theorem 3.3. Let $n \geq 1$ be any fixed integer, R be an $(n+1)$!-torsion free any ring with identity element and θ, ϕ be two automorphisms on R. If $F: R \rightarrow R$ and $D: R \rightarrow R$ are additive mappings such that $F\left(x^{n+1}\right)=\left(\theta\left(x^{*}\right)\right)^{n} F(x)+\sum_{i=1}^{n}\left(\theta\left(x^{*}\right)\right)^{n-i}(\phi(x))^{i} D(x)$ for all $x \in R$, then D is a Jordan left $(\theta, \phi)^{*}$-derivation and F is a generalized Jordan left $(\theta, \phi)^{*}$-derivation.

Proof. We have the identity

$$
\begin{equation*}
F\left(x^{n+1}\right)=\left(\theta\left(x^{*}\right)\right)^{n} F(x)+\sum_{i=1}^{n}\left(\theta\left(x^{*}\right)\right)^{n-i}(\phi(x))^{i} D(x) \tag{3.18}
\end{equation*}
$$

for all $x \in R$. We replace x by e in (3.1). Clearly $e^{*}=e$ so that $\theta\left(e^{*}\right)=\phi(e)=e$. Hence, by n-torsion freeness of $R, n D(e)=0$ implies $D(e)=0$. Again replacing x by $(x+l e)$ in (3.18), where l is any positive integer, we obtain

$$
\begin{align*}
F\left((x+l e)^{n+1}\right) & =\left(\theta\left((x+l e)^{*}\right)\right)^{n} F(x+l e) \\
& +\sum_{i=1}^{n}\left(\theta\left((x+l e)^{*}\right)\right)^{n-i}(\phi(x+l e))^{i} D(x) \\
& =\left(\theta\left(x^{*}\right)+l e\right)^{n}(F(x)+l F(e)) \tag{3.19}\\
& +\sum_{i=1}^{n}\left(\theta\left(x^{*}\right)+l e\right)^{n-i}(\phi(x)+l e)^{i} D(x)
\end{align*}
$$

for all $x \in R$. By expanding the powers of $x+l e$, we get

$$
\begin{align*}
F & \left(x^{n+1}+\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& =\left(\left(\theta\left(x^{*}\right)\right)^{n}+\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right)(F(x)+l F(e)) \\
& +\sum_{i=1}^{n}\left(\left(\theta\left(x^{*}\right)\right)^{n-i}+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}\right. \tag{3.20}\\
& \left.+\ldots+l^{n-i} e\right)\left((\phi(x))^{i}+\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}+\ldots+l^{i} e\right) D(x)
\end{align*}
$$

for all $x \in R$. (3.20) can be rewritten as

$$
\begin{align*}
& F\left(x^{n+1}\right)+F\left(\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& \quad=\left(\theta\left(x^{*}\right)\right)^{n}(F(x)+l F(e)) \\
& \quad+\left(\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right)(F(x)+l F(e)) \\
& \quad+\sum_{i=1}^{n}\left(\left(\theta\left(x^{*}\right)\right)^{n-i}+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}\right. \tag{3.21}\\
& \left.\quad+\ldots+l^{n-i} e\right)(\phi(x))^{i} D(x)+\sum_{i=1}^{n}\left(\left(\theta\left(x^{*}\right)\right)^{n-i}+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l\right. \\
& \left.\quad+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right)\left(\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}\right. \\
& \\
& \left.\quad+\ldots+l^{i} e\right) D(x)
\end{align*}
$$

for all $x \in R$. Using (3.18), we have

$$
\begin{align*}
F & \left(\binom{n+1}{1} x^{n} l+\binom{n+1}{2} x^{n-1} l^{2}+\ldots+l^{n+1} e\right) \\
& =\left(\theta\left(x^{*}\right)\right)^{n} l F(e)+\left(\binom{n}{1}\left(\theta\left(x^{*}\right)\right)^{n-1} l+\binom{n}{2}\left(\theta\left(x^{*}\right)\right)^{n-2} l^{2}+\ldots+l^{n} e\right)(F(x)+l F(e)) \\
& +\sum_{i=1}^{n}\left(\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}+\ldots+l^{n-i} e\right)(\phi(x))^{i} D(x) \\
& +\sum_{i=1}^{n}\left(\left(\theta\left(x^{*}\right)\right)^{n-i}+\binom{n-i}{1}\left(\theta\left(x^{*}\right)\right)^{n-i-1} l+\binom{n-i}{2}\left(\theta\left(x^{*}\right)\right)^{n-i-2} l^{2}\right. \\
& \left.+\ldots+l^{n-i} e\right)\left(\binom{i}{1}(\phi(x))^{i-1} l+\binom{i}{2}(\phi(x))^{i-2} l^{2}+\ldots+l^{i} e\right) D(x) \tag{3.22}
\end{align*}
$$

for all $x \in R$, where we denote $\binom{n}{k}=0$ for $k<0$ and for $k>n$. The above relation can be written as

$$
\begin{equation*}
l f_{1}\left(\theta\left(x^{*}\right), \phi(x), e\right)+l^{2} f_{2}\left(\theta\left(x^{*}\right), \phi(x), e\right)+\ldots l^{n} f_{n}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0 \tag{3.23}
\end{equation*}
$$

for all $x \in R$. We proceed in the similar way as in the proof of Theorem (2.1), we get $f_{i}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0, i=1,2, \ldots, n$. Now, $f_{n}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0$ implies that

$$
\begin{equation*}
\binom{n+1}{n} F(x)=F(x)+\binom{n}{n-1} \theta\left(x^{*}\right) F(e)+n D(x) \tag{3.24}
\end{equation*}
$$

(3.24) implies that

$$
\begin{equation*}
(n+1) F(x)=F(x)+n \theta\left(x^{*}\right) F(e)+n D(x) \tag{3.25}
\end{equation*}
$$

Since R is n-torsion free, we obtain

$$
\begin{equation*}
F(x)=\theta\left(x^{*}\right) F(e)+D(x) \tag{3.26}
\end{equation*}
$$

Again $f_{n-1}\left(\theta\left(x^{*}\right), \phi(x), e\right)=0$ implies that

$$
\begin{align*}
\binom{n+1}{n-1} F\left(x^{2}\right) & =\binom{n}{n-1} \theta\left(x^{*}\right) F(x)+\binom{n}{n-2}\left(\theta\left(x^{*}\right)\right)^{2} F(e)+\frac{n(n+1)}{2} \phi(x) D(x) \tag{3.27}\\
& +\frac{n(n-1)}{2} \theta\left(x^{*}\right) D(x)
\end{align*}
$$

for all $x \in R$. (3.27) can be rewritten as

$$
\begin{equation*}
n(n+1) F\left(x^{2}\right)=2 n \theta\left(x^{*}\right) F(x)+n(n-1)\left(\theta\left(x^{*}\right)\right)^{2} F(e)+n(n+1) \phi(x) D(x)+n(n-1) \theta\left(x^{*}\right) D(x) \tag{3.28}
\end{equation*}
$$

for all $x \in R$. Since R is n-torsion free, we get

$$
\begin{equation*}
(n+1) F\left(x^{2}\right)=2 \theta\left(x^{*}\right) F(x)+(n-1)\left(\theta\left(x^{*}\right)\right)^{2} F(e)+(n+1) \phi(x) D(x)+(n-1) \theta\left(x^{*}\right) D(x) \tag{3.29}
\end{equation*}
$$

Using (3.26), (3.29) becomes

$$
\begin{equation*}
(n+1) F\left(x^{2}\right)=(n+1)\left(\theta\left(x^{*}\right)\right)^{2} F(e)+(n+1) \phi(x) D(x)+(n+1) \theta\left(x^{*}\right) D(x) \tag{3.30}
\end{equation*}
$$

for all $x \in R$. Since R is $(n+1)$-torsion free, so we have

$$
\begin{equation*}
F\left(x^{2}\right)=\left(\theta\left(x^{*}\right)\right)^{2} F(e)+\phi(x) D(x)+\theta\left(x^{*}\right) D(x) \tag{3.31}
\end{equation*}
$$

Replacing x by x^{2} in (3.26), we obtain

$$
\begin{equation*}
F\left(x^{2}\right)=\left(\theta\left(x^{*}\right)\right)^{2} F(e)+D\left(x^{2}\right) \tag{3.32}
\end{equation*}
$$

Comparing (3.31) and (3.32), we find that

$$
\begin{equation*}
D\left(x^{2}\right)=\theta\left(x^{*}\right) D(x)+\phi(x) D(x) \tag{3.33}
\end{equation*}
$$

for all $x \in R$. Using (3.33) in (3.32), we get

$$
\begin{equation*}
F\left(x^{2}\right)=\left(\theta\left(x^{*}\right)\right)^{2} F(e)+\theta\left(x^{*}\right) D(x)+\phi(x) D(x)=\theta\left(x^{*}\right)\left\{\theta\left(x^{*}\right) F(e)+D(x)\right\}+\phi(x) D(x) \tag{3.34}
\end{equation*}
$$

for all $x \in R$. Again, using (3.26) in (3.34), we conclude $F\left(x^{2}\right)=\theta\left(x^{*}\right) F(x)+\phi(x) D(x)$. Thereby the proof of the theorem is completed.
Corollary 3.4. Let $n \geq 1$ be any fixed integer, R be an $(n+1)!$-torsion free any ring with identity element and ϕ be an automorphism on R. If $F: R \rightarrow R$ and $D: R \rightarrow R$ are additive mappings such that $F\left(x^{n+1}\right)=\left(x^{*}\right)^{n} F(x)+\sum_{i=1}^{n}\left(x^{*}\right)^{n-i}(\phi(x))^{i} D(x)$ for all $x \in R$, then D is a Jordan skew left ${ }^{*}$-derivation and F is a generalized Jordan skew left ${ }^{*}$-derivation.

Proof. Take $\theta=I$, where I is the identity map on R.

References

[1] S. Ali and A. Fosner, On Jordan $(\alpha, \beta)^{*}$-derivations in semiprime ${ }^{*}$-rings, Int. J. Algebra 4, 99-108 (2008).
[2] A. Ansari and F. Shujat, Additive mappings satisfying algebraic conditions in rings, Rend. Circ. Mat. Palermo 63, 211-219 (2014).
[3] M. Ashraf, N. Rehman and A.Z. Ansari, On additive mappings satisfying an algebraic conditions in rings with identity, J. Adv. Pure Math. 5, 38-45 (2013).
[4] M. Brešar and J. Vukman, On some additive mappings in ring with involution, Aequationes Math. 38, 178-185 (1989).
[5] M. Brešar, On the distance of the composition of two derivations to the generalized derivation, Glasgow Math. 33, 89-93 (1991).
[6] J.M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 2, 321-324 (1975).
[7] B. Dhara and R.K. Sharma, On additive mappings in semi prime ring with left identity, Algebra Group and Geom. 25, 175-180 (2008).
[8] B. Dhara and R.K. Sharma, On additive mappings in rings with identity, Inter Math. Forum 15, 727-732 (2009).
[9] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104-1110 (1957).
[10] N. Rehman, A. Ansari and T. Bano, On generalized Jordan *-derivation in rings, J. Egy. Math. Soc. 22, 11-13 (2014).
[11] J. Vukman and I. Kosi-Ulbl, Equation related to centralizers in semiprime rings, Glasnik Matematicki 38, 253-261 (2003).
[12] J. Vukman, A note on Jordan *-derivation in semiprime rings with involution, Int. Math. Forum 13, 617622 (2006).

Author information

Chirag Garg and R. K. Sharma, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, INDIA.
E-mail: garg88chirag@gmail.com
Received: June 29, 2015.
Accepted: February 26, 2016.

