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Abstract. In this paper, we give new Hermite-Hadamard-type and Ostrowski-type inequal-

ities of convex functions of 2-variables on the co-ordinates by using Hölder's inequality. Our

established results generalize some recent results for functions whose partial derivatives in qth
power of absolute value are convex on the co-ordinates on the rectangle from the plane.

1 Introduction

In 1938, the classical integral inequality established by Ostrowski [15] as follows:

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative f
′
:

(a, b)→ R is bounded on (a, b), i.e., ∥f ′∥∞ = sup
t∈(a,b)

|f ′(t)| < ∞. Then, the inequality holds:

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(x− a+b
2
)2

(b− a)2

]
(b− a) ∥f ′∥∞ (1.1)

for all x ∈ [a, b]. The constant 1

4
is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory of some special

means; estimating error bounds for some special means, some mid-point, trapezoid and Simpson

rules and quadrature rules, etc. In addition, the current approach of obtaining the bounds, for a

particular quadrature rule, have depended on the use of Peano kernel. The general approach in

the past has involved the assumption of bounded derivatives of degree greater than one.

In a recent paper [3], Barnett and Dragomir proved the following Ostrowski type inequality

for double integrals:

Theorem 1.2. Let f : [a, b] × [c, d]→ R be continuous on [a, b] × [c, d], f ′′
x,y = ∂2f

∂x∂y exists on

(a, b)× (c, d) and is bounded, i.e.,∥∥f ′′
x,y

∥∥
∞ = sup

(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f(x, y)

∂x∂y

∣∣∣∣ < ∞.

Then, we have the inequality:∣∣∣∣∣∣
b∫

a

d∫
c

f(s, t)dtds− (d− c)(b− a)f(x, y)

−

(b− a)

d∫
c

f(x, t)dt+ (d− c)

b∫
a

f(s, y)ds

∣∣∣∣∣∣ (1.2)

≤
[
1

4
(b− a)2 + (x− a+ b

2
)2
] [

1

4
(d− c)2 + (y − d+ c

2
)2
] ∥∥f ′′

x,y

∥∥
∞
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for all (x, y) ∈ [a, b]× [c, d].

In [3], the inequality (1.2) is established by the use of integral identity involving Peano ker-

nels. In [16], Pachpatte obtained an inequality in the view (1.2) by using elementary analysis.

The interested reader is also refered to ([3], [5], [16]) for Ostrowski type inequalities in several

independent variables and for recent weighted version of these type inequalities see [1], [2], [20],

[21] and [22].

Let f : I ⊂ R → R be a convex mapping de�ned on the interval I of real numbers and

a, b ∈ I , with a < b. The following double inequality is well known in the literature as the

Hermite-Hadamard inequality [9]:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.3)

The inequalities (1.3) have grown into a signi�cant pillar for mathematical analysis and op-

timization, besides, by looking into a variety of settings, these inequalities are found to have a

number of uses. What is more, for a speci�c choice of the function f, many inequalities with

special means are obtainable. Hermite Hadamard's inequality (1.3), for example, is signi�cant

in its rich geometry and hence there are many studies on it to demonstrate its new proofs, re-

�nements, extensions and generalizations. You can check ([6], [7], [10], [11], [19]) and the

references included there.

Let us now consider a bidimensional interval D =: [a, b]× [c, d] in R2 with a < b and c < d.
A mapping f : D→ R is said to be convex on D if the following inequality:

f (tx+ (1− t) z, ty + (1− t)w) ≤ tf (x, y) + (1− t) f (z, w)

holds, for all (x, y) , (z, w) ∈ D and t ∈ [0, 1]. A function f : D → R is said to be on the co-

ordinates on D if the partial mappings fy : [a, b] → R, fy (u) = f (u, y) and fx : [c, d] → R,
fx (v) = f (x, v) are convex where de�ned for all x ∈ [a, b] and y ∈ [c, d] (see,[5])

A formal de�nition for co-ordinated convex function may be stated as follows:

De�nition 1.3. A function f : D→ R will be called co-ordinated canvex on D, for all t, s ∈ [0, 1]
and (x, y) , (u, v) ∈ D, if the following inequality holds:

f(tx+ (1− t)y, su+ (1− s)v)

≤ tsf(x, u) + s(1− t)f(y, u) + t(1− s)f(x, v) + (1− t)(1− s)f(y, v).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated

convex function which is not convex, (see, [5]). For several recent results concerning Hermite-

Hadamard's inequality for some convex function on the co-ordinates on a rectangle from the

plane R2, we refer the reader to ([12], [17], [18], [8], [14], [23]-[26]).

Also, in [5], Dragomir establish the following similar inequality of Hadamard's type for co-

ordinated convex mapping on a rectangle from the plane R2.

Theorem 1.4. Suppose that f : D → R is co-ordinated convex on D. Then one has the inequali-
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ties:

f

(
a+ b

2
,
c+ d

2

)
(1.4)

≤ 1

2

[
1

b− a

∫ b

a

f

(
x,

c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4

[
1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

+
1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

The above inequalities are sharp.

In [23], Sarikaya et al. proved some new inequalities that give estimate of the deference be-

tween the middle and the right most terms in (1.4) for differentiable co-ordinated convex func-

tions on rectangele from the planeR2. For several recent results concerning Hermite-Hadamard's

inequality for some convex function on the co-ordinates on a rectangle from the plane R2; we

refer the reader to ([4], [13]).

In [26], Sarikaya proved the following Lemma for double integrals. The lemma is necessary

and plays an important role in establishing our main results. Firstly, the Sλ (f ; g, h) operator that
we will use throughout the article may be de�ned as follow:

Sλ (f ; g, h) :=

 b∫
a

g(u)du

 d∫
c

h(u)du

 (1.5)

×
[
(1− λ)

2
f (x, y) + λ (1− λ) f (b, y) + λ (1− λ) f (x, d) + λ2f (b, d)

]
−

 x∫
a

g(u)du

 d∫
c

h(s) [(1− λ) f (x, s) + λf (a, s)] ds

−

 b∫
x

g(u)du

 d∫
c

h(s) [(1− λ) f (x, s) + λf (b, s)] ds

−

 y∫
c

h(u)du

 b∫
a

g(t) [(1− λ) f (t, y) + λf (t, c)] dt

−

 d∫
y

h(u)du

 b∫
a

g(t) [(1− λ) f (t, y) + λf (t, d)] dt

+

b∫
a

d∫
c

g(t)h(s)f (t, s) dsdt.

Lemma 1.5. Let f : [a, b] × [c, d] ⊂ R2→ R be an absolutely continuous function such that

the partial derivative of order 2 exists for all (t, s) ∈ [a, b] × [c, d] =: D, and the functions
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g : [a, b] → [0,∞) and h : [c, d] → [0,∞) are integrable. If fts (t, s) ∈ L(D), then the following

equality holds:
b∫

a

d∫
c

Pλ (x, t)Qλ (y, s) fts (t, s) dsdt = Sλ (f ; g, h)

where

Pλ (x, t) :=


(1− λ)

t∫
a

g (u) du+ λ
t∫
x

g (u) du , a ≤ t < x

(1− λ)
t∫
b

g (u) du+ λ
t∫
x

g (u) du , x ≤ t ≤ b.

and

Qλ (y, s) :=


(1− λ)

s∫
c

h (u) du+ λ
s∫
y

h (u) du , a ≤ t < x

(1− λ)
s∫
d

h (u) du+ λ
s∫
y

h (u) du , x ≤ t ≤ b.

for λ ∈ [0, 1].

The main purpose of this paper is to establish new Hadamard-type inequalities of convex

functions of 2-variables on the co-ordinates by using Lemma 1.5, Holder's inequality and ele-

mentary analysis.

2 Hadamard's Type Inequalities and Results

For convenience, we give the following notations used to simplify the details of presentation,

Aλ (x) = (1− λ) (3b− a− 2x) + λ (3b− 2a− x) ,

Bλ (x) = (1− λ) (b− 3a+ 2x) + λ (2b− 3a+ x) ,

Cλ (y) = (1− λ) (3d− c− 2y) + λ (3d− 2c− y) ,

Dλ (y) = (1− λ) (d− 3c+ 2y) + λ (2d− 3c+ y) ,

Aλ (x, y) = Aλ (x)Cλ (y) |fts (a, c)|q + (2− λ) (y − c)Aλ (x) |fts (a, d)|q

+(2− λ) (x− a)Cλ (y) |fts (b, c)|q + (2− λ)
2
(x− a) (y − c) |fts (b, d)|q ,

Bλ (x, y) = (2− λ) (d− y)Aλ (x) |fts (a, c)|q +Aλ (x)Dλ (y) |fts (a, d)|q

+(2− λ)
2
(x− a) (d− y) |fts (b, c)|q + (2− λ) (x− a)Dλ (y) |fts (b, d)|q ,

Cλ (x, y) = (2− λ) (b− x)Cλ (y) |fts (a, c)|q + (2− λ)
2
(b− x) (y − c) |fts (a, d)|q

+Bλ (x)Cλ (y) |fts (b, c)|q + (2− λ) (y − c)Bλ (x) |fts (b, d)|q ,

Dλ (x, y) = (2− λ)
2
(b− x) (d− y) |fts (a, c)|q ++(2− λ) (b− x)Dλ (y) |fts (a, d)|q

+(2− λ) (d− y)Bλ (x) |fts (b, c)|q +Bλ (x)Dλ (y) |fts (b, d)|q ,
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A (x, y) =

[
(b− a)

2 − (b− x)
2
] [

(d− c)
2 − (d− y)

2
]

4
|fts (a, c)|q

+

[
(b− a)

2 − (b− x)
2
]
(y − c)

2

4
|fts (a, d)|q

+

[
(d− c)

2 − (d− y)
2
]
(x− a)

2

4
|fts (b, c)|q +

(x− a)
2
(y − c)

2

4
|fts (b, d)|q ,

B (x, y) =

[
(b− a)

2 − (b− x)
2
]
(d− y)

2

4
|fts (a, c)|q

+

[
(b− a)

2 − (b− x)
2
] [

(d− c)
2 − (y − c)

2
]

4
|fts (a, d)|q

+
(x− a)

2
(d− y)

2

4
|fts (b, c)|q +

[
(d− c)

2 − (y − c)
2
]
(x− a)

2

4
|fts (b, d)|q ,

C (x, y) =

[
(d− c)

2 − (d− y)
2
]
(b− x)

2

4
|fts (a, c)|q +

(b− x)
2
(y − c)

2

4
|fts (a, d)|q

+

[
(b− a)

2 − (x− a)
2
] [

(d− c)
2 − (d− y)

2
]

4
|fts (b, c)|q

+

[
(b− a)

2 − (x− a)
2
]
(y − c)

2

4
|fts (b, c)|q ,

and

D (x, y) =
(b− x)

2
(d− y)

2

4
|fts (a, c)|q +

[
(d− c)

2 − (y − c)
2
]
(b− x)

2

4
|fts (a, d)|q

+

[
(b− a)

2 − (x− a)
2
]
(d− y)

2

4
|fts (b, c)|q

+

[
(b− a)

2 − (x− a)
2
] [

(d− c)
2 − (y − c)

2
]

4
|fts (b, d)|q .

Using the Lemma 1.5, we can obtain the following general integral inequalities. We prove

following theorem by using Hölder's inequality. However, the right side of acquired inquality

will be independent from p which is p > 1 and 1

p + 1

q = 1.

Theorem 2.1. Let f : D ⊂ R2→ R be an absolutely continuous function such that the partial

derivative of order 2 exists for all (t, s) ∈ D and the functions g : [a, b] → [0,∞) and h : [c, d] →
[0,∞) are integrable on D. If |fts (t, s)|q , q ≥ 1, is a convex function on the co-ordinates on D,
then the following inequality holds:

|Sλ (f ; g, h)| (2.1)

≤
∥g∥[a,b],∞ ∥h∥[c,d],∞

4 · 3
2

q [(b− a) (d− c)]
1

q

×
{
(x− a)

2
(y − c)

2
(Aλ (x, y))

1

q + (x− a)
2
(d− y)

2
(Bλ(x, y))

1

q

+(b− x)
2
(y − c)

2
(Cλ(x, y))

1

q + (b− x)
2
(d− y)

2
(Dλ(x, y))

1

q

}
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where 1

p + 1

q = 1, λ ∈ [0, 1] , ∥g∥[a,b],∞ = sup
u∈[a,b]

|g(u)| , and ∥h∥[c,d]∞ = sup
u∈[c,d]

|h(u)| .

Proof. We take absolute value of (1.5). Using bounded of the mappings g and h, we �nd that

|Sλ (f ; g, h)| (2.2)

≤
b∫

a

d∫
c

|Pλ (x, t)| |Qλ (y, s)| |fts (t, s)| dsdt

≤ ∥g∥[a,x],∞ ∥h∥[c,y],∞

×
x∫

a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)] |fts (t, s)| dsdt

+ ∥g∥[a,x],∞ ∥h∥[y,d],∞

×
x∫

a

d∫
y

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (d− s) + λ (s− y)] |fts (t, s)| dsdt

+ ∥g∥[x,b],∞ ∥h∥[c,y],∞

×
b∫

x

y∫
c

[(1− λ) (b− t) + λ (t− x)] [(1− λ) (s− c) + λ (y − s)] |fts (t, s)| dsdt

+ ∥g∥[x,b],∞ ∥h∥[y,d],∞

×
b∫

x

d∫
y

[(1− λ) (b− t) + λ (t− x)] [(1− λ) (d− s) + λ (s− y)] |fts (t, s)| dsdt

= I1 ∥g∥[a,x],∞ ∥h∥[c,y],∞ + I2 ∥g∥[a,x],∞ ∥h∥[y,d],∞

+I3 ∥g∥[x,b],∞ ∥h∥[c,y],∞ + I4 ∥g∥[x,b],∞ ∥h∥[y,d],∞ .

Firstly, we calculate integral I1. Because of
1

p + 1

q = 1, 1

p + 1

q can be written instead of 1.

Using Holder's inequality, we �nd that

x∫
a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)] |fts (t, s)| dsdt

≤

 x∫
a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)] dsdt

 1

p

×

 x∫
a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)] |fts (t, s)|q dsdt

 1

q

.
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Since |fts (t, s)|q is convex function on the co-ordinates on D, we have∣∣∣∣fts( b− t

b− a
a+

t− a

b− a
b,
d− s

d− c
c+

s− c

d− c
d

)∣∣∣∣q (2.3)

≤ (b− t) (d− s)

(b− a) (d− c)
|fts (a, c)|q +

(b− t) (s− c)

(b− a) (d− c)
|fts (a, d)|q

+
(t− a) (d− s)

(b− a) (d− c)
|fts (b, c)|q +

(t− a) (s− c)

(b− a) (d− c)
|fts (b, d)|q .

From (2.3), we get

I1 ≤

(
(x− a)

2
(y − c)

2

4

) 1

p
1

[(b− a) (d− c)]
1

q x∫
a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)]

× [(b− t) (d− s) |fts (a, c)|q + (b− t) (s− c) |fts (a, d)|q

+(t− a) (d− s) |fts (b, c)|q + (t− a) (s− c) |fts (b, d)|q] dsdt)
1

q

=
(x− a)

2
(y − c)

2

4 · 3
2

q [(b− a) (d− c)]
1

q

(Aλ (x, y))
1

q

If we calculate the other integrals in a similar way, then we obtain

I2 ≤
(x− a)

2
(d− y)

2

4 · 3
2

q [(b− a) (d− c)]
1

q

(Bλ (x, y))
1

q

I3 ≤
(b− x)

2
(y − c)

2

4 · 3
2

q [(b− a) (d− c)]
1

q

(Cλ (x, y))
1

q

I4 ≤
(b− x)

2
(d− y)

2

4 · 3
2

q [(b− a) (d− c)]
1

q

(Dλ (x, y))
1

q

Substituting integrals I1, I2, I3 and I4 in (2.2) and using triangle inequality for moduls, we have

|Sλ (f ; g, h)| ≤ 1

4 · 3
2

q [(b− a) (d− c)]
1

q

×
{
∥g∥[a,x],∞ ∥h∥[c,y],∞ (x− a)

2
(y − c)

2
(Aλ(x, y))

1

q

+ ∥g∥[a,x],∞ ∥h∥[y,d],∞ (x− a)
2
(d− y)

2
(Bλ(x, y))

1

q

+ ∥g∥[x,b],∞ ∥h∥[c,y],∞ (b− x)
2
(y − c)

2
(Cλ(x, y))

1

q

+ ∥g∥[x,b],∞ ∥h∥[y,d],∞ (b− x)
2
(d− y)

2
(Dλ(x, y))

1

q

}
.

Because of ∥g∥[a,x],∞ , ∥g∥[x,b],∞ ≤ ∥g∥[a,b],∞ and ∥h∥[c,y],∞ , ∥h∥[y,d],∞ ≤ ∥h∥[c,d],∞ , we easily
deduce required inequality (2.1) which completes the proof.
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Corollary 2.2. If we choose g(u) = h(u) = 1 and λ = 1 in Theorem 2.1, then the following

inequality holds:

∣∣∣∣∣∣(b− a) (d− c) f (b, d)− (x− a)

d∫
c

f (a, s) ds− (b− x)

d∫
c

f (b, s) ds (2.4)

− (y − c)

b∫
a

f (t, c) dt− (d− y)

b∫
a

f (t, d) dt+

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ 1

4 · 3
2

q [(b− a) (d− c)]
1

q

×
{
(x− a)

2
(y − c)

2
(A1 (x, y))

1

q + (x− a)
2
(d− y)

2
(B1(x, y))

1

q

+(b− x)
2
(y − c)

2
(C1(x, y))

1

q + (b− x)
2
(d− y)

2
(D1(x, y))

1

q

}
.

Remark 2.3. If we take x = a+b
2

and y = c+d
2

in (2.4), we get

∣∣∣∣∣∣f (b, d)− 1

2 (d− c)

 d∫
c

f (a, s) ds+

d∫
c

f (b, s) ds



− 1

2 (b− a)

 b∫
a

f (t, c) dt+

b∫
a

f (t, d) dt

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣

≤ (b− a) (d− c)

64

×

{
(25 |fts (a, c)|q + 5 |fts (a, d)|q + 5 |fts (b, c)|q + |fts (b, d)|q)

1

q

36

+

(
5 |fts (a, c)|q + 25 |fts (a, d)|q + |fts (b, c)|q + 5 |fts (b, d)|q

36

) 1

q

+

(
5 |fts (a, c)|q + |fts (a, d)|q + 25 |fts (b, c)|q + 5 |fts (b, d)|q

36

) 1

q

+

(
|fts (a, c)|q + 5 |fts (a, d)|q + 5 |fts (b, c)|q + 25 |fts (b, d)|q

36

) 1

q

}
.

In [13], Latif et. al proved an Ostrowski type inequality by accepting bounded of |fts (t, s)|
and co-ordinated convex of |fts (t, s)|q , and we give a new Ostrowski type inequality whose left

hand side is same as the left hand side of the inequality of Latif et. al by accepting condition of

the Theorem 2.1 in the following corollary.

Corollary 2.4. If we choose g(u) = h(u) = 1 and λ = 0 in Theorem 2.6, then the following
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inequality holds:

∣∣∣∣∣∣f (x, y)− 1

(d− c)

d∫
c

f (x, s) ds (2.5)

− 1

(b− a)

b∫
a

f (t, y) dt+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ 1

4 · 3
2

q [(b− a) (d− c)]
1

q

×
{
(x− a)

2
(y − c)

2
(A0 (x, y))

1

q + (x− a)
2
(d− y)

2
(B0(x, y))

1

q

+(b− x)
2
(y − c)

2
(C0(x, y))

1

q + (b− x)
2
(d− y)

2
(D0(x, y))

1

q

}
.

Remark 2.5. If we take x = a+b
2

and y = c+d
2

in (2.5), we obtain

∣∣∣∣∣∣f
(
a+ b

2
,
c+ d

2

)
− 1

(d− c)

d∫
c

f

(
a+ b

2
, s

)
ds (2.6)

− 1

(b− a)

b∫
a

f

(
t,
c+ d

2

)
dt+

1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣

≤ (b− a) (d− c)

64

×

{
(16 |fts (a, c)|q + 8 |fts (a, d)|q + 8 |fts (b, c)|q + 4 |fts (b, d)|q)

1

q

36

+

(
8 |fts (a, c)|q + 16 |fts (a, d)|q + 4 |fts (b, c)|q + 8 |fts (b, d)|q

36

) 1

q

+

(
8 |fts (a, c)|q + 4 |fts (a, d)|q + 16 |fts (b, c)|q + 8 |fts (b, d)|q

36

) 1

q

+

(
4 |fts (a, c)|q + 8 |fts (a, d)|q + 8 |fts (b, c)|q + 16 |fts (b, d)|q

36

) 1

q

}
.

In Theorem 2.1, we acquired an inequality by using Hölder's inequality and Lemma 1. In

following theorem, we will use again Hölder's inequality and Lemma 1, but we will obtain a

new inequality whose left side is independent of λ by calculating operations in a different way.

Theorem 2.6. Let f : D ⊂ R2→ R be an absolutely continuous function such that the partial

derivative of order 2 exists for all (t, s) ∈ D and the functions g : [a, b] → [0,∞) and h : [c, d] →
[0,∞) are integrable on D. If |fts (t, s)|q , q > 1, is a convex function on the co-ordinates on D,
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then the following inequality holds:

|Sλ (f ; g, h)| (2.7)

≤
∥g∥[a,b],∞ ∥h∥[c,d],∞

[(b− a) (d− c)]
1

q (p+ 1)
2

p

×
{
(x− a)

1+ 1

p (y − c)
1+ 1

p (A(x, y))
1

q + (x− a)
1+ 1

p (d− y)
1+ 1

p (B(x, y))
1

q

+(b− x)
1+ 1

p (y − c)
1+ 1

p (C(x, y))
1

q + (b− x)
1+ 1

p (d− y)
1+ 1

p (D(x, y))
1

q

}
where 1

p + 1

q = 1, λ ∈ [0, 1] , ∥g∥[a,b],∞ = sup
u∈[a,b]

|g(u)| , and ∥h∥[c,d]∞ = sup
u∈[c,d]

|h(u)| .

Proof. We take absolute value of (1.5). Using bounded of the mappings g and h, we �nd the

inequality (2.2). Now, we calculate in a different way the integrals I1, I2, I3 and I4 in (2.2),

Firstly, we calculate integral I1, we �nd that

I1 =

x∫
a

y∫
c

[(1− λ) (t− a) + λ (x− t)] [(1− λ) (s− c) + λ (y − s)] |fts (t, s)| dsdt

= (1− λ)
2

x∫
a

y∫
c

(t− a) (s− c) |fts (t, s)| dsdt+ λ (1− λ)

x∫
a

y∫
c

(t− a) (y − s) |fts (t, s)| dsdt

+λ (1− λ)

x∫
a

y∫
c

(x− t) (s− c) |fts (t, s)| dsdt+ λ2

x∫
a

y∫
c

(x− t) (y − s) |fts (t, s)| dsdt.

Using Hölder's inequality for double integrals and the inequality (2.3), we get

I1 ≤

 x∫
a

y∫
c

|fts (t, s)|q dsdt

 1

q

×

(1− λ)
2

 x∫
a

y∫
c

(t− a)
p
(s− c)

p
dsdt

 1

p

+λ (1− λ)

 x∫
a

y∫
c

(t− a)
p
(y − s)

p
dsdt

 1

p

+λ2

 x∫
a

y∫
c

(x− t)
p
(y − s)

p
dsdt

 1

p

+λ (1− λ)

 x∫
a

y∫
c

(x− t)
p
(s− c)

p
dsdt

 1

p


=

(A(x, y))
1

q

(b− a)
1

q (d− c)
1

q

(x− a)
1+ 1

p (y − c)
1+ 1

p

(p+ 1)
2

p

.
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If we calculate the other integrals in a similar way, then we obtain

I2 ≤
(B(x, y))

1

q

(b− a)
1

q (d− c)
1

q

(x− a)
1+ 1

p (d− y)
1+ 1

p

(p+ 1)
2

p

,

I3 ≤
(C(x, y))

1

q

(b− a)
1

q (d− c)
1

q

(b− x)
1+ 1

p (y − c)
1+ 1

p

(p+ 1)
2

p

,

and

I4 ≤
(D(x, y))

1

q

(b− a)
1

q (d− c)
1

q

(b− x)
1+ 1

p (d− y)
1+ 1

p

(p+ 1)
2

p

.

Substituting integrals I1, I2, I3 and I4 in (2.2) and using triangle inequality for moduls, then we

obtain

|Sλ (f ; g, h)|

≤ 1

[(b− a) (d− c)]
1

q (p+ 1)
2

p

×
{
∥g∥[a,x],∞ ∥h∥[c,y],∞ (x− a)

1+ 1

p (y − c)
1+ 1

p (A(x, y))
1

q

+ ∥g∥[a,x],∞ ∥h∥[y,d],∞ (x− a)
1+ 1

p (d− y)
1+ 1

p (B(x, y))
1

q

+ ∥g∥[x,b],∞ ∥h∥[c,y],∞ (b− x)
1+ 1

p (y − c)
1+ 1

p (C(x, y))
1

q

+ ∥g∥[x,b],∞ ∥h∥[y,d],∞ (b− x)
1+ 1

p (d− y)
1+ 1

p (D(x, y))
1

q

}
.

Because of ∥g∥[a,x],∞ , ∥g∥[x,b],∞ ≤ ∥g∥[a,b],∞ and ∥h∥[c,y],∞ , ∥h∥[y,d],∞ ≤ ∥h∥[c,d],∞ , we easily
deduce required inequality (2.7) which completes the proof.

Corollary 2.7. If we choose g(u) = h(u) = 1 and λ = 1 in Theorem 2.6; then the following

inequality holds:

∣∣∣∣∣∣(b− a) (d− c) f (b, d)− (x− a)

d∫
c

f (a, s) ds− (b− x)

d∫
c

f (b, s) ds (2.8)

− (y − c)

b∫
a

f (t, c) dt− (d− y)

b∫
a

f (t, d) dt+

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ 1

[(b− a) (d− c)]
1

q (p+ 1)
2

p

×
{
(x− a)

1+ 1

p (y − c)
1+ 1

p (A(x, y))
1

q + (x− a)
1+ 1

p (d− y)
1+ 1

p (B(x, y))
1

q

+(b− x)
1+ 1

p (y − c)
1+ 1

p (C(x, y))
1

q + (b− x)
1+ 1

p (d− y)
1+ 1

p (D(x, y))
1

q

}
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Remark 2.8. If we take f (a, c) = f (a, d) = f (b, c) = f (b, d) in (2.8), then we get

|(b− x) (d− y) f (b, d) + (b− x) (y − c) f (b, c) + (x− a) (d− y) f (a, d)

+ (x− a) (y − c) f (a, c)−
b∫

a

[(d− y) f (t, d) + (y − c) f (t, c)] dt

−
d∫

c

[(b− x) f (b, s) + (x− a) f (a, s)] ds+

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ 1

[(b− a) (d− c)]
1

q (p+ 1)
2

p

×
{
(x− a)

1+ 1

p (y − c)
1+ 1

p (A(x, y))
1

q + (x− a)
1+ 1

p (d− y)
1+ 1

p (B(x, y))
1

q

+(b− x)
1+ 1

p (y − c)
1+ 1

p (C(x, y))
1

q + (b− x)
1+ 1

p (d− y)
1+ 1

p (D(x, y))
1

q

}

which is proved by Sarikaya in [25].

Corollary 2.9. If we take x = a+b
2

and y = c+d
2

in (2.8), then we get

∣∣∣∣∣∣f (b, d)− 1

2 (d− c)

 d∫
c

f (a, s) ds+

d∫
c

f (b, s) ds

 (2.9)

− 1

2 (b− a)

 b∫
a

f (t, c) dt+

b∫
a

f (t, d) dt

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ (b− a) (d− c)

16

×

{(
9 |fts (a, c)|q + 3 |fts (a, d)|q + 3 |fts (b, c)|q + |fts (b, d)|q

16

) 1

q

+

(
3 |fts (a, c)|q + 9 |fts (a, d)|q + |fts (b, c)|q + 3 |fts (b, d)|q

16

) 1

q

+

(
3 |fts (a, c)|q + |fts (a, d)|q + 9 |fts (b, c)|q + 3 |fts (b, d)|q

16

) 1

q

+

(
|fts (a, c)|q + 3 |fts (a, d)|q + 3 |fts (b, c)|q + 9 |fts (b, d)|q

16

) 1

q

}
.
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Remark 2.10. If we take f (a, c) = f (a, d) = f (b, c) = f (b, d) in (2.9), then we have∣∣∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
− 1

2(d− c)

 d∫
c

f (a, s) ds+

d∫
c

f (b, s) ds

(2.10)
− 1

2 (b− a)

 b∫
a

f (t, c) dt+

b∫
a

f (t, d) dt

+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ (b− a) (d− c)

16

×

{
(9 |fts (a, c)|q + 3 |fts (a, d)|q + 3 |fts (b, c)|q + |fts (b, d)|q)

1

q

16

+

(
3 |fts (a, c)|q + 9 |fts (a, d)|q + |fts (b, c)|q + 3 |fts (b, d)|q

16

) 1

q

+

(
3 |fts (a, c)|q + |fts (a, d)|q + 9 |fts (b, c)|q + 3 |fts (b, d)|q

16

) 1

q

+

(
|fts (a, c)|q + 3 |fts (a, d)|q + 3 |fts (b, c)|q + 9 |fts (b, d)|q

16

) 1

q

}
.

which is proved by Sarikaya et al. in [23].

Corollary 2.11. If we choose g(u) = h(u) = 1 and λ = 0 in Theorem 2.6, then we obtain∣∣∣∣∣∣f (x, y)− 1

(d− c)

d∫
c

f (x, s) ds (2.11)

− 1

(b− a)

b∫
a

f (t, y) dt+
1

(b− a) (d− c)

b∫
a

d∫
c

f (t, s) dsdt

∣∣∣∣∣∣
≤ 1

[(b− a) (d− c)]
1

q (p+ 1)
2

p

×
{
(x− a)

1+ 1

p (y − c)
1+ 1

p (A(x, y))
1

q + (x− a)
1+ 1

p (d− y)
1+ 1

p (B(x, y))
1

q

+(b− x)
1+ 1

p (y − c)
1+ 1

p (C(x, y))
1

q + (b− x)
1+ 1

p (d− y)
1+ 1

p (D(x, y))
1

q

}
.

Remark 2.12. If we take x = a+b
2

and y = c+d
2

in (2.11), then we get a new Hermite-Hadamard-

type inequality whose left hand side is same as left hand side of the inequality (2.6) and right

hand side is same as right hand side of the inequality (2.9) either.
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