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Abstract. In this paper, we study algebraic identities which are (i) 2F (xn+1) = F (x)θ(x)n+
ϕ(x)D(xn)+F (xn)θ(x)+ϕ(x)nD(x) (ii) F (xn+1) = F (x)(θ(x∗))n+

∑n
i=1

(ϕ(x))iD(x)(θ(x∗))n−i

(iii) F (xn+1) = (θ(x∗))nF (x) +
∑n

i=1
(θ(x∗))n−i(ϕ(x))iD(x), where F and D are additive

mappings on ring and ring with involution.

1 Introduction

Throughout this paper R denotes an associative ring with identity e and Z(R) denotes the center
of R. An additive mapping x 7→ x∗ satisfying (x∗)∗ = x and (xy)∗ = y∗x∗ is called an invo-

lution. A ring equipped with an involution is called ∗-ring or ring with involution. A ring R is

said to be prime if for any a, b ∈ R, aRb = {0} implies either a = 0 or b = 0 and and is said

to be semiprime if for any a ∈ R, aRa = 0 implies a = 0. Given an integer n > 1, a ring R is

said to be n-torsion free if for any x ∈ R, nx = 0 implies x = 0. An additive mapping D from

R to R is said to be a derivation if D(xy) = D(x)y + xD(y) for all x, y ∈ R and is said to be

a Jordan derivation if D(x2) = D(x)x + xD(x) for all x ∈ R. We notice that every derivation

is a Jordan derivation but the converse need not be true. Herstein [9] proved a mile stone result

which states that a Jordan derivation on a prime ring R with characteristic different from two is

a derivation. A brief proof can be found in Cusack [6]. Cusack [6] generalized Herstein's result

and proved that if R is a semi prime ring which is 2-torsion free then every Jordan derivation on

R is a derivation. We have divided this paper in two sections. In Section 1, R is any associative

ring where as in Section 2, R is any associative ring with involution.

Bre�sar [5] introduced the concept of generalized derivation mapping. An additive map-

ping F on R is said to be generalized derivation if there exists a derivation D on R such that

F (xy) = F (x)y+xD(y) for all x, y ∈ R. An additive mapping F onR is said to be a generalized

Jordan derivation if there exists a Jordan derivation D on R such that F (x2) = F (x)x+ xD(x)
for all x ∈ R. Vukman [11] proved that if R is a 2-torsion free semi prime ring, then every

generalized Jordan derivation on R is a generalized derivation.

An additive mappingD : R → R is called (θ, ϕ)-derivation (resp. Jordan (θ, ϕ)-derivation) if
D(xy) = D(x)θ(y) + ϕ(x)D(y) (resp. D(x2) = D(x)θ(x) + ϕ(x)D(x)) holds for all x, y ∈ R.
An additive mapping F : R → R is said to be generalized (θ, ϕ)-derivation ( resp. general-

ized Jordan (θ, ϕ)-derivation) if there exists an (θ, ϕ)-derivation( resp. Jordan (θ, ϕ)-deviation)
D : R → R such that F (xy) = F (x)θ(y) + ϕ(x)D(y) ( resp. F (x2) = F (x)θ(x) + ϕ(x)D(x))
for all x, y ∈ R.

Recently, Dhara and Sharma [7] proved an additive map satisfying an identity to be deriva-

tion. In 2013, Ashraf et al. [3] worked on additive mappings satisfying some algebraic identities.

In Section 1, we will prove an additive mapping satisfying an algebraic identity to be generalized

Jordan (θ, ϕ)-derivation.

In Section 2, we will study the results in rings with involution. Bresar and Vukman [4]

studied the notions of a ∗-derivation and a Jordan∗-derivation. Let R be a ∗- ring. An addi-
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tive mapping D : R → R is said to be a ∗-derivation ( resp. Jordan ∗-derivation) if D(xy) =
D(x)y∗ + xD(y) ( resp. D(x2) = D(x)x∗ + xD(x)) holds for all x, y ∈ R. Further, let

θ, ϕ be the automorphisms on R. An additive mapping D : R → R is said to be (θ, ϕ)∗-
derivation if D(xy) = D(x)θ(y∗) + ϕ(x)D(y) and D is said to be a left (θ, ϕ)∗-derivation if

D(xy) = θ(y∗)D(x) + ϕ(x)D(y) holds for all x, y ∈ R.

An additive mapping F : R → R is said to be a generalized ∗-derivation associated with
∗-derivation D if F (xy) = F (x)y∗ + xD(y) holds for all x, y ∈ R. Further, let θ, ϕ be automor-

phisms of R. An additive mapping F : R → R is said to be a generalized (θ, ϕ)∗-derivation (

resp. generalized Jordan (θ, ϕ)∗-derivation ) with associated (θ, ϕ)∗-derivation D ( resp. Jordan

(θ, ϕ)∗-derivation ) if F (xy) = F (x)θ(y∗)+ϕ(x)D(y) ( resp. F (x2) = F (x)θ(x∗)+ϕ(x)D(x))
and F is said to be a left generalized (θ, ϕ)∗-derivation ( resp. Jordan left generalized (θ, ϕ)∗-
derivation ) with associated left (θ, ϕ)∗-derivation D ( resp. Jordan left (θ, ϕ)∗-derivation) if
F (xy) = θ(y∗)F (x)+ϕ(x)D(y) ( resp. F (x2) = θ(x∗)F (x)+ϕ(x)D(x)) holds for all x, y ∈ R.

Vukman [12] proved the following result: LetR be a 6-torsion free semiprime ∗-ring. LetD :

R → R be an additive mapping satisfying the relationD(xyx) = D(x)y∗x∗+xD(y)x∗+xyD(x)
for all x, y ∈ R. Then D is a Jordan ∗-derivation. Ali [1] extended this result to Jordan triple

(θ, ϕ)∗-derivation.

Very recently, N.Rehman et al. [10] considered additive mappings satisfying some algebraic

identities on ring with involution. In Section 2, we will de�ne some algebraic identities on ring

with involution.

2 Algebraic Identity on Ring

Dhara and Sharma [8] proved an additive map satisfying an identity to be generalized Jordan

derivation. Motivated by [8], we de�ne an identity on a ring R and prove the following:

Theorem 2.1. Let n ≥ 1 be any �xed integer, R be an (n+1)!-torsion free any ring with identity

element and θ, ϕ be two automorphisms on R. If F : R → R and D : R → R are additive

mappings such that 2F (xn+1) = F (x)(θ(x))n + ϕ(x)D(xn) + F (xn)θ(x) + (ϕ(x))nD(x) for
all x ∈ R, then D is a Jordan (θ, ϕ)-derivation and F is a generalized Jordan (θ, ϕ)-derivation.

Proof. We have the identity

2F (xn+1) = F (x)(θ(x))n + ϕ(x)D(xn) + F (xn)θ(x) + (ϕ(x))nD(x) (2.1)

holds for all x ∈ R . Replacing x by e in (2.1), where e is an identity of R, we get 2F (e) =
2F (e) + 2D(e) which implies 2D(e) = 0. Since R is (n + 1)!-torsion free, we get D(e) = 0.
Now replacing x by x+ le in (5), where l is any positive integer, we get

2F
{
(x+ le)n+1

}
= F (x+ le)(θ(x) + le)n + (ϕ(x) + le)D {(x+ le)n}
+ F {(x+ le)n} (θ(x) + le) + (ϕ(x) + le)nD(x+ le)

(2.2)

Expanding the powers of (x+ le) and using D(e) = 0, we get

2F

{
xn+1 + · · ·+

(
n+ 1

n− 1

)
ln−1x2 +

(
n+ 1

n

)
lnx+ ln+1e

}
= F (x+ le)

{
(θ(x))n + · · ·+

(
n

n− 2

)
ln−2(θ(x))2 +

(
n

n− 1

)
ln−1θ(x) + lne

}
+ (ϕ(x) + le)D

{
xn + · · ·+

(
n

n− 2

)
ln−2x2 +

(
n

n− 1

)
ln−1x+ lne

}
+ F

{
xn + · · ·+

(
n

n− 2

)
ln−2x2 +

(
n

n− 1

)
ln−1x+ lne

}
(θ(x) + le)

+

{
(ϕ(x))n + · · ·+

(
n

n− 2

)
ln−2(ϕ(x))2 +

(
n

n− 1

)
ln−1ϕ(x) + lne

}
D(x)

(2.3)
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Using (2.1), the above relation can be written as

lf1(θ(x), ϕ(x), e) + l2f2(θ(x), ϕ(x), e) + ...lnfn(θ(x), ϕ(x), e) = 0 (2.4)

for all x ∈ R. Now, replacing l by 1, 2, ..., n in (2.4) and considering the resulting system of n
homogenous equations, we get that the resulting matrix of the system is a Van der Monde matrix

1 1 . . . 1

2 22 . . . 2n

...
...

. . .
...

n n2 . . . nn


Since the determinent of the matrix is equal to a product of positive integers, each of which is

less than n and R is (n + 1)! torsion free. It follows that the system has only a zero solution.

Thus fi(θ(x), ϕ(x), e) = 0 for all x ∈ R and i = 1, 2, ..., n. Now, fn(θ(x), ϕ(x), e) = 0 implies

that

(n+ 1)F (x) = (n+ 1)F (e)θ(x) + (n+ 1)D(x) (2.5)

Again since R is (n + 1)!-torsion free, we get F (x) = F (e)θ(x) + D(x) for all x ∈ R. Now,
fn−1(θ(x), ϕ(x), e) = 0 gives

2
n(n+ 1)

2!
F (x2) = nF (x)θ(x) +

n(n− 1)

2!
F (e)(θ(x))2 + nϕ(x)D(x) +

n(n− 1)

2!
D(x2)

+ nF (x)θ(x) +
n(n− 1)

2!
F (x2) + nϕ(x)D(x)

(2.6)

Multiplying both sides by 2 in above equation, we get

2n(n+ 1)F (x2) = 4nF (x)θ(x) + 4nϕ(x)D(x) + n(n− 1)F (x2)

+ n(n− 1)F (e)(θ(x))2 + n(n− 1)D(x2)
(2.7)

Using (n+1)! torsion freeness ofR and F (x) = F (e)θ(x)+D(x), we getD(x2) = D(x)θ(x)+
ϕ(x)D(x), ∀x ∈ R, henceD is a Jordan (θ, ϕ)-derivation in R. Again using F (x) = F (e)θ(x)+
D(x), we get F (x2) = F (e)(θ(x))2+D(x)θ(x)+ϕ(x)D(x) = F (x)θ(x)+ϕ(x)D(x), ∀x ∈ R
which implies that F is a generalized Jordan (θ, ϕ)-derivation in R. Thus the proof of theorem
is completed.

3 Algebraic Identities on Ring with Involution

In 2014, N.Rehman et al. [10] considered the additive mappings F : R → R and D : R → R
satisfying the condition F (xn+1) = (F (x))(x∗)n +

∑n
i=1

xiD(x)(x∗)n−i for all x ∈ R and

proved that if R is an (n + 1)!-torsion free ∗-ring with identity, then D is a Jordan ∗-derivation
and F is a generalized Jordan ∗-derivation on R. We will extend the results of A. Ansari et al.

[2] to ring with involution as follows:

Theorem 3.1. Let n ≥ 1 be any �xed integer, R be an (n+1)!-torsion free any ring with identity

element and θ, ϕ be two automorphisms on R. If F : R → R and D : R → R are additive

mappings such that F (xn+1) = F (x)(θ(x∗))n +
∑n

i=1
(ϕ(x))iD(x)(θ(x∗))n−i for all x ∈ R,

then D is a Jordan (θ, ϕ)∗-derivation and F is a generalized Jordan (θ, ϕ)∗-derivation.

Proof. We have the identity

F (xn+1) = F (x)(θ(x∗))n +
n∑

i=1

(ϕ(x))iD(x)(θ(x∗))n−i (3.1)
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for all x ∈ R. We replace x by e in (3.1). Clearly e∗ = e so that θ(e∗) = ϕ(e) = e. Hence, by
n-torsion freeness of R, nD(e) = 0 implies D(e) = 0. Again replacing x by x + le in (3.1),

where l is any positive integer, we obtain

F ((x+ le)n+1) = F (x+ le)(θ((x+ le)∗))n

+
n∑

i=1

(ϕ(x+ le))iD(x)(θ((x+ le)∗))n−i

= (F (x) + lF (e))(θ(x∗) + le)n

+
n∑

i=1

(ϕ(x) + le)iD(x)(θ(x∗) + le)n−i

(3.2)

for all x ∈ R. By expanding the powers of (x+ le), we get

F

(
xn+1 +

(
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
= (F (x) + lF (e))

(
(θ(x∗))n +

(
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
+

n∑
i=1

(
(ϕ(x))i +

(
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2 + ...+ lie

)
D(x)

(
(θ(x∗))n−i

+

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)
(3.3)

for all x ∈ R. (3.3) can be rewritten as

F (xn+1) + F

((
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
= (F (x) + lF (e))(θ(x∗))n

+ (F (x) + lF (e))

((
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
+

n∑
i=1

(ϕ(x))iD(x)

(
(θ(x∗))n−i +

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2

+ ...+ ln−ie

)
+

n∑
i=1

((
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2 + ...+ lie

)
D(x)

(
(θ(x∗))n−i

+

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)
(3.4)
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for all x ∈ R. Using (3.1), we have

F

((
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
= lF (e)(θ(x∗))n + (F (x) + lF (e))

((
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
+

n∑
i=1

(ϕ(x))iD(x)

((
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)

+
n∑

i=1

((
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2 + ...+ lie

)
D(x)

(
(θ(x∗))n−i

+

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)
(3.5)

for all x ∈ R, where we denote (nk) = 0 for k < 0 and for k > n. The above relation can be

written as

lf1(θ(x
∗), ϕ(x), e) + l2f2(θ(x

∗), ϕ(x), e) + ...lnfn(θ(x
∗), ϕ(x), e) = 0 (3.6)

for all x ∈ R. We proceed in similar way as in the proof of Theorem (2.1), we get fi(θ(x∗), ϕ(x), e) =
0, i = 1, 2, ..., n. Now, fn(θ(x∗), ϕ(x), e) = 0 implies that(

n+ 1

n

)
F (x) = F (x) +

(
n

n− 1

)
F (e)θ(x∗) + nD(x) (3.7)

(3.7) implies that

(n+ 1)F (x) = F (x) + nF (e)θ(x∗) + nD(x) (3.8)

Since R is n-torsion free, we obtain

F (x) = F (e)θ(x∗) +D(x) (3.9)

Again fn−1(θ(x∗), ϕ(x), e) = 0 implies that(
n+ 1

n− 1

)
F (x2) =

(
n

n− 1

)
F (x)θ(x∗) +

(
n

n− 2

)
F (e)(θ(x∗))2 +

n(n+ 1)

2
ϕ(x)D(x)

+
n(n− 1)

2
D(x)θ(x∗)

(3.10)

for all x ∈ R. (3.10) can be rewritten as

n(n+1)F (x2) = 2nF (x)θ(x∗)+n(n−1)F (e)(θ(x∗))2+n(n+1)ϕ(x)D(x)+n(n−1)D(x)θ(x∗)
(3.11)

for all x ∈ R. Since R is n-torsion free, we get

(n+ 1)F (x2) = 2F (x)θ(x∗) + (n− 1)F (e)(θ(x∗))2 + (n+ 1)ϕ(x)D(x) + (n− 1)D(x)θ(x∗)
(3.12)

Using (3.9) in (3.12), we �nd

(n+ 1)F (x2) = (n+ 1)F (e)(θ(x∗))2 + (n+ 1)ϕ(x)D(x) + (n+ 1)D(x)θ(x∗) (3.13)

for all x ∈ R. Since R is (n+ 1)-torsion free, so we have

F (x2) = F (e)(θ(x∗))2 + ϕ(x)D(x) +D(x)θ(x∗) (3.14)

Replacing x by x2 in (3.9), we obtain

F (x2) = F (e)(θ(x∗))2 +D(x2) (3.15)
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Comparing (3.14) and (3.15), we �nd that

D(x2) = D(x)θ(x∗) + ϕ(x)D(x) (3.16)

for all x ∈ R. Using (3.16) in (3.15), we get

F (x2) = F (e)(θ(x∗))2 +D(x)θ(x∗) + ϕ(x)D(x) = {F (e)θ(x∗) +D(x)}θ(x∗) + ϕ(x)D(x)
(3.17)

for all x ∈ R. Again, using (3.9) in (3.17), we conclude F (x2) = F (x)θ(x∗) + ϕ(x)D(x).
Thereby the proof of the theorem is completed.

Corollary 3.2 ([10], Theorem 2.1). Let n ≥ 1 be any �xed integer and R be an (n+ 1)!-torsion
free any ring with identity element. If F : R → R and D : R → R are additive mappings

such that F (xn+1) = (F (x))(x∗)n +
∑n

i=1
xiD(x)(x∗)n−i for all x ∈ R, then D is a Jordan

∗-derivation and F is a generalized Jordan ∗-derivation.

Proof. Take θ = ϕ = I , where I is the identity map on R.

Theorem 3.3. Let n ≥ 1 be any �xed integer, R be an (n+1)!-torsion free any ring with identity

element and θ, ϕ be two automorphisms on R. If F : R → R and D : R → R are additive

mappings such that F (xn+1) = (θ(x∗))nF (x) +
∑n

i=1
(θ(x∗))n−i(ϕ(x))iD(x) for all x ∈ R,

then D is a Jordan left (θ, ϕ)∗-derivation and F is a generalized Jordan left (θ, ϕ)∗-derivation.

Proof. We have the identity

F (xn+1) = (θ(x∗))nF (x) +
n∑

i=1

(θ(x∗))n−i(ϕ(x))iD(x) (3.18)

for all x ∈ R. We replace x by e in (3.1). Clearly e∗ = e so that θ(e∗) = ϕ(e) = e. Hence, by
n-torsion freeness of R, nD(e) = 0 implies D(e) = 0. Again replacing x by (x+ le) in (3.18),

where l is any positive integer, we obtain

F ((x+ le)n+1) = (θ((x+ le)∗))nF (x+ le)

+
n∑

i=1

(θ((x+ le)∗))n−i(ϕ(x+ le))iD(x)

= (θ(x∗) + le)n(F (x) + lF (e))

+
n∑

i=1

(θ(x∗) + le)n−i(ϕ(x) + le)iD(x)

(3.19)

for all x ∈ R. By expanding the powers of x+ le, we get

F

(
xn+1 +

(
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
=

(
(θ(x∗))n +

(
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
(F (x) + lF (e))

+
n∑

i=1

(
(θ(x∗))n−i +

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2

+ ...+ ln−ie

)(
(ϕ(x))i +

(
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2 + ...+ lie

)
D(x)

(3.20)
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for all x ∈ R. (3.20) can be rewritten as

F (xn+1) + F

((
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
= (θ(x∗))n(F (x) + lF (e))

+

((
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
(F (x) + lF (e))

+
n∑

i=1

(
(θ(x∗))n−i +

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2

+ ...+ ln−ie

)
(ϕ(x))iD(x) +

n∑
i=1

(
(θ(x∗))n−i +

(
n− i

1

)
(θ(x∗))n−i−1l

+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)((
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2

+ ...+ lie

)
D(x)

(3.21)

for all x ∈ R. Using (3.18), we have

F

((
n+ 1

1

)
xnl+

(
n+ 1

2

)
xn−1l2 + ...+ ln+1e

)
= (θ(x∗))nlF (e) +

((
n

1

)
(θ(x∗))n−1l+

(
n

2

)
(θ(x∗))n−2l2 + ...+ lne

)
(F (x) + lF (e))

+
n∑

i=1

((
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2 + ...+ ln−ie

)
(ϕ(x))iD(x)

+
n∑

i=1

(
(θ(x∗))n−i +

(
n− i

1

)
(θ(x∗))n−i−1l+

(
n− i

2

)
(θ(x∗))n−i−2l2

+ ...+ ln−ie

)((
i

1

)
(ϕ(x))i−1l+

(
i

2

)
(ϕ(x))i−2l2 + ...+ lie

)
D(x)

(3.22)

for all x ∈ R, where we denote (nk) = 0 for k < 0 and for k > n. The above relation can be

written as

lf1(θ(x
∗), ϕ(x), e) + l2f2(θ(x

∗), ϕ(x), e) + ...lnfn(θ(x
∗), ϕ(x), e) = 0 (3.23)

for all x ∈ R. We proceed in the similar way as in the proof of Theorem (2.1), we get

fi(θ(x∗), ϕ(x), e) = 0, i = 1, 2, ..., n. Now, fn(θ(x∗), ϕ(x), e) = 0 implies that(
n+ 1

n

)
F (x) = F (x) +

(
n

n− 1

)
θ(x∗)F (e) + nD(x) (3.24)

(3.24) implies that

(n+ 1)F (x) = F (x) + nθ(x∗)F (e) + nD(x) (3.25)

Since R is n-torsion free, we obtain

F (x) = θ(x∗)F (e) +D(x) (3.26)

Again fn−1(θ(x∗), ϕ(x), e) = 0 implies that(
n+ 1

n− 1

)
F (x2) =

(
n

n− 1

)
θ(x∗)F (x) +

(
n

n− 2

)
(θ(x∗))2F (e) +

n(n+ 1)

2
ϕ(x)D(x)

+
n(n− 1)

2
θ(x∗)D(x)

(3.27)
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for all x ∈ R. (3.27) can be rewritten as

n(n+1)F (x2) = 2nθ(x∗)F (x)+n(n−1)(θ(x∗))2F (e)+n(n+1)ϕ(x)D(x)+n(n−1)θ(x∗)D(x)
(3.28)

for all x ∈ R. Since R is n-torsion free, we get

(n+ 1)F (x2) = 2θ(x∗)F (x) + (n− 1)(θ(x∗))2F (e) + (n+ 1)ϕ(x)D(x) + (n− 1)θ(x∗)D(x)
(3.29)

Using (3.26), (3.29) becomes

(n+ 1)F (x2) = (n+ 1)(θ(x∗))2F (e) + (n+ 1)ϕ(x)D(x) + (n+ 1)θ(x∗)D(x) (3.30)

for all x ∈ R. Since R is (n+ 1)-torsion free, so we have

F (x2) = (θ(x∗))2F (e) + ϕ(x)D(x) + θ(x∗)D(x) (3.31)

Replacing x by x2 in (3.26), we obtain

F (x2) = (θ(x∗))2F (e) +D(x2) (3.32)

Comparing (3.31) and (3.32), we �nd that

D(x2) = θ(x∗)D(x) + ϕ(x)D(x) (3.33)

for all x ∈ R. Using (3.33) in (3.32), we get

F (x2) = (θ(x∗))2F (e) + θ(x∗)D(x) + ϕ(x)D(x) = θ(x∗){θ(x∗)F (e) +D(x)}+ ϕ(x)D(x)
(3.34)

for all x ∈ R. Again, using (3.26) in (3.34), we conclude F (x2) = θ(x∗)F (x) + ϕ(x)D(x).
Thereby the proof of the theorem is completed.

Corollary 3.4. Let n ≥ 1 be any �xed integer, R be an (n+1)!-torsion free any ring with identity

element and ϕ be an automorphism on R. If F : R → R and D : R → R are additive mappings

such that F (xn+1) = (x∗)nF (x) +
∑n

i=1
(x∗)n−i(ϕ(x))iD(x) for all x ∈ R, then D is a Jordan

skew left ∗-derivation and F is a generalized Jordan skew left ∗-derivation.

Proof. Take θ = I , where I is the identity map on R.
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