THE MINIMUM HUB ENERGY OF A GRAPH

Veena Mathad and Sultan Senan Mahde
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C50; Secondary 05C99.
Keywords and phrases: minimum hub set, minimum hub matrix, minimum hub eigenvalue, minimum hub energy of a graph.

Abstract

In this paper, we introduce minimum hub energy $E_{H}(G)$ of a graph G and compute minimum hub energies of some standard graphs and a number of well-known families of graphs. Upper and lower bounds for $E_{H}(G)$ are established.

1 Introduction

Throughout the paper, we consider a simple graph $G=(V, E)$, that is nonempty, finite, having no loops, no multiple and directed edges. Let p and q be the number of its vertices and edges, respectively. The symbols $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of G, respectively. For graph theoretic terminology, we refer to [11].
M. Walsh [16] introduced the theory of hub numbers in the year 2006. Suppose that $H \subseteq$ $V(G)$ and let $x, y \in V(G)$. An H-path between x and y is a path where all intermediate vertices are from H. (This includes the degenerate cases where the path consists of the single edge $x y$ or a single vertex x if $x=y$, call such an H-path trivial). A set $H \subseteq V(G)$ is a hub set of G if it has the property that, for any $x, y \in V(G)-H$, there is an H-path in G between x and y. The smallest size of a hub set in G is called the hub number of G, and is denoted by $h(G)$ [16]. For more details on the hub number see [5]. A set $S \subseteq V(G)$ is called a dominating set of G if each vertex of $V-S$ is adjacent to at least one vertex of S. The domination number of a graph G denoted as $\gamma(G)$ is the minimum cardinality of a dominating set in G [12].

Eigenvalues and Eigenvectors provide insight into the geometry associated with the linear transformation. The concept of energy $E(G)$ of a graph G was introduced by I. Gutman [7] in the year 1978, and is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix $A(G)$. i.e. $E(G)=\Sigma_{i=1}^{p}\left|\lambda_{i}\right|$. Let G be a graph with p vertices and q edges and let $A=\left(a_{i j}\right)$ be the adjacency matrix of G. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ of A, assumed in nonincreasing order, are the eigenvalues of the graph G. As A is real symmetric, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the distinct eigenvalues of G with multiplicity $m_{1}, m_{2}, \ldots, m_{s}$, respectively. The multiset

$$
\operatorname{Spec}(G)=\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{s} \\
m_{1} & m_{2} & \cdots & m_{s}
\end{array}\right)
$$

of eigenvalues of $A(G)$ is called the adjacency spectrum of G, the eigenvalues of G are real with sum equal to zero. The work of Coulson [4] shows that there is a continuous interest towards the general mathematical properties of the total π-electron energy as calculated within the framework of the Huckel molecular orbital (HMO)model. The properties of this energy are discussed in detail in [2, 8, 9, 10, 15].

We introduce minimum hub energy $E_{H}(G)$ of a graph G and compute minimum hub energies of some standard graphs and well-known families of graphs. Upper and lower bounds for $E_{H}(G)$ are established.

2 The minimum hub energy

Let G be a graph of order p with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and edge set E. Any hub set H of a graph G with minimum cardinality is called a minimum hub set. Let H be a minimum hub
set of G. The minimum hub matrix of G is the $p \times p$ matrix $A_{H}(G)=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} v_{j} \in E ; \\ 1, & \text { if } i=j \text { and } v_{i} \in H ; \\ 0, & \text { otherwise. }\end{cases}
$$

The characteristic polynomial of $A_{H}(G)$ denoted by $f_{p}(G, \lambda)$ is defined as

$$
f_{p}(G, \lambda):=\operatorname{det}\left(\lambda I-A_{H}(G)\right) .
$$

The minimum hub eigenvalues of the graph G are the eigenvalues of $A_{H}(G)$. Since $A_{H}(G)$ is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}$. The minimum hub energy of G is defined as:

$$
E_{H}(G)=\sum_{i=1}^{p}\left|\lambda_{i}\right| .
$$

Example 2.1. Let $G=P_{4}$ with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and let its minimum hub set be $H_{1}=$ $\left\{v_{1}, v_{2}\right\}$.
Then the minimum hub matrix of G is

$$
A_{H_{1}}(G)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of $A_{H_{1}}(G)$ is $f_{p}(G, \lambda)=\lambda^{4}-2 \lambda^{3}-2 \lambda^{2}+3 \lambda$, the minimum hub eigenvalues are $\lambda_{1}=2.3028, \lambda_{2}=1, \lambda_{3}=0, \lambda_{4}=-1.3028$, and therefore the minimum hub energy of G is

$$
E_{H_{1}}(G)=4.6056 .
$$

If we take another minimum hub set of G, namely $H_{2}=\left\{v_{2}, v_{3}\right\}$, then

$$
A_{H_{2}}(G)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of $A_{H_{2}}(G)$ is $f_{p}(G, \lambda)=\lambda^{4}-2 \lambda^{3}-2 \lambda^{2}+2 \lambda+1$, the minimum hub eigenvalues are $\lambda_{1}=2.4142, \lambda_{2}=1, \lambda_{3}=-0.4142, \lambda_{4}=-1$, and therefore the minimum hub energy of G is

$$
E_{H_{2}}(G)=4.8284 .
$$

The above example illustrates that the minimum hub energy of a graph G depends on the choice of the minimum hub set. i.e., the minimum hub energy is not a graph invariant. We need the following to prove main results.

Theorem 2.2. [14] For any (p, q) graph $G, p-q \leq \gamma(G)$. Furthermore, $\gamma(G)=p-q$ if and only if each component of G is a star.

Lemma 2.3. [16] For any graph $G, \gamma(G) \leq h(G)+1$.
Theorem 2.4. [16] If G is a connected graph then $h(G) \leq|V(G)|-\Delta(G)$, and the inequality is sharp.

3 Minimum hub energy of some standard graphs

In this section, we investigate the exact values of the minimum hub energy of some standard graphs.

Theorem 3.1. For the complete graph $K_{p}, p \geq 2$,

$$
E_{H}\left(K_{p}\right)=2 p-2
$$

Proof. Let K_{p} be the complete graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$. Then the minimum hub number is $h\left(K_{p}\right)=0$. Then

$$
A_{H}\left(K_{p}\right)=\left(\begin{array}{ccccccccc}
0 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 1 & \cdots & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 0 & \cdots & 1 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0 & 1 & \cdots & 1 & 1 \\
1 & 1 & 1 & \cdots & 1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 0
\end{array}\right)_{p \times p}
$$

The respective characteristic polynomial is

$$
\begin{aligned}
f_{p}\left(K_{p}, \lambda\right) & =\left|\begin{array}{ccccccccc}
\lambda & -1 & -1 & \cdots & -1 & -1 & \cdots & -1 & -1 \\
-1 & \lambda & -1 & \cdots & -1 & -1 & \cdots & -1 & -1 \\
-1 & -1 & \lambda & \cdots & -1 & -1 & \cdots & -1 & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & -1 & \cdots & \lambda & -1 & \cdots & -1 & -1 \\
-1 & -1 & -1 & \cdots & -1 & \lambda & \cdots & -1 & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & -1 & \cdots & -1 & -1 & \cdots & \lambda & -1 \\
-1 & -1 & -1 & \cdots & -1 & -1 & \cdots & -1 & \lambda
\end{array}\right| \\
& =(\lambda-(p-1))(\lambda+1)^{p-1} .
\end{aligned}
$$

The spectrum of K_{p} will be written as

$$
M H \operatorname{Spec}\left(K_{p}\right)=\left(\begin{array}{cc}
p-1 & -1 \\
1 & p-1
\end{array}\right)
$$

Hence, the minimum hub energy of a complete graph is $E_{H}\left(K_{p}\right)=2 p-2$.
Theorem 3.2. For the complete bipartite graph $K_{n, n}, n \geq 3$, the minimum hub energy is $n+$ $1+(n-1) \sqrt{n}$.

Proof. For the complete bipartite graph $K_{n, n}, n \geq 3$ with vertex set $V=\left\{u_{1}, u_{2}, \cdots, u_{n}, v_{1}, v_{2}, \cdots, v_{n}\right\}$. The minimum hub set is $H=\left\{u_{1}, v_{1}\right\}$. Then

$$
A_{H}\left(K_{n, n}\right)=\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0
\end{array}\right)_{(2 n) \times(2 n)}
$$

The characteristic polynomial of $A_{H}\left(K_{n, n}\right)$ is

$$
\begin{aligned}
f_{2 n}\left(K_{n, n}, \lambda\right) & =\left|\begin{array}{cccccccc}
\lambda-1 & 0 & \cdots & 0 & -1 & -1 & \cdots & -1 \\
0 & 0 & \cdots & 0 & -1 & -1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & -1 & -1 & \cdots & -1 \\
-1 & -1 & \cdots & -1 & \lambda-1 & 0 & \cdots & 0 \\
-1 & -1 & \cdots & -1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & -1 & 0 & 0 & \cdots & 0
\end{array}\right| \\
& =\lambda^{2 n-4}\left(\lambda^{2}-(n+1) \lambda+(n-1)\right)\left(\lambda^{2}+(n-1) \lambda-(n-1)\right)
\end{aligned}
$$

and
$M H \operatorname{Spec}\left(K_{n, n}\right)=\left(\begin{array}{ccccc}0 & \frac{n+1}{2}+\frac{\sqrt{n^{2}-2 n+5}}{2} & \frac{n+1}{2}-\frac{\sqrt{n^{2}-2 n+5}}{2} & \frac{1-n}{2}+\frac{(n-1) \sqrt{n}}{2} & \frac{1-n}{2}-\frac{(n-1) \sqrt{n}}{2} \\ 2 n-4 & 1 & 1 & 1 & 1\end{array}\right)$
Hence, $E_{H}\left(K_{n, n}\right)=n+1+(n-1) \sqrt{n}$.
Theorem 3.3. For $p \geq 2$, the minimum hub energy of a star graph $K_{1, p-1}$ is equal to $\sqrt{4 p-3}$.
Proof. Let $K_{1, p-1}$ be a star graph with vertex set $V=\left\{v_{0}, v_{1}, v_{2}, \cdots, v_{p-1}\right\}, v_{0}$ is the center, and the minimum hub set is $H=\left\{v_{0}\right\}$. Then

$$
A_{H}\left(K_{1, p-1}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)_{p \times p}
$$

The characteristic polynomial of $A_{H}\left(K_{1, p-1}\right)$ is

$$
\begin{aligned}
f_{p}\left(K_{1, p-1}, \lambda\right) & =\left|\begin{array}{ccccc}
\lambda-1 & -1 & -1 & \cdots & -1 \\
-1 & \lambda & 0 & \cdots & 0 \\
-1 & 0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \cdots & \lambda
\end{array}\right| \\
& =\lambda^{p-2}\left(\lambda^{2}-\lambda-(p-1)\right) .
\end{aligned}
$$

and

$$
M H \operatorname{Spec}\left(K_{1, p-1}\right)=\left(\begin{array}{ccc}
0 & \frac{1+\sqrt{4 p-3}}{2} & \frac{1-\sqrt{4 p-3}}{2} \\
p-2 & 1 & 1
\end{array}\right)
$$

Therefore, $E_{H}\left(K_{1, p-1}\right)=\sqrt{4 p-3}$.
Definition 3.4. [6] The double star graph $S_{n, m}$ (see Figure 1) is the graph constructed from $K_{1, n-1}$ and $K_{1, m-1}$ by joining their centers v_{0} and u_{0}. A vertex set $V\left(S_{n, m}\right)=V\left(K_{1, n-1}\right) \cup$ $V\left(K_{1, m-1}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}, u_{0}, u_{1}, \ldots, u_{m-1}\right\}$ and edge set $E\left(S_{n, m}\right)=\left\{v_{0} u_{0}, v_{0} v_{i}, u_{0} u_{j} \mid 1 \leq\right.$ $i \leq n-1,1 \leq j \leq m-1\}$.

Theorem 3.5. For $n \geq 3$, the minimum hub energy of the double star $S_{n, n}$ is equal to $2(\sqrt{n-1}+$ $\sqrt{n})$.
Proof. For the double star graph $S_{n, n}$ with vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}, u_{0}, u_{1}, \ldots, u_{n-1}\right\}$, the minimum hub set is $H=\left\{v_{0}, u_{0}\right\}$. Then

$$
A_{H}\left(S_{n, n}\right)=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right)_{2 n \times 2 n}
$$

The characteristic polynomial of $A_{H}\left(S_{n, n}\right)$ is

$$
\begin{aligned}
f_{2 n}\left(S_{n, n}, \lambda\right) & =\left|\begin{array}{ccccccccc}
\lambda-1 & -1 & -1 & \cdots & -1 & -1 & 0 & \cdots & 0 \\
-1 & \lambda & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \cdots & \lambda & 0 & 0 & \cdots & 0 \\
-1 & 0 & 0 & \cdots & 0 & \lambda-1 & -1 & \cdots & -1 \\
0 & 0 & 0 & \cdots & 0 & -1 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & \lambda
\end{array}\right| \\
& =\lambda^{\frac{n-4}{2}}\left(\lambda^{2}-(n-1)\right)\left(\lambda^{2}-2 \lambda-(n-1)\right) .
\end{aligned}
$$

and

$$
M H \operatorname{Spec}\left(S_{n, n}\right)=\left(\begin{array}{ccccc}
0 & \sqrt{n-1} & -\sqrt{n-1} & 1+\sqrt{n} & 1-\sqrt{n} \\
2 n-4 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Hence, $E_{H}\left(S_{n, n}\right)=2(\sqrt{n-1}+\sqrt{n})$.
Definition 3.6. [1] The cocktail party graph, denoted by $K_{2 \times p}$, is a graph having vertex set $V(G)=\bigcup_{i=1}^{p}\left\{u_{i}, v_{i}\right\}$ and edge set $E(G)=\left\{u_{i} u_{j}, v_{i} v_{j}, u_{i} v_{j}, v_{i} u_{j}: 1 \leq i<j \leq p\right\}$. i.e. $|V(G)|=2 p,|E(G)|=\frac{p^{2}-3 p}{2}$.
Theorem 3.7. For the cocktail party graph $K_{2 \times p}$, the minimum hub energy is

$$
E_{H}\left(K_{2 \times p}\right) \geq(4 p-7)+2 \sqrt{2 p}
$$

Proof. Let $K_{2 \times p}$ be the cocktail party graph, having vertex set $V\left(K_{2 \times p}\right)=\bigcup_{i=1}^{p}\left\{u_{i}, v_{i}\right\}$. Then the hub number of $K_{2 \times p}$ is

$$
h\left(K_{2 \times p}\right)=1
$$

Therefore, $H=\left\{u_{1}\right\}$. Then

$$
A_{H}\left(K_{2 \times p}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 0 & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 \\
1 & 1 & 0 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 0 & 0 \\
1 & 1 & 1 & 1 & \cdots & 0 & 0
\end{array}\right)_{2 p \times 2 p}
$$

The characteristic polynomial of $A_{H}\left(K_{2 \times p}\right)$ is

$$
\begin{aligned}
f_{2 p}\left(K_{2 \times p}, \lambda\right) & =\left[\begin{array}{ccccccc}
\lambda-1 & 0 & -1 & -1 & \cdots & -1 & -1 \\
0 & \lambda & -1 & -1 & \cdots & -1 & -1 \\
-1 & -1 & \lambda & 0 & \cdots & -1 & -1 \\
-1 & -1 & 0 & \lambda & \cdots & -1 & -1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & -1 & -1 & \cdots & \lambda & 0 \\
-1 & -1 & -1 & -1 & \cdots & 0 & \lambda
\end{array}\right] \\
& =\lambda^{p-1}(\lambda+2)^{p-2}\left(\lambda^{3}-(2 p-3) \lambda^{2}-2 p \lambda+(2 p-2)\right) \\
& =\lambda^{p-1}(\lambda+2)^{p-2}\left[\left(\lambda^{3}-(2 p-3) \lambda^{2}-2 p \lambda+(2 p-2)\right)-\left(4 p^{2}-4 p-2\right)\right] \\
& \geq \lambda^{p-1}(\lambda+2)^{p-2}\left[\lambda^{2}(\lambda-(2 p-3))-2 p(\lambda-(2 p-3))\right] \\
& =\lambda^{p-1}(\lambda+2)^{p-2}\left[(\lambda-(2 p-3))\left(\lambda^{2}-2 p\right)\right]
\end{aligned}
$$

Therefore,

$$
M H S p e c\left(K_{2 \times p}\right) \approx\left(\begin{array}{ccccc}
-2 & 0 & 2 p-3 & \sqrt{2 p} & -\sqrt{2 p} \\
p-2 & p-1 & 1 & 1 & 1
\end{array}\right)
$$

where \approx represents approximately equal. Hence, $E_{H}\left(K_{2 \times p}\right) \geq(4 p-7)+2 \sqrt{2 p}$.

4 Some properties of minimum hub energy of graphs

In this section, we introduce some properties of characteristic polynomials of minimum hub matrix of a graph G and some properties of minimum hub eigenvalues.

Theorem 4.1. Let G be a graph of order p, size q, and hub number $h(G)$. Let $f_{p}(G, \lambda)=$ $c_{0} \lambda^{p}+c_{1} \lambda^{p-1}+c_{2} \lambda^{p-2}+\ldots+c_{p}$ be the characteristic polynomial of minimum hub matrix of G. Then
(i) $c_{0}=1$.
(ii) $c_{1}=-h(G)$.
(iii) $c_{2}=\binom{h(G)}{2}-q$.

Proof. (i) Follows by the definition of $f_{p}(G, \lambda)$.
(ii) Since the sum of diagonal elements of $A_{H}(G)$ is equal to $|H|=h(G)$, the sum of determinants of all 1×1 principal submatrices of $A_{H}(G)$ is the trace of $A_{H}(G)$, which evidently is equal to $h(G)$. Thus, $(-1)^{1} c_{1}=h(G)$.
(iii) $(-1)^{2} c_{2}$ is equal to the sum of determinants of all 2×2 principal submatrices of $A_{H}(G)$, that is

$$
\begin{aligned}
c_{2} & =\sum_{1 \leq i<j \leq p}\left|\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{j i} & a_{j j}
\end{array}\right| \\
& =\sum_{1 \leq i<j \leq p}\left(a_{i i} a_{j j}-a_{i j} a_{j i}\right) \\
& =\sum_{1 \leq i<j \leq p} a_{i i} a_{j j}-\sum_{1 \leq i<j \leq p} a_{i j}^{2} \\
& =\binom{h(G)}{2}-q .
\end{aligned}
$$

Theorem 4.2. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ be the eigenvalues of $A_{H}(G)$. Then
(i) $\sum_{i=1}^{p} \lambda_{i}=h(G)$.
(ii) $\sum_{i=1}^{p} \lambda_{i}^{2}=h(G)+2 q$.

Proof. (i) Since the sum of eigenvalues of $A_{H}(G)$ is the trace of $A_{H}(G)$, we have

$$
\sum_{i=1}^{p} \lambda_{i}=\sum_{i=1}^{p} a_{i i}=|H|=h(G) .
$$

(ii) Similarly, the sum of squares of the eigenvalues of $A_{H}(G)$ is the trace of $\left(A_{H}(G)\right)^{2}$. Then

$$
\begin{aligned}
\sum_{i=1}^{p} \lambda_{i}^{2} & =\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i j} a_{j i} \\
& =\sum_{i=1}^{p} a_{i i}^{2}+\sum_{i \neq j}^{p} a_{i j} a_{j i} \\
& =\sum_{i=1}^{p} a_{i i}^{2}+2 \sum_{i<j}^{p} a_{i j}^{2} \\
& =|H|+2 q \\
& =h(G)+2 q
\end{aligned}
$$

Theorem 4.3. Let G be a graph of order p, size q, and let $\lambda_{1}(G)$ be the largest minimum hub eigenvalue of $A_{H}(G)$. Then

$$
\lambda_{1}(G) \geq \frac{2 q+h(G)}{p}
$$

Proof. Let G be a graph of order p and let λ_{1} be the largest minimum hub eigenvalue of $A_{H}(G)$. Then from [2] we have $\lambda_{1}=\max _{X \neq 0}\left\{\frac{X^{t} A X}{X^{t} X}\right\}$, where X is any nonzero vector and X^{t} is its transpose and A is a matrix. If we take $X=J=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$ then we get

$$
\lambda_{1} \geq \frac{J^{t} A_{H}(G) J}{J^{t} J}=\frac{2 q+h(G)}{p}
$$

5 Bounds on minimum hub energy of graphs

In this section, we shall investigate some bounds for minimum hub energy of graphs.
Theorem 5.1. Let G be a connected graph of order p and size q. Then

$$
\sqrt{2 q+h(G)} \leq E_{H}(G) \leq \sqrt{p(2 q+h(G))}
$$

Proof. Consider the Cauchy-Schwartz inequality

$$
\left(\sum_{i=1}^{p} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{p} a_{i}^{2}\right)\left(\sum_{i=1}^{p} b_{i}^{2}\right) .
$$

By choosing $a_{i}=1$ and $b_{i}=\left|\lambda_{i}\right|$, we get

$$
\left(E_{H}(G)\right)^{2}=\left(\sum_{i=1}^{p}\left|\lambda_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{p} 1\right)\left(\sum_{i=1}^{p} \lambda_{i}^{2}\right)=p(2 q+h(G))
$$

Therefore, the upper bound holds.
Now, since

$$
\left(\sum_{i=1}^{p}\left|\lambda_{i}\right|\right)^{2} \geq \sum_{i=1}^{p} \lambda_{i}^{2}
$$

we have $\left(E_{H}(G)\right)^{2} \geq \sum_{i=1}^{p} \lambda_{i}^{2}=2 q+h(G)$. Therefore, $E_{H}(G) \geq \sqrt{2 q+h(G)}$.
Theorem 5.2. For a connected graph G of order p and size q,

$$
\sqrt{2 p-q-1} \leq E_{H}(G) \leq p \sqrt{p-\frac{\Delta}{p}}
$$

Proof. By Lemma 2.3, and Theorem 2.4, we have

$$
\begin{equation*}
\gamma(G)-1 \leq h(G) \leq p-\Delta \tag{5.1}
\end{equation*}
$$

Since for any graph, $2 q \leq p^{2}-p$, it follow by Theorem 5.1, that

$$
E_{H}(G) \leq \sqrt{p(2 q+h(G))} \leq \sqrt{p\left[\left(p^{2}-p\right)+p-\Delta\right]}=p \sqrt{p-\frac{\Delta}{p}}
$$

For the lower bound, since for any connected graph $p \leq 2 q$, by Theorem 5.1, Equation 5.1, and Theorem 2.2, we get

$$
E_{H}(G) \geq \sqrt{2 q+h(G)} \geq \sqrt{p+\gamma(G)-1} \geq \sqrt{p+p-q-1}=\sqrt{2 p-q-1}
$$

Theorem 5.3. Let G be a graph with p vertices and q edges. Then

$$
E_{H}(G) \leq \frac{2 q+h(G)}{p}+\sqrt{(p-1)\left[2 q+h(G)-\left(\frac{2 q+h(G)}{p}\right)^{2}\right]}
$$

Proof. Consider the Cauchy-Schwartz inequality

$$
\left(\sum_{i=1}^{p} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{p} a_{i}^{2}\right)\left(\sum_{i=1}^{p} b_{i}^{2}\right) .
$$

By choosing $a_{i}=1$ and $b_{i}=\left|\lambda_{i}\right|$, we get

$$
\left(\sum_{i=2}^{p}\left|\lambda_{i}\right|\right)^{2} \leq\left(\sum_{i=2}^{p} 1\right)\left(\sum_{i=2}^{p} \lambda_{i}^{2}\right) .
$$

By Theorem 4.2, we have

$$
\left(E_{H}(G)-\left|\lambda_{1}\right|\right)^{2} \leq(p-1)\left(2 q+h(G)-\lambda_{1}^{2}\right)
$$

Therefore,

$$
E_{H}(G) \leq \lambda_{1}+\sqrt{(p-1)\left(2 q+h(G)-\lambda_{1}^{2}\right)}
$$

From Theorem 4.3, we have $\lambda_{1} \geq \frac{2 q+h(G)}{p}$.
Since $f(x)=x+\sqrt{(p-1)\left(2 q+h(G)-x^{2}\right)}$ is a decreasing function, it follows that

$$
f\left(\lambda_{1}\right) \leq f\left(\frac{2 q+h(G)}{p}\right)
$$

Thus,

$$
E_{H}(G) \leq f\left(\lambda_{1}\right) \leq f\left(\frac{2 q+h(G)}{p}\right)
$$

Therefore,

$$
E_{H}(G) \leq \frac{2 q+h(G)}{p}+\sqrt{(p-1)\left[2 q+h(G)-\left(\frac{2 q+h(G)}{p}\right)^{2}\right]}
$$

Theorem 5.4. Let G be a connected graph of order and size p and q, respectively. If $K=$ $\operatorname{det}\left(A_{H}(G)\right)$, then

$$
E_{H}(G) \geq \sqrt{2 q+h(G)+p(p-1) K^{2 / p}}
$$

Proof. Since

$$
\left(E_{H}(G)\right)^{2}=\left(\sum_{i=1}^{p}\left|\lambda_{i}\right|\right)^{2}=\left(\sum_{i=1}^{p}\left|\lambda_{i}\right|\right)\left(\sum_{i=1}^{p}\left|\lambda_{i}\right|\right)=\sum_{i=1}^{p}\left|\lambda_{i}\right|^{2}+\sum_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right| .
$$

using the inequality between the arithmetic and geometric means, we get

$$
\frac{1}{p(p-1)} \sum_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right| \geq\left(\prod_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right|\right)^{1 /[p(p-1)]}
$$

Thus

$$
\begin{aligned}
\left(E_{H}(G)\right)^{2} & \geq \sum_{i=1}^{p}\left|\lambda_{i}\right|^{2}+p(p-1)\left(\prod_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right|\right)^{1 /[p(p-1)]} \\
& \geq \sum_{i=1}^{p}\left|\lambda_{i}\right|^{2}+p(p-1)\left(\prod_{i=1}^{p}\left|\lambda_{i}\right|^{2(p-1)}\right)^{1 /[p(p-1)]} \\
& =\sum_{i=1}^{p}\left|\lambda_{i}\right|^{2}+p(p-1)\left|\prod_{i=1}^{p} \lambda_{i}\right|^{2 / p} \\
& =2 q+h(G)+p(p-1) K^{2 / p}
\end{aligned}
$$

Theorem 5.5. Let G be a graph with a minimum hub set H. If the minimum hub energy $E_{H}(G)$ of G is a rational number, then

$$
E_{H}(G) \equiv|H|(\bmod 2)
$$

Proof. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ be minimum hub eigenvalues of a graph G of which $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ are positive and the remaining are non-positive, then

$$
\begin{aligned}
\sum_{i=1}^{p}\left|\lambda_{i}\right| & =\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{s}\right)-\left(\lambda_{s+1}+\ldots+\lambda_{p}\right) \\
& =2\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{s}\right)-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{p}\right)
\end{aligned}
$$

i.e. $E_{H}(G)=2\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{s}\right)-|H|$. Since $\lambda_{1}, \lambda_{2}, \ldots ., \lambda_{s}$ are algebraic integers, so is their sum. Therefore $\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{s}\right)$ must be an integer if $E_{H}(G)$ is rational. Hence the theorem.

References

[1] C. Adiga, A. Bayad, I. Gutman and S. A. Srinivas, The minimum covering energy of a graph, Kragujevac Journal of Science, 34 (2012), 39-56.
[2] R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, 2011.
[3] R. B. Bapat and S. Pati, Energy of a graph is never an odd integer, Bulletin of Kerala Mathematics Association, 1 (2011), 129-132.
[4] C. A. Coulson, On the calculation of the energy in unsaturated hidrocarbon molecules, Proc. Cambridge Phil. Soc., 36 (1940), 201-203.
[5] T. Grauman, S. Hartke, A. Jobson, B. Kinnersley, D. west, L. wiglesworth, P. Worah and H. Wu, The hub number of a graph, Information processing letters, 108 (2008), 226-228.
[6] J. W. Grossman, F. Harary and M. Klawe, Generalized ramsey theorem for graphs, X: Double stars, Discrete Mathematics, 28 (1979), 247-254.
[7] I. Gutman, The energy of a graph, Ber. Math.Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
[8] I. Gutman, The energy of a graph: old and new results, in : A. Betten, A. Kohnert, R. Laue, A. Wassermann(Eds.), Algebraic combinatorics and Applications, Springer, (2001), 196-211.
[9] I. Gutman, Topology and stability of conjugated hidrocarbons. The dependence of the π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005), 441-456.
[10] I. Gutman, X. Li and J. Zhang, Graph Energy, (Ed-s: M. Dehmer, F. Em-mert), Streib., Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim (2009), 145-174.
[11] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
[12] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dckker, New York, 1998.
[13] J. H. Koolen and V. Moulton, Maximal energy graphs, Advanced in Applied Mathematics, 26 (2001), 47-52.
[14] V. R. Kulli, Theory of domination in graphs, Vishwa International Publications, Gulbarga, India, 2010.
[15] X. Li, Y. Shi and I. Gutman, Graph energy, Springer, New York Heidelberg Dordrecht, London, 2012.
[16] M. Walsh, The hub number of graphs, International Journal of Mathematics and Computer Science, 1 (2006), 117-124.

Author information

Veena Mathad and Sultan Senan Mahde, Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, India.
E-mail: veena_mathad@rediffmail.com; sultan.mahde@gmail.com
Received: July 4, 2015.
Accepted: February 20, 2016.

