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Abstract. Let R be a commutative ring such that 1

2
∈ R. We prove that if r is a �xed

invertible element of R and F is a bijective map from a triangular R-algebra T onto an arbitrary

R-algebra which satis�es

F(r(XY + Y X)) = r(F(X)F(Y ) +F(Y )F(X)) (∀X,Y ∈ T ),

then F is automatically additive.

1 Introduction

Throughout this paper R will denote a commutative ring with 1

2
∈ R. Let A and B be unital

algebras over the ring R. Let M be a unital (A,B)-bimodule, which is faithful as a left A-

module as well as a right B-module, that is, for any a ∈ A and b ∈ B, aM = Mb = {0} imply

a = 0 and b = 0. The R-algebra

T = Tri(A,M,B) =

{(
a m

b

)
: a ∈ A, b ∈ B,m ∈ M

}
under the usual matrix operations is called a triangular algebra (see [3] or [4]).

Let C and C′ be unital R-algebras and let r ∈ R. A map F : C → C′ is called an r-Jordan map

if it is a bijective map which satisfes

F(r(XY + Y X)) = r(F(X)F(Y ) +F(Y )F(X)) ∀X,Y ∈ C.

Recently, several authors have studied the additivity of r-Jordan maps. In [7], Molnár showed

that every 1

2
-Jordan map between standard operator algebras is additive. In [6], Lu showed that if

R = Q the �eld of rational numbers and r is a nonzero rational number, then every r-Jordan map

from a unital prime algebra containing a nontrivial idempotent, or a standard operator algebra,

or a unital algebra which has a system of matrix units, onto an arbitrary algebra is additive.

In the present paper, we study the additivity of r-Jordan maps on triangular algebras. We will

prove that if r is an invertible element of R, then every r-Jordan map from T onto an arbitrary

R-algebra is additive.

2 Main result

The following theorem is our main result.

Theorem 2.1. LetA andB be unital algebras over the ringR. LetM be a unital (A,B)-bimodule

which is faithful as a left A-module and also as a right B-module. Let T = Tri(A,M,B) be
the triangular algebra, and C be an algebra over R. Let r be an invertible element of R. Assume

that F : T → C is an r-Jordan map, that is, F is a bijective map satisfying

F(r(XY + Y X)) = r(F(X)F(Y ) +F(Y )F(X)) ∀X, Y ∈ T .

Then F is additive.
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We have divided the proof of the last theorem into a sequence of lemmas.

Let a ∈ A, b ∈ B and u ∈ M. Throughout this paper we shall use the following notations:

Ea =

(
a 0

0

)
, Fb =

(
0 0

b

)
and Xu =

(
0 u

0

)
.

We begin with the following lemma which will be used frequently in the sequel.

Lemma 2.2. Let a, a′ ∈ A, b, b′ ∈ B and u, u′ ∈ M. The following relations hold:

(i) EaEa′ = Eaa′ , EaFb = 0, EaXu = Xau.

(ii) FbEa = 0, FbFb′ = Fbb′ , FbXu = 0.

(iii) XuEa = 0, XuFb = Xub, XuXu′ = 0.

Proof. The proof is straightforward. 2

Throughout the remainder of this section, F is a map which satis�es the assumptions of

Theorem 2.1.

Lemma 2.3. We have F(0) = 0.

Proof. Since F is surjective, there exists A ∈ T such that F(A) = 0. Thus

F(0) = F(r(0A+A0))

= r(F(0)F(A) +F(A)F(0))

= r(F(0)0+ 0F(0)) = 0.2

Lemma 2.4. Let a ∈ A, b ∈ B and u ∈ M. Then there exist α ∈ A, β ∈ B and v ∈ M such that

F(A) = F(Ea) +F(Fb) +F(Xu), where A = Eα + Fβ +Xv. Moreover, for every T ∈ T , we

have F(r(AT + TA)) = F(r(EaT + TEa)) +F(r(FbT + TFb)) +F(r(XuT + TXu)).

Proof. The �rst part follows easily from the surjectivity of F. The second part follows from the

fact that F(r(XY + Y X)) = r(F(X)F(Y ) +F(Y )F(X)) ∀X, Y ∈ T . 2

Lemma 2.5. Let a ∈ A and u ∈ M. Then F(Ea +Xu) = F(Ea) +F(Xu).

Proof. By Lemma 2.4, there exist α ∈ A, β ∈ B and v ∈ M such thatF(A) = F(Ea)+F(Xu),
where A = Eα + Fβ +Xv. Moreover, for any T ∈ T , we have

F(r(AT + TA)) = F(r (EaT + TEa)) +F(r (XuT + TXu)).

If we take T = F1, we get F(r(F2β + Xv)) = F(0) + F(rXu) by Lemma 2.2. Hence

F(r(F2β + Xv)) = F(rXu) by Lemma 2.3. The injectivity of F gives u = v and β = 0.

Now replacing T by Xm with m ∈ M, we obtain F(rXαm) = F(0) + F(rXam) = F(rXam)
by Lemmas 2.2 and 2.3. Again by the injectivity ofF, we get αm = am for everym ∈ M. Since

M is a faithful leftA-module, we have α = a. It follows thatF(Ea+Xu) = F(Ea)+F(Xu). 2

Lemma 2.6. Let b ∈ B and u ∈ M. Then F(Fb +Xu) = F(Fb) +F(Xu).

Proof. By Lemma 2.4, there exist α ∈ A, β ∈ B and v ∈ M such that F(A) = F(Fb)+F(Xu),
where A = Eα + Fβ +Xv. Moreover, for any T ∈ T , we have

F(r(AT + TA)) = F(r (FbT + TFb)) +F(r (XuT + TXu)).

If T = E1, then F(r(E2α + Xv)) = F(0) + F(rXu) = F(rXu) by Lemmas 2.2 and 2.3.

Now, the injectivity of F implies u = v and α = 0.

If T = Xm withm ∈ M, thenF(rXmβ)) = F(0)+F(rXmb), and the injectivity ofF yields

mβ = mb for all m ∈ M. Hence β = b since M is a faithful right B-module. This completes

the proof. 2
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Lemma 2.7. Let a ∈ A, b ∈ B and u ∈ M. ThenF(Ea+Fb+Xu) = F(Ea)+F(Fb)+F(Xu).

Proof. By Lemma 2.4, we can �nd α ∈ A, β ∈ B and v ∈ M such that F(A) = F(Ea) +
F(Fb)+F(Xu), where A = Eα +Fβ +Xv. By Lemma 2.2, we have AE1+E1A = E2α +Xv.

Hence F(r(AE1 +E1A)) = F(r(E2α +Xv)). On the other hand, replacing T by E1 in Lemma

2.4, we get

F(r(AE1 + E1A)) = F(r (EaE1 +E1Ea)) +F(r (FbE1 +E1Fb)) +F(r (XuE1 + E1Xu)).

So by Lemmas 2.2 and 2.3, we have F(r(E2α+Xv)) = F(rE2a)+F(rXu). From Lemma 2.5,

it follows that F(r(E2α + Xv)) = F(r(E2a + Xu)). By the injectivity of F, we have α = a
and u = v. Similarly, by using Lemmas 2.3 and 2.6, we can show that F(r(AF1 + F1A)) =
F(r(F2β + Xv)) = F(r(F2b + Xu)) and hence β = b. Consequently, F(Ea + Fb + Xm) =
F(Ea) +F(Fb) +F(Xm). 2

Lemma 2.8. Let u, v ∈ M. Then F(Xu +Xv) = F(Xu) +F(Xv).

Proof. It is easy to check that Lemma 2.2 gives

Xu +Xv = E1Xu +XvF1

= (E1 +Xv) (Xu + F1)

= (E1 +Xv) (Xu + F1) + (Xu + F1) (E1 +Xv) .

Thus we have

F (Xu +Xv) = F

(
r

((
1

r
E1 +

1

r
Xv

)
(Xu + F1) + (Xu + F1)

(
1

r
E1 +

1

r
Xv

)))
= r

(
F

(
1

r
E1 +

1

r
Xv

)
F (Xu + F1) +F (Xu + F1)F

(
1

r
E1 +

1

r
Xv

))
.

It follows from Lemma 2.7 that

F(Xu +Xv) = r

((
F

(
1

r
E1

)
+F

(
1

r
Xv

))
(F (Xu) +F (F1))

)
+ r

(
(F (Xu) +F (F1))

(
F

(
1

r
E1

)
+F

(
1

r
Xv

)))
= r

(
F

(
1

r
E1

)
F (Xu) +F (Xu)F

(
1

r
E1

))
+ r

(
F

(
1

r
E1

)
F (F1) +F (F1)F

(
1

r
E1

))
+ r

(
F

(
1

r
Xv

)
F (Xu) +F (Xu)F

(
1

r
Xv

))
+ r

(
F

(
1

r
Xv

)
F (F1) +F (F1)F

(
1

r
Xv

))
.

Therefore,

F(Xu +Xv) = F (E1Xu +XuE1) +F (E1F1 + F1E1)

+ F (XvXu +XuXv) +F (XvF1 + F1Xv) .

This implies that F(Xu +Xv) = F (Xu) +F (Xv) by Lemma 2.2. 2

Lemma 2.9. Let a, a′ ∈ A. Then F(Ea +Ea′) = F(Ea) +F(Ea′).
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Proof. By Lemma 2.4, there exist α ∈ A, β ∈ B and v ∈ M such thatF(A) = F(Ea)+F(Ea′),
where A = Eα + Fβ +Xv. Moreover, for any T ∈ T , we have

F(r(AT + TA)) = r(F(A)F(T ) +F(T )F(A))

= r((F(Ea) +F(Ea′))F(T ) +F(T ) (F(Ea) +F(Ea′)))

= r(F(Ea)F(T ) +F(T )F(Ea)) + r(F(Ea′)F(T ) +F(T )F(Ea′))

= F(r (EaT + TEa)) +F(r (Ea′T + TEa′)).

By setting T = F1, we get F(r(F2β +Xv)) = F(0) +F(0) = 0 by Lemmas 2.2 and 2.3. So

the injectivity of F gives v = 0 and β = 0.

By taking T = Xm with m ∈ M, we can get F(rXαm) = F(rEaXm) + F(rEa′Xm) =
F(rXam) + F(rXa′m) since β = 0. Thus F(rXαm) = F(rX(a+a′)m) by Lemma 2.8. The in-

jectivity ofF and the fact thatM is a faithful leftA-module show that α = a+a′. Consequently,
F(Ea +Ea′) = F(Ea) +F(Ea′). 2

Lemma 2.10. For every b, b′ ∈ B, we have F(Fb + Fb′) = F(Fb) +F(Fb′).

Proof. The proof is similar to that of Lemma 2.9. 2

Proof of Theorem 2.1. Let S = Ea + Fb +Xu and S′ = Ea′ + Fb′ +Xu′ , where a, a′ ∈ A, b,
b′ ∈ B and u, u′ ∈ M. Combining the above lemmas, we get the following equalities:

F(S + S′) = F ((Ea + Ea′) + (Fb + Fb′) + (Xu +Xu′))

= F (Ea + Ea′) +F (Fb + Fb′) +F (Xu +Xu′)

= F (Ea) +F (Ea′) +F (Fb) +F (Fb′) +F (Xu) +F (Xu′)

= F(Ea + Fb +Xu) +F(Ea′ + Fb′ +Xu′)

= F (S) +F (S′) .

This proves the theorem. 2

3 Applications

We begin with the following application of Theorem 2.1.

Proposition 3.1. Let A and B be unital algebras over the ring R. Let M be a unital (A,B)-
bimodule that is faithful as a leftA-module and also as a right B-module. Let T = Tri(A,M,B)
be the triangular algebra. Assume that both A and B have only trivial idempotents. If F : T →
T is a 1

2
-Jordan map satisfying F(αX) = αF(X) for all α ∈ R and X ∈ T , then F is either an

automorphism or an anti-automorphism.

Proof. By Theorem 2.1, F is additive. So F is a Jordan endomorphism of T . By [1, Theorem

2.1], F is either an automorphism or an anti-automorphism. 2

We conclude this paper by applying Theorem 2.1 to the two classical examples of triangular

algebras: upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras. Let Ml×m (R) denote the set of all l × m matrices with

entries in R. We denote by Tn (R) the algebra of all n× n upper triangular matrices over R. For
n ≥ 2 and each 1 ≤ l ≤ n − 1, the algebra Tn (R) can be represented as a triangular algebra of

the form

Tn (R) =

(
Tl (R) Ml×(n−l) (R)

Tn−l (R)

)
.

Corollary 3.2. Let r be an invertible element of R and let C be an algebra over R. Then every

r-Jordan map F : Tn (R) → C is additive.
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Proposition 3.3. The following conditions are equivalent:

(i) R contains no idempotents except 0 and 1;

(ii) If F is a 1-Jordan map from the R-algebra Tn(R) (n ≥ 2) onto an arbitrary R-algebra

satisfying F(αX) = αF(X) for all α ∈ R and X ∈ Tn(R), then F is an isomorphism or an

anti-isomorphism.

Proof. This follows from Theorem 2.1 and [2, Theorem p.198]. 2

Nest algebras. (see [5]) A nest N is a chain of closed subspaces of a complex Hilbert space H
containing {0} and H which is closed under arbitrary intersections and closed linear spans. The

nest algebra associated to N is the algebra

T (N ) = {T ∈ B (H) : T (N) ⊂ N for all N ∈ N} .

A nest algebra T (N ) is called trivial if N = {0,H}. If T (N ) is a nontrivial nest algebra

and N ∈ N \ {0,H}, then T (N ) can be represented as a triangular algebra of the form

T (N ) =

(
T (N1) ET (N ) (1− E)

T (N2)

)
,

where E is the orthonormal projection onto N , N1 = E (N ) and N2 = (1− E) (N ). Note

that N1 and N2 are nests of N and N⊥, respectively. Moreover, T (N1) = ET (N )E and

T (N2) = (1− E) T (N ) (1− E) are nest algebras.

Corollary 3.4. Let S be an algebra over the �eldC and let r be a nonzero complex number. Then

every r-Jordan map F : T (N ) → S is additive.
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