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Abstract. In this paper, we formulate a nonlinear programming problem corresponding to a

bimatrix game with nonnegative matrices, and prove that a solution of this programming problem

is an equilibrium for the corresponding game.

1 Introduction

The study of applied aspects of game models for different areas shows that antagonistic games

are traditionally used and do not always adequately re�ect the real situation. For this class of

problems, bimatrix game can be used as a mathematical model. It is clear from the name that

bimatrix games are described by two payoff matrices. To identify all the situations in the game

with two players, choosing their pure strategies can be shown by two payoff matrices A = [aij ]
and B = [bij ] of the same dimension m × n where m and n denote the number of strategies of

players 1 and 2, respectively (for more details, see [7]). The principle of optimality for these

games is the concept of Nash equilibrium [6]. Bimatrix games can be classi�ed in the theory

of non-cooperative games, but even they are not always solvable according to Nash or strongly

solvable. To �nd equilibrium in bimatrix games, there are various algorithms which one of

them is a method of describing the submatrices of A and B yielding all extreme points of the

set of equilibrium solutions [2, 8], and some other methods reduce the problem of �nding the

equilibrium solutions of a bimatrix game to a problems of quadratic programming [3�5].

2 Model and Main Results

Consider the bimatrix game described by the payoff matrices A = [aij ] and B = [bij ] of dimen-

sion m × n. The goal of each player is to achieve the maximum number of winnings (i.e., to

maximize their own payoff). Consider the mixed extension of the bimatrix game. Let x and y
denote the probability vectors such that

X =

{
x = (x1, x2, . . . , xm) : xi ≥ 0 for i = 1, 2, . . . ,m, and

m∑
i=1

xi = 1

}
, (2.1)

Y =

y = (y1, y2, . . . , yn) : yj ≥ 0 for j = 1, 2, . . . , n, and
n∑

j=1

yj = 1

 . (2.2)

The winnings of the players in the mixed extension are de�ned as follows

H1(x,y) =
m∑
i=1

n∑
j=1

aijxiyj for the �rst player, (2.3)

H2(x,y) =
m∑
i=1

n∑
j=1

bijxiyj for the second player. (2.4)

Nash equilibrium in a bimatrix game is the vectors of the mixed extension of x∗ and y∗ for
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which the following inequalities hold

H1(x
∗,y∗) ≥ H1(x,y

∗) for any x ∈ X, (2.5)

H2(x
∗,y∗) ≥ H2(x

∗,y) for any y ∈ Y. (2.6)

We assume that the entries of the payoff matrices are nonnegative, otherwise, we consider

the game strategically equivalent to the initial game for which the nonnegativity condition is

satis�ed [9]. We show that the solution of the game with nonnegative matrices is related to a

nonlinear programming problem with proving the following two theorems.

Theorem 2.1. The pair of vectors (x∗,y∗) of the mixed extension of a bimatrix game is the Nash

equilibrium if and only if there exist numbers p and q such that

n∑
j=1

aijy
∗
j ≤ p, i = 1, 2, . . . ,m (2.7)

m∑
i=1

bijx
∗
i ≤ q, j = 1, 2, . . . , n (2.8)

m∑
i=1

n∑
j=1

x∗
i y

∗
j (aij + bij) = p+ q. (2.9)

Proof. If the pair (x∗,y∗) is the Nash equilibrium, the expressions above are satis�ed, and also

p and q are the values of the price game for the �rst and second players, respectively, in an

equilibrium situation

p =
m∑
i=1

n∑
j=1

x∗
i y

∗
j aij = H1(x

∗,y∗),

q =
m∑
i=1

n∑
j=1

x∗
i y

∗
j bij = H2(x

∗,y∗).

Conversely, let (x∗,y∗), p, q satisfy the conditions (2.7)-(2.9). We choose a pair of vectors

(x,y) of the mixed extension, and multiply the �rst m inequalities by the components of x, and
adding them yields

m∑
i=1

xi

n∑
j=1

aijy
∗
j ≤

m∑
i=1

xip.

From (2.1) and (2.3), we have H1(x,y∗) ≤ p.
Similarly, multiply the n inequalities of (2.8) by y, we have

n∑
j=1

yj

m∑
i=1

bijx
∗
i ≤

n∑
j=1

yjq.

From (2.2) and (2.4), we have H2(x∗,y) ≤ q.
If we choose (x∗,y∗) instead of (x,y), then we have H1(x∗,y∗) ≤ p and H2(x∗,y∗) ≤ q,

and for the last inequality, (2.9), H1(x∗,y∗) = p and H2(x∗,y∗) = q. The pair (x∗,y∗) satis�es
the de�nition of Nash equilibrium, and p and q are the same values of the price game for each

player.

Theorem 2.2. The pair (x∗,y∗) is an equilibrium of a bimatrix game if and only if for some

nonnegative integers p and q, the collection (x∗,y∗), p, q is a solution to the following nonlinear

programming problem

max
∑m

i=1

∑n
j=1

xiyj (aij + bij)− p− q

s.t.
∑n

j=1
aijyj ≤ p, yj ≥ 0, i = 1, 2, . . . ,m∑m

i=1
bijxi ≤ q, xi ≥ 0, j = 1, 2, . . . , n∑m

i=1
xi = 1,

∑n
j=1

yj = 1.

(2.10)



A Note on Nash Equilibrium in Bimatrix Games 303

Proof. For any pair of vectors (x,y) that satis�es the constraints above, the objective function
will be nonpositive. Let (x∗,y∗) be an equilibrium. We set

p =
m∑
i=1

n∑
j=1

x∗
i y

∗
j aij ,

q =
m∑
i=1

n∑
j=1

x∗
i y

∗
j bij .

Obviously p and q determine the equilibrium of the game. Consider a pair (x,y) satisfying the

�rst two lines of the constraints in (2.10). We choose x as the m vectors of the basis of Rm, the

�rst line of the constraints becomes

n∑
j=1

aijy
∗
j ≤ p, i = 1, 2, . . . ,m.

Similarly, choose y as the n vectors of the basis ofRn, the second line of the constraints becomes

m∑
i=1

bijx
∗
i ≤ q, j = 1, 2, . . . , n.

Thus, the constraints of nonnegativity and normalization are satis�ed for all vectors of the mixed

extension.

Obviously the collection (x∗,y∗), p, q is valid and the value of the objective function is zero, i.e.,
the function reaches its maximum and (x∗,y∗), p, q is a solution.

Conversely, let (x∗,y∗), p, q be a solution of the nonlinear programming (2.10). The objective

value reaches its maximum value (zero) at these values,

m∑
i=1

n∑
j=1

x∗
i y

∗
j (aij + bij)− p− q = 0.

Multiply the m inequalities of the �rst constraint in (2.10) by x∗, we have

m∑
i=1

x∗
i

n∑
j=1

y∗i aij ≤ p.

The pair (x∗,y∗) is a solution, and the objective function of (2.10) is maximized, thus

m∑
i=1

n∑
j=1

x∗
i y

∗
j aij = p.

Repeating the above process for y∗ and the second constraint, we get

m∑
i=1

n∑
j=1

x∗
i y

∗
j bij = q.

Thus, in order to determine an equilibrium in a bimatrix game, it is necessary and suf�cient

to solve the nonlinear programming problem in Theorem 2.2.

The fundamental difference between our result above for bimatrix games with zero-sum games

is that the resulting problem in this case is nonlinear. The objective function in the resulting

problem is quadratic with a system of linear constraints.

The idea of the feasible directions method is stated: it is necessary to determine the possible

direction of the vector d, such that the objective function in the direction of this vector is not
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getting worse, and it does not go outside the feasible region [1, Ch. 10]. Let the general form of

the problem be as follows

max f(z)

s.t. z = (z1, z2, . . . , zt)

Cz ≤ s

Ez ≤ e,

where C is a matrix of dimension r × t, E is an l × t matrix, and s and e are r-dimensional and

l-dimensional vectors, respectively. Given a point zk, C
T = (CT

1
, CT

2
) and sT = (sT

1
, sT

2
), so

C1zk = s1 and C2zk < s2; in other words, the matrix C1 consists of the inequality constraints

that are active at the point zk. Then, a vector d can be obtained from the solution of the following

problem

[P] max ∇f(z)Td

s.t. C1d ≤ 0

Ed = 0

The problem [P] is a linear programming problem, and its solution can be obtained by the

simplex method. Once the feasible direction d is determined, we compute the following

x(k+1) = x(k) + λkd
k,

where λk is the optimal value of the step. In general, the step is computed similar to the method

of steepest descent [1]. The calculations are carried out as long as the objective function does

not turn to zero at the current point.

We calculate the gradient of the objective function and the constraints matrix for the nonlinear

programming to determine the situation of equilibrium in the bimatrix game.

The objective function depends onm+n+2 variables which are the components of x,y, p, and q.

We calculate the gradient

∇f =



(a11 + b11)y1 + (a12 + b12)y2 + . . .+ (a1n + b1n)yn
(a21 + b21)y1 + (a22 + b22)y2 + . . .+ (a2n + b2n)yn

...

(am1 + bm1)y1 + (am2 + bm2)y2 + . . .+ (amn + bmn)yn
(a11 + b11)x1 + (a21 + b21)x2 + . . .+ (am1 + bm1)xm

(a12 + b12)x1 + (a22 + b22)x2 + . . .+ (am2 + bm2)xm

...

(a1n + b1n)x1 + (a2n + b2n)x2 + . . .+ (amn + bmn)xm

−1

−1



=


(A+B)y

(A+B)Tx

−1

−1

 .

The system of inequality constraints

�A =


AT 0 0 0

0 B 0 0

0 . . . 0 0 −1

0 . . . 0 −1 0


is an (m+ n+ 2)× (m+ n+ 2) matrix.

The equality constraints for vectors x and y are of the form

m∑
i=1

xi = 1, and

n∑
j=1

yj = 1.
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The matrix E for the inequality constraints consists of two rows

E =

[
1 1 . . . 1 0 . . . 0 0 0

0 0 . . . 0 1 . . . 1 0 0

]
.

Recall that the game should be considered as a nonnegative payoff matrix, otherwise, we

should �nd a number α such that

aij + α ≥ 0, for i = 1, 2, . . . ,m

bij + α ≥ 0, for j = 1, 2, . . . , n

New payment matrix entries a′ij = aij + α, b′ij = bij + α will be strategically equivalent to

the initial matrix, i.e., the equilibriums will be equal for both of them, and the equilibrium value

of the game varies by the value of α.

3 Illustration

In this section, we consider an example, and explain our results in the previous section in details.

We want to �nd the Nash equilibrium for a bimatrix game with the following payoff matrices

A =

 5 2 1 7

3 8 6 1

7 1 2 5

 , B =

 1 6 7 0

8 1 3 3

3 7 2 5

 .

We formulate the nonlinear programming problem as follows

max
∑3

i=1

∑4

j=1
xiyj (aij + bij)− p− q

s.t.
∑3

i=1
xibij ≤ q, j = 1, 2, 3, 4∑4

i=1
yjaij ≤ p, i = 1, 2, 3

x ≥ 0, y ≥ 0∑3

i=1
xi = 1,

∑4

j=1
yj = 1.

We de�ne the initial approximation; consider the �rst column of A and �nd the maximum

element a13 = 7, y(0) = (1, 0, 0, 0), the initial point satis�es the constraints, x(0) should be

nonzero in third coordinate x(0) = (0, 0, 1). We get the values p(0) = 7 and q(0) = 3. Now, we

calculate the components of the gradient

∇f =
[
7 4 10 10 8 4 10 −1 −1

]T
.

Thus, the problem becomes

max 7d1 + 4d2 + 10d3 + 10d4 + 8d5 + 4d6 + 10d7 − d8 − d9

s.t. 7d3 − 4d9 ≤ 0

3d4 − 4d8 ≤ 0

d1 + d2 + d3 = 0

d4 + d5 + d6 + d7 = 0.

Now, implementing the dual simplex method, we �nd the solution

d =
[
0 0.364 −0.364 −0.364 0.364 0 0 2.182 1.818

]T
,

and λmax = 1.
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Hence, we have

x(1) =
[
0 0.364 0.636

]T
,

y(1) =
[
0.636 0.364 0 0

]T
,

p(1) = 4.818,

q(1) = 4.818.

The objective function for these values is zero, so a solution is obtained which is an equilib-

rium for this game.
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