GRAPH OPERATIONS ON THE SYMMETRIC DIVISION DEG INDEX OF GRAPHS

C. K. Gupta ${ }^{1}$, V. Lokesha ${ }^{2 *}$, Shwetha B. S^{3} and Ranjini P. S^{4}
Communicated by P. K. Banerji

MSC 2010 Classifications: Primary: 05C20; Secondary: 05C05.
Keywords and phrases: Graph operations, Symmetric division deg index, Maximum degree, nilpotent matrix group, Cayley graph.

The second and third authors are visiting researchers of Prof. C. K. Gupta, and they thank the authorities of University of Manitoba, Canada for providing an necessary arrangements to complete this work.

Abstract

The Symmetric division deg index of a connected graph G, is defined as $S D D(G)=$ $\sum_{u v \in E(G)} \frac{d_{u}}{d_{v}}+\frac{d_{v}}{d_{u}}$ where d_{v} is the degree of a vertex v in G. In this paper, we concentrated on the graph operations like lexicographic product, symmetric difference and corona product of graphs related to the symmetric division deg index.

1 Introduction and Preliminaries

Molecular descriptors, being numerical functions of molecular structure, play a fundamental role mathematical chemistry. They are used in QSAR and QSPR studies to relate biological or chemical properties of molecules to specific molecular descriptors [3]. Topological indices, being numerical functions of the underlying molecular graph, represent an important type of molecular descriptors. Some applications related topological indices related to smart polymers are found in [11] and comparative study of topological indices ad molecular weigh of some carbohydrates are in [12]. Recently in [5], C. K. Gupta and et al., established the relations on graph operations on matrix group.

Inspired by the most successful indices of this form, such as second zagreb index,[4], Randic index [10], [15] and others, there was defined a whole family of Adriatic indices [17]. In recent times [16], D. Vukicevic revealed the set of 148 discrete Adriatic indices. They were analyzed on the testing sets provided by the International Academy of Mathematical Chemistry and it had been shown that they have good predictive properties in many cases. There was a vast research regarding various properties of this topological index.

In a new article [17], D. Vukicevic posed the open questions in his end of the paper. Stimulate from this, here we ardent one of the index specifically, SDD. This emphasizes the development of lower and upper bounds for graphs [6]. This acquires some results that are partial answer to the open queries.

Symmetric division deg index is one of the discrete Adriatic indices that is good predictor of total surface area for polychlorobiphenyls. Some results on symmetric division deg index is also found in [1].

In group theory, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable and for finite nilpotent groups, two elements having relatively prime orders must commute. The multiplicative group of upper unitriangular $n \times n$ matrices over any field F is a nilpotent group of length $n-1$ [14]. Here, we discussed some relations related to cayley graph of nilpotent matrix group of length one related to SDD.

We recall some definitions which are essential.
Definition: 1 The first Zagreb index [9] defined as,

$$
M_{1}(G)=\sum d(u)^{2}=\sum_{u, v \in E(G)}[d(u)+d(v)]
$$

Definition: 2 The Symmetric division deg index of a connected graph G, is defined as

$$
S D D(G)=\sum_{u v \in E(G)} \frac{\max \left(d_{u}, d_{v}\right)}{\min \left(d_{u}, d_{v}\right)}+\frac{\min \left(d_{u}, d_{v}\right)}{\max \left(d_{u}, d_{v}\right)}=\sum_{u v \in E(G)} \frac{d_{u}}{d_{v}}+\frac{d_{v}}{d_{u}}=\sum_{u v \in E(G)} \frac{d_{u}^{2}+d_{v}^{2}}{d_{u} d_{v}}
$$

where d_{v} is the degree of a vertex v in G.
The Composition (also called lexicographic product [7]) $G=G_{1}\left[G_{2}\right]$ of graph G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{i}, v_{j}\right)$ is adjacent with $\left(u_{k}, v_{l}\right)$ whenever u_{i} is adjacent with u_{k}, or $u_{i}=u_{k}$ and v_{j} is adjacent with v_{l}.

In [2], the Cartesian product $G_{1} \times G_{2}$ of graph G_{1} and G_{2} has the vertex set $V\left(G_{1} \times G_{2}\right)$ $=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ is an edge of $G_{1} \times G_{2}$ if $u_{i}=u_{k}$ and $v_{j} v_{l} \in E\left(G_{2}\right)$, or $u_{i} u_{k} \in E\left(G_{1}\right)$ and $v_{j}=v_{l}$.

For given graph G_{1} and G_{2} we define their Corona product $G_{1} \circ G_{2}$ as the graph obtained by taking $\left|V\left(G_{1}\right)\right|$ copies of G_{2} and joining each vertex of the i-th copy with vertex $v_{i} \in V\left(G_{1}\right)$. Obviously, $\left|V\left(G_{1} o G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|\left(1+\left|V\left(G_{2}\right)\right|\right)$ and $\left|E\left(G_{1} o G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|V\left(G_{1}\right)\right|\left(\left|V\left(G_{2}\right)\right|+\right.$ $\left.\left|E\left(G_{2}\right)\right|\right)$ [4].

A sum $G_{1}+G_{2}$ of two graph G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ is the graph on the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set
$E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Hence, the sum of two graph is obtained by connecting each vertex of one graph to each vertex of the other graph, while keeping all edges of both graph.[18].

The Symmetric difference [8] $G_{1} \oplus G_{2}$ of two graph G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and
$E\left(G_{1} \oplus G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ or $u_{2} v_{2} \in E\left(G_{2}\right)$ but not both $\}$.
Obviously,
$\left|E\left(G_{1} \oplus G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right|^{2}-4\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$
$d_{G_{1} \oplus G_{2}}(u, v)=\left|V\left(G_{2}\right)\right| d_{G_{1}}(u)+\left|V\left(G_{1}\right)\right| d_{G_{2}}(v)-2 d_{G_{1}}(u) d_{G_{2}}(v)$.
Some graph operations on Harmonic index are found in [13]. Motivated from this, in this paper, we concentrate on graph operations like join, corona product, cartesian product, composition and symmetric difference of graph are established.

2 Main Results

In this section, we established the graph operations for SDD index.
Theorem 2.1. Let G_{1} and G_{2} be two connected graph with order n_{1}, n_{2}, size m_{1}, m_{2}, maximum degree Δ_{1}, Δ_{2} and minimum degree δ_{1}, δ_{2} respectively. Then

$$
\begin{aligned}
S D D\left(G_{1}\left[G_{2}\right]\right) & \leq \frac{n_{1}}{n_{2} \delta_{1}+\delta_{2}}\left(2 m_{2} n_{2} \Delta_{1}+M_{1}\left(G_{2}\right)\right) \\
& +\frac{n_{2}^{2}}{n_{2} \delta_{1}+\delta_{2}}\left(2 m_{1} \Delta_{2}+n_{2} M_{1}\left(G_{1}\right)\right)
\end{aligned}
$$

Equality hold only if graph is regular.

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots v_{n_{2}}\right\}$ be a set of vertex for G_{1} and G_{2} respectively. By the Definition of the composition of two graph one can see that,

$$
\begin{aligned}
\left|E\left(G_{1}\left[G_{2}\right]\right)\right| & =\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right| \\
d_{G_{1}\left[G_{2}\right]}(u, v) & =\left|V\left(G_{2}\right)\right| d_{G_{1}}(u)+d_{G_{2}}(v)
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& S D D\left(G_{1}\left[G_{2}\right]\right)=\sum_{\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right) \in E\left(G_{1}\left[G_{2}\right]\right),\left(u_{i}, v_{j}\right) \neq\left(u_{k}, v_{l}\right)} \frac{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1}\left[G_{2}\right]}\left(u_{k}, v_{l}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)} \\
& =\sum_{\left(u_{i}, v_{j}\right),\left(u_{i}, v_{l}\right) \in E\left(G_{1}\left[G_{2}\right]\right), j \neq l} \frac{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{l}\right)}+\frac{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{l}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)} \\
& +\sum_{\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right) \in E\left(G_{1}\left[G_{2}\right]\right), i \neq k} \frac{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1}\left[G_{2}\right]}\left(u_{k}, v_{l}\right)}{d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)} \\
& =\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)} \frac{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}+\frac{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)} \\
& +\sum_{u_{i}, u_{k} \in E\left(G_{1}\right)} \sum_{v_{j} \in V\left(G_{2}\right)} \sum_{v_{l} \in V\left(G_{2}\right)} \frac{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{l}\right)}+\frac{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{l}\right)}{\left|V\left(G_{2}\right)\right| d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)} \\
& =n_{1} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)} \frac{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}+\frac{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)} \\
& +n_{2}{ }^{2} \sum_{u_{i}, u_{k} \in E\left(G_{1}\right)} \frac{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{n_{2} d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{l}\right)}+\frac{n_{2} d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{l}\right)}{n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)} \\
& \leq n_{1} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)} \frac{n_{2} \Delta_{1}+d_{G_{2}}\left(v_{j}\right)}{n_{2} \delta_{1}+\delta_{2}}+\frac{n_{2} \Delta_{1}+d_{G_{2}}\left(v_{l}\right)}{n_{2} \delta_{1}+\delta_{2}} \\
& +n_{2}^{2} \sum_{u_{i}, u_{k} \in E\left(G_{1}\right)} \frac{n_{2} d_{G_{1}}\left(u_{i}\right)+\Delta_{2}}{n_{2} \delta_{1}+\delta_{2}}+\frac{n_{2} d_{G_{1}}\left(u_{k}\right)+\Delta_{2}}{n_{2} \delta_{1}+\delta_{2}} \\
& =\frac{n_{1}}{n_{2} \delta_{1}+\delta_{2}} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)}\left(2 n_{2} \Delta_{1}+d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{l}\right)\right) \\
& +\frac{n_{2}^{2}}{n_{2} \delta_{1}+\delta_{2}} \sum_{u_{i}, u_{k} \in E\left(G_{1}\right)}\left(2 \Delta_{2}+n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{k}\right)\right)\right. \\
& =\frac{n_{1}}{n_{2} \delta_{1}+\delta_{2}}\left(2 m_{2} n_{2} \Delta_{1}+M_{1}\left(G_{2}\right)\right)+\frac{n_{2}^{2}}{n_{2} \delta_{1}+\delta_{2}}\left(2 m_{1} \Delta_{2}+n_{2} M_{1}\left(G_{1}\right)\right) .
\end{aligned}
$$

Corollary 2.2. Let G_{i} for $i \in\{1,2\}$, be a cayley graph of nilpotent matrix group of length one. Then

$$
S D D\left(G_{1}\left[G_{2}\right]\right)=4 n^{2}(n+1) \text { for } n \geq 7
$$

Proof. Result is directly from the theorem 2.1. Since For $n \geq 7$, cayley graph of nilpotent matrix group of length one with n vertices has $2 n$ edges and degree of each vertices is 4 .
Also $M_{1}\left(G_{i}\right)=16 n$.
Theorem 2.3. Let G_{1} and G_{2} be two connected graph with order n_{1}, n_{2} and size m_{1}, m_{2} respectively. Then

$$
S D D\left(G_{1} \times G_{2}\right) \leq \frac{2\left(\Delta_{1}+\Delta_{2}\right)}{\delta_{1}+\delta_{2}}\left(n_{1} m_{2}+n_{2} m_{1}\right)
$$

Equality hold only if graph is regular.

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots v_{n_{2}}\right\}$ be a set of vertex for G_{1} and G_{2} respectively. By the Definition of the cartesian product of two graph one can see that,

$$
\begin{aligned}
\left|E\left(G_{1} \times G_{2}\right)\right| & =\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right| \\
d_{G_{1} \times G_{2}}(u, v) & =d_{G_{1}}(u)+d_{G_{2}}(v) .
\end{aligned}
$$

Consider,

$$
\begin{aligned}
S D D\left(G_{1} \times G_{2}\right) & =\sum_{\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right) \in E\left(G_{1} \times G_{2}\right),\left(u_{i}, v_{j}\right) \neq\left(u_{k}, v_{l}\right)}\left[\frac{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \times G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \times G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}\right] \\
& =\sum_{\left(u_{i}, v_{j}\right),\left(u_{i}, v_{l}\right) \in E\left(G_{1} \times G_{2}\right), v_{j} v_{v} \in E\left(G_{2}\right)}\left[\frac{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \times G_{2}}\left(u_{i}, v_{l}\right)}+\frac{d_{G_{1} \times G_{2}}\left(u_{i}, v_{l}\right)}{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}\right] \\
& +\sum_{\left(u_{i}, v_{j}\right),\left(u_{k}, v_{j}\right) \in E\left(G_{1} \times G_{2}\right), u_{i} u_{k} \in E\left(G_{1}\right)}\left[\frac{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \times G_{2}}\left(u_{k}, v_{j}\right)}+\frac{d_{G_{1} \times G_{2}}\left(u_{k}, v_{j}\right)}{d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)}\right] \\
& =\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)}\left[\frac{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}+\frac{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{l}\right)}{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}\right] \\
& +\sum_{v_{j} \in V\left(G_{2}\right)} \sum_{u_{i}, u_{k} \in E\left(G_{1}\right)}\left[\frac{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}{d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{j}\right)}+\frac{d_{G_{1}}\left(u_{k}\right)+d_{G_{2}}\left(v_{j}\right)}{d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)}\right] \\
& \leq n_{1} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)}\left[\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}+\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}\right] \\
& +n_{2} \sum_{u_{i, u u_{k} \in E\left(G_{1}\right)}}\left[\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}+\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}\right] \\
& =2 n_{1} m_{2}\left[\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}\right]+2 n_{2} m_{1}\left[\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}\right] \\
& =2\left[\frac{\Delta_{1}+\Delta_{2}}{\delta_{1}+\delta_{2}}\right]\left(n_{1} m_{2}+n_{2} m_{1}\right) .
\end{aligned}
$$

Equality hold only if graph is regular.
Corollary 2.4. Let G_{i} for $i \in\{1,2\}$, be a cayley graph of nilpotent matrix group of length one. Then

$$
S D D\left(G_{1} \times G_{2}\right)=8 n^{2} \text { for } n \geq 7
$$

Theorem 2.5. For $i \in\{1,2\}$, let G_{i} be a graph of minimum degree δ_{i}, maximum degree Δ_{i},order n_{i} and size m_{i}. Then

$$
S D D\left(G_{1} o G_{2}\right) \leq 2 m_{1}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right)+2 m_{2} n_{1}\left(\frac{\Delta_{2}+1}{\delta_{2}+1}\right)+n_{1} n_{2}\left(\frac{\Delta_{1}+n_{2}}{\delta_{2}+1}+\frac{\Delta_{2}+1}{\delta_{1}+n_{2}}\right) .
$$

Equality hold only if graph is regular.
Proof. The edges of $G_{1} o G_{2}$ are partitioned into three subsets E_{1}, E_{2} and E_{3} as follows

$$
\begin{aligned}
& E_{1}=\left\{e \in E\left(G_{1} o G_{2}\right), e \in E\left(G_{1}\right)\right\} \\
& E_{2}=\left\{e \in E\left(G_{1} o G_{2}\right), e \in E\left(G_{2 i}\right), i=1,2 \ldots\left|V\left(G_{1}\right)\right|\right\} \\
& E_{3}=\left\{e \in E\left(G_{1} o G_{2}\right), e=u v, u \in V\left(G_{2 i}\right), i=1,2 \ldots\left|V\left(G_{1}\right)\right| \text { and } v \in V\left(G_{1}\right)\right\}
\end{aligned}
$$

and if u is a vertex of $G_{1} o G_{2}$, then

$$
d_{G_{1} o G_{2}}(u)= \begin{cases}d_{G_{1}}(u)+\left|V\left(G_{2}\right)\right| & \text { if } u \in V\left(G_{1}\right) \\ d_{G_{2}}(u)+1 & \text { if } u \in V\left(G_{2}\right)\end{cases}
$$

Let $G_{1}=\left(V_{i}, E_{i}\right), i \in\{1,2\}$ and let $G_{1} o G_{2}=(V, E)$
we have

$$
\begin{aligned}
S D D\left(G_{1} o G_{2}\right) & =\sum_{u v \in E\left(G_{1} o G_{2}\right)}\left(\frac{d_{G_{1} o G_{2}}(u)}{d_{G_{1} o G_{2}}(v)}+\frac{d_{G_{1} o G_{2}}(v)}{d_{G_{1} o G_{2}}(u)}\right) \\
& =Q_{1}+Q_{2}+Q_{3} .
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{1} & =\sum_{u v \in E_{1}}\left(\frac{d_{G_{1}}(u)+n_{2}}{d_{G_{1}}(v)+n_{2}}+\frac{d_{G_{1}}(v)+n_{2}}{d_{G_{1}}(u)+n_{2}}\right) \\
& \leq \sum_{u v \in E_{1}}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}+\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right)=2 m_{1}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right) \\
Q_{2} & =n_{1} \sum_{u v \in E_{2}}\left(\frac{d_{G_{2}}(u)+1}{d_{G_{1}}(v)+1}+\frac{d_{G_{1}}(v)+1}{d_{G_{1}}(u)+1}\right) \\
& \leq n_{1} m_{2}\left(\frac{\Delta_{2}+1}{\delta_{2}+1}+\frac{\Delta_{2}+1}{\delta_{2}+1}\right)=2 n_{1} m_{2}\left(\frac{\Delta_{2}+1}{\delta_{2}+1}\right) \\
Q_{3} & =\sum_{u v \in E_{3}, u \in V_{1} a n d v \in V_{2}}\left(\frac{d_{G_{1}}(u)+n_{2}}{d_{G_{2}}(v)+1}+\frac{d_{G_{2}}(v)+1}{d_{G_{1}}(u)+n_{2}}\right) \\
& \leq n_{1} n_{2}\left(\frac{\Delta_{1}+n_{2}}{\delta_{2}+1}+\frac{\Delta_{2}+1}{\delta_{1}+n_{2}}\right) .
\end{aligned}
$$

Using Q_{1} to Q_{3} in $S D D\left(G_{1} o G_{2}\right)$, we get

$$
S D D\left(G_{1} o G_{2}\right) \leq 2 m_{1}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right)+2 m_{2} n_{1}\left(\frac{\Delta_{2}+1}{\delta_{2}+1}\right)+n_{1} n_{2}\left(\frac{\Delta_{1}+n_{2}}{\delta_{2}+1}+\frac{\Delta_{2}+1}{\delta_{1}+n_{2}}\right) .
$$

Corollary 2.6. Let G_{i} for $i \in\{1,2\}$, be a cayley graph of nilpotent matrix group of length one. Then

$$
S D D\left(G_{1} o G_{2}\right)=4 n^{2}+4 n+n^{2}\left(\frac{n^{2}+8 n+41}{5 n+20}\right) \text { for } n \geq 7
$$

Theorem 2.7. Let G_{1} and G_{2} be two connected graph with order n_{1}, n_{2} and size m_{1}, m_{2} respectively. Then

$$
S D D\left(G_{1}+G_{2}\right) \leq 2 m_{1}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right)+2 m_{2}\left(\frac{\Delta_{2}+n_{1}}{\delta_{2}+n_{1}}\right)+n_{1} n_{2}\left(\frac{\Delta_{1}+n_{2}}{\delta_{2}+n_{1}}+\frac{\Delta_{2}+n_{1}}{\delta_{1}+n_{2}}\right) .
$$

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots v_{n_{2}}\right\}$ be a set of vertex for G_{1} and G_{2} respectively. By the Definition of the join of two graph one can see that, if u is a vertex of $G_{1}+G_{2}$, then

$$
d_{G_{1}+G_{2}}(u)= \begin{cases}d_{G_{1}}(u)+\left|V\left(G_{2}\right)\right| & \text { if } u \in V\left(G_{1}\right) \\ d_{G_{2}}(u)+\left|V\left(G_{1}\right)\right| \text { if } u \in V\left(G_{2}\right)\end{cases}
$$

Therefore,

$$
\begin{aligned}
S D D\left(G_{1}+G_{2}\right)= & \sum_{u v \in E\left(G_{1}+G_{2}\right)}\left(\frac{d_{G_{1}+G_{2}}(u)}{d_{G_{1}+G_{2}}(v)}+\frac{d_{G_{1}+G_{2}}(v)}{d_{G_{1}+G_{2}}(u)}\right) \\
= & \sum_{u v \in E\left(G_{1}\right)}\left(\frac{d_{G_{1}}(u)+n_{2}}{d_{G_{1}}(v)+n_{2}}+\frac{d_{G_{1}}(v)+n_{2}}{d_{G_{1}}(u)+n_{2}}\right)+\sum_{u v \in E\left(G_{2}\right)}\left(\frac{d_{G_{2}}(u)+n_{1}}{d_{G_{2}}(v)+n_{1}}+\frac{d_{G_{2}}(v)+n_{1}}{d_{G_{2}}(u)+n_{1}}\right) \\
& \quad+\sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)}\left(\frac{d_{G_{1}}(u)+n_{2}}{d_{G_{2}}(v)+n_{1}}+\frac{d_{G_{2}}(v)+n_{1}}{d_{G_{1}}(u)+n_{2}}\right) \\
& \leq 2 m_{1}\left(\frac{\Delta_{1}+n_{2}}{\delta_{1}+n_{2}}\right)+2 m_{2}\left(\frac{\Delta_{2}+n_{1}}{\delta_{2}+n_{1}}\right)+n_{1} n_{2}\left(\frac{\Delta_{1}+n_{2}}{\delta_{2}+n_{1}}+\frac{\Delta_{2}+n_{1}}{\delta_{1}+n_{2}}\right) .
\end{aligned}
$$

Corollary 2.8. Let G_{i} for $i \in\{1,2\}$, be a cayley graph of nilpotent matrix group of length one. Then

$$
S D D\left(G_{1}+G_{2}\right)=2 n^{2}+8 n \text { for } n \geq 7
$$

Theorem 2.9. For $i \in\{1,2\}$, let G_{i} be a graph of maximum degree Δ_{i}, minimum degree δ_{i} order n_{i} and size m_{i}. Then

$$
S D D\left(G_{1} \oplus G_{2}\right) \leq 2\left(n_{2}^{2} m_{1}+n_{1}^{2} m_{2}-4 m_{1} m_{2}\right) \frac{n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}}
$$

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$ be a set of vertex for G_{1} and G_{2} respectively.

Consider,

$$
\begin{align*}
& S D D\left(G_{1} \oplus G_{2}\right)= \sum_{\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right) \in E\left(G_{1} \oplus G_{2}\right)} \frac{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)} \\
&= \sum_{v_{j} \in V\left(G_{2}\right)} \sum_{v_{l} \in V\left(G_{2}\right)} \sum_{u_{i}, u_{k} \in E\left(G_{1}\right)} \frac{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)} \\
&+\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{u_{k} \in V\left(G_{1}\right)} \sum_{v_{j}, v_{l} \in E\left(G_{2}\right)} \frac{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)} \\
&-\sum_{u_{i}, u_{k} \in E\left(G_{1}\right)} \sum_{v_{j}, v_{l} \in E\left(G_{1}\right)} \frac{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)} \ldots \ldots(1) \tag{1}
\end{align*}
$$

As per the definition of the Symmetric difference of a graph

$$
\begin{aligned}
\frac{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}+\frac{d_{G_{1} \oplus G_{2}}\left(u_{k}, v_{l}\right)}{d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)} & =\frac{n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)}{n_{2} d_{G_{1}}\left(u_{k}\right)+n_{1} d_{G_{2}}\left(v_{l}\right)-2 d_{G_{1}}\left(u_{k}\right) d_{G_{2}}\left(v_{l}\right)} \\
& +\frac{n_{2} d_{G_{1}}\left(u_{k}\right)+n_{1} d_{G_{2}}\left(v_{l}\right)-2 d_{G_{1}}\left(u_{k}\right) d_{G_{2}}\left(v_{l}\right)}{n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)} \\
& \leq \frac{n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}}+\frac{n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}} \\
& =2 \frac{n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}} \ldots . .(2)
\end{aligned}
$$

From equation (1) and (2) we get

$$
\begin{aligned}
S D D\left(G_{1} \oplus G_{2}\right) \leq & n_{2}^{2} m_{1} \frac{2\left(n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}\right)}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}} \\
& +n_{1}^{2} m_{2} \frac{2\left(n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}\right)}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}} \\
& -4 m_{1} m_{2} \frac{2\left(n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}\right)}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}} \\
= & 2\left(n_{2}^{2} m_{1}+n_{1}^{2} m_{2}-4 m_{1} m_{2}\right) \frac{n_{2} \Delta_{1}+n_{1} \Delta_{2}-2 \delta_{1} \delta_{2}}{n_{2} \delta_{1}+n_{1} \delta_{2}-2 \Delta_{1} \Delta_{2}}
\end{aligned}
$$

Corollary 2.10. Let G_{i} for $i \in\{1,2\}$, be a cayley graph of nilpotent matrix group of length one. Then

$$
S D D\left(G_{1}+G_{2}\right)=8 n^{2}(n-4) \text { for } n \geq 7
$$

References

[1] V. Alexander, Upper and lower bounds of symmetric division deg index, Iranian Journal of Mathematical Chemistry, 5.2, (2014) 91-98.
[2] Das. K. C , Xu. K ,Cangul. I.N, Cevik. A.S and Graovac.A, On the Harary index of graph operations, Journal of Inequalities and Applications,1(2013), 1-16.
[3] J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, (1999).
[4] G.H. Fath-Tabar, A. Hamzeh and S. Hossein-Zadeh, GA2 index of some graph operations, Filomat, 24:1(2010), 210-218.
[5] C. K. Gupta, V. Lokesha, Shwetha B. Shetty, On the graph of nilpotent matrix group of length one, Discrete Mathematics, Algorithms and applications 8(1)(2016), 1-31. DOI: 10.1142/S1793830916500099.
[6] C. K. Gupta, V. Lokesha, Shwetha B. Shetty, On the Symmetric division deg index of graph, South East Asian Journal Of Mathematics 41(1) (2016), 1-23.
[7] F. Harary, Graph theory, Reading, MA: Addison-Wesley, (1994).
[8] M.H. Khalifeha, H. Yousefi-Azari and A. R. Ashrafi, The Hyper-Wiener index of graph operations, Computers and Mathematics with Applications, 56:5 (2008), 1402-1407.
[9] M.H. Khalifeha, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Applied Mathematics, 157:4(2009), 804-811.
[10] V. Lokesha, Shwetha B. S, Ranjini P.S, Cangul. Ismail N and Cevik Ahmet S, New bounds for Randic and GA indices, Journal of Inequalities and Applications, 180:1, (2013), 1-7.
[11] Shwetha B. Shetty, V. Lokesha, P. S. Ranjini and K. C. Das, Computing some topological indices of Smart polymer, Digest Journal of Nanomaterials and Biostructures, 7:3(2012), 1097-1102.
[12] B. S. Shwetha, V. Lokesha, A. Bayad and P. S. Ranjini, A Comparative Study of Topological Indices and Molecular Weight of Some Carbohydrates, Journal of the Indian Academy of Mathematics, 34(2) (2012), 627-636.
[13] B. S. Shwetha, V. Lokesha and P. S. Ranjini, On The Harmonic Index of Graph Operations, Transactions on Combinatorics, 4(4)(2015), 5-14 .
[14] D. Suprunenko, Matrix groups, Transl. Math. Monogr., vol. 45, American Mathematical Society, Providence, RI, (1976).
[15] Shirdel. G. H., H. Rezapour, and A. M. Sayadi, The Hyper-Zagreb index of Graph Operations, Iranian Journal of Mathematical Chemistry 4.2 (2013), 213-220.
[16] Vukicevic. D and M. GaŽperov, Bond additive modeling 1. Adriatic indices, Croatica chemica acta $\mathbf{8 3 . 3}$ (2010), 243-260.
[17] Vukicevic. D, Bond Additive Modeling 2. Mathematical properties of Max-min rodeg index, Croatica chemica acta 83.3(2010), 261-273.
[18] Yero. Ismael. G and Rodríguez-Velázquez. Juan A, On the Randić index of Corona Product graph, International Scholarly Research Notices, (2011).

Author information

C. K. Gupta ${ }^{1}$, V. Lokesha ${ }^{2 *}$, Shwetha B. S 3 and Ranjini P. S ${ }^{4}$,
${ }^{1}$ Department of Mathematics, University of Manitoba, Winnipeg, R3T 2N2, Canada.
${ }^{2}$ Department of Studies in Mathematics, V. S. K University, Ballari-583105, India.
${ }^{3,4}$ Department of Mathematics, Don Bosco Institute of Technology, Bangalore-78, India.,.
E-mail: Chander.Gupta@umanitoba.ca; v.lokesha@gmail.com; shwethu17@gmail.com; ranjini_p_s@yahoo.com

Received: June 12, 2015.
Accepted: March 21, 2016.

