ON r-JORDAN MAPS OF TRIANGULAR ALGEBRAS

Rachid Tribak and Driss Aiat Hadj Ahmed
Communicated by N. Mahdou

MSC 2010 Classifications: Primary 47B49, 47L35; Secondary 16W99.
Keywords and phrases: Triangular algebra, r-Jordan map, additivity.

Abstract

Let R be a commutative ring such that $\frac{1}{2} \in R$. We prove that if r is a fixed invertible element of R and Φ is a bijective map from a triangular R-algebra \mathcal{T} onto an arbitrary R-algebra which satisfies $$
\Phi(r(X Y+Y X))=r(\Phi(X) \Phi(Y)+\Phi(Y) \Phi(X))(\forall X, Y \in \mathcal{T})
$$

then Φ is automatically additive.

1 Introduction

Throughout this paper R will denote a commutative ring with $\frac{1}{2} \in R$. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$-bimodule, which is faithful as a left \mathcal{A} module as well as a right \mathcal{B}-module, that is, for any $a \in \mathcal{A}$ and $b \in \mathcal{B}, a \mathcal{M}=\mathcal{M} b=\{0\}$ imply $a=0$ and $b=0$. The R-algebra

$$
\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})=\left\{\left(\begin{array}{ll}
a & m \\
& b
\end{array}\right): a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}\right\}
$$

under the usual matrix operations is called a triangular algebra (see [3] or [4]).
Let \mathcal{C} and \mathcal{C}^{\prime} be unital R-algebras and let $r \in R$. A map $\Phi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is called an r-Jordan map if it is a bijective map which satisfes

$$
\Phi(r(X Y+Y X))=r(\Phi(X) \Phi(Y)+\Phi(Y) \Phi(X)) \forall X, Y \in \mathcal{C} .
$$

Recently, several authors have studied the additivity of r-Jordan maps. In [7], Molnár showed that every $\frac{1}{2}$-Jordan map between standard operator algebras is additive. In [6], Lu showed that if $R=\mathbb{Q}$ the field of rational numbers and r is a nonzero rational number, then every r-Jordan map from a unital prime algebra containing a nontrivial idempotent, or a standard operator algebra, or a unital algebra which has a system of matrix units, onto an arbitrary algebra is additive.

In the present paper, we study the additivity of r-Jordan maps on triangular algebras. We will prove that if r is an invertible element of R, then every r-Jordan map from \mathcal{T} onto an arbitrary R-algebra is additive.

2 Main result

The following theorem is our main result.
Theorem 2.1. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$-bimodule which is faithful as a left \mathcal{A}-module and also as a right \mathcal{B}-module. Let $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular algebra, and \mathcal{C} be an algebra over R. Let r be an invertible element of R. Assume that $\Phi: \mathcal{T} \rightarrow \mathcal{C}$ is an r-Jordan map, that is, Φ is a bijective map satisfying

$$
\Phi(r(X Y+Y X))=r(\Phi(X) \Phi(Y)+\Phi(Y) \Phi(X)) \forall X, Y \in \mathcal{T}
$$

Then Φ is additive.

We have divided the proof of the last theorem into a sequence of lemmas.
Let $a \in \mathcal{A}, b \in \mathcal{B}$ and $u \in \mathcal{M}$. Throughout this paper we shall use the following notations:
$E_{a}=\left(\begin{array}{cc}a & 0 \\ & 0\end{array}\right), F_{b}=\left(\begin{array}{cc}0 & 0 \\ & b\end{array}\right)$ and $X_{u}=\left(\begin{array}{ll}0 & u \\ & 0\end{array}\right)$.
We begin with the following lemma which will be used frequently in the sequel.
Lemma 2.2. Let $a, a^{\prime} \in \mathcal{A}, b, b^{\prime} \in \mathcal{B}$ and $u, u^{\prime} \in \mathcal{M}$. The following relations hold:
(i) $E_{a} E_{a^{\prime}}=E_{a a^{\prime}}, E_{a} F_{b}=0, E_{a} X_{u}=X_{a u}$.
(ii) $F_{b} E_{a}=0, F_{b} F_{b^{\prime}}=F_{b b^{\prime}}, F_{b} X_{u}=0$.
(iii) $X_{u} E_{a}=0, X_{u} F_{b}=X_{u b}, X_{u} X_{u^{\prime}}=0$.

Proof. The proof is straightforward.
Throughout the remainder of this section, Φ is a map which satisfies the assumptions of Theorem 2.1.

Lemma 2.3. We have $\Phi(0)=0$.
Proof. Since Φ is surjective, there exists $A \in \mathcal{T}$ such that $\Phi(A)=0$. Thus

$$
\begin{aligned}
\Phi(0) & =\Phi(r(0 A+A 0)) \\
& =r(\Phi(0) \Phi(A)+\Phi(A) \Phi(0)) \\
& =r(\Phi(0) 0+0 \Phi(0))=0 .
\end{aligned}
$$

Lemma 2.4. Let $a \in \mathcal{A}, b \in \mathcal{B}$ and $u \in \mathcal{M}$. Then there exist $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A)=\Phi\left(E_{a}\right)+\Phi\left(F_{b}\right)+\Phi\left(X_{u}\right)$, where $A=E_{\alpha}+F_{\beta}+X_{v}$. Moreover, for every $T \in \mathcal{T}$, we have $\Phi(r(A T+T A))=\Phi\left(r\left(E_{a} T+T E_{a}\right)\right)+\Phi\left(r\left(F_{b} T+T F_{b}\right)\right)+\Phi\left(r\left(X_{u} T+T X_{u}\right)\right)$.

Proof. The first part follows easily from the surjectivity of Φ. The second part follows from the fact that $\Phi(r(X Y+Y X))=r(\Phi(X) \Phi(Y)+\Phi(Y) \Phi(X)) \forall X, Y \in \mathcal{T}$.

Lemma 2.5. Let $a \in \mathcal{A}$ and $u \in \mathcal{M}$. Then $\Phi\left(E_{a}+X_{u}\right)=\Phi\left(E_{a}\right)+\Phi\left(X_{u}\right)$.
Proof. By Lemma 2.4, there exist $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A)=\Phi\left(E_{a}\right)+\Phi\left(X_{u}\right)$, where $A=E_{\alpha}+F_{\beta}+X_{v}$. Moreover, for any $T \in \mathcal{T}$, we have

$$
\Phi(r(A T+T A))=\Phi\left(r\left(E_{a} T+T E_{a}\right)\right)+\Phi\left(r\left(X_{u} T+T X_{u}\right)\right)
$$

If we take $T=F_{1}$, we get $\Phi\left(r\left(F_{2 \beta}+X_{v}\right)\right)=\Phi(0)+\Phi\left(r X_{u}\right)$ by Lemma 2.2. Hence $\Phi\left(r\left(F_{2 \beta}+X_{v}\right)\right)=\Phi\left(r X_{u}\right)$ by Lemma 2.3. The injectivity of Φ gives $u=v$ and $\beta=0$. Now replacing T by X_{m} with $m \in \mathcal{M}$, we obtain $\Phi\left(r X_{\alpha m}\right)=\Phi(0)+\Phi\left(r X_{a m}\right)=\Phi\left(r X_{a m}\right)$ by Lemmas 2.2 and 2.3. Again by the injectivity of Φ, we get $\alpha m=a m$ for every $m \in \mathcal{M}$. Since \mathcal{M} is a faithful left \mathcal{A}-module, we have $\alpha=a$. It follows that $\Phi\left(E_{a}+X_{u}\right)=\Phi\left(E_{a}\right)+\Phi\left(X_{u}\right)$.

Lemma 2.6. Let $b \in \mathcal{B}$ and $u \in \mathcal{M}$. Then $\Phi\left(F_{b}+X_{u}\right)=\Phi\left(F_{b}\right)+\Phi\left(X_{u}\right)$.
Proof. By Lemma 2.4, there exist $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A)=\Phi\left(F_{b}\right)+\Phi\left(X_{u}\right)$, where $A=E_{\alpha}+F_{\beta}+X_{v}$. Moreover, for any $T \in \mathcal{T}$, we have

$$
\Phi(r(A T+T A))=\Phi\left(r\left(F_{b} T+T F_{b}\right)\right)+\Phi\left(r\left(X_{u} T+T X_{u}\right)\right)
$$

If $T=E_{1}$, then $\Phi\left(r\left(E_{2 \alpha}+X_{v}\right)\right)=\Phi(0)+\Phi\left(r X_{u}\right)=\Phi\left(r X_{u}\right)$ by Lemmas 2.2 and 2.3. Now, the injectivity of Φ implies $u=v$ and $\alpha=0$.

If $T=X_{m}$ with $m \in \mathcal{M}$, then $\left.\Phi\left(r X_{m \beta}\right)\right)=\Phi(0)+\Phi\left(r X_{m b}\right)$, and the injectivity of Φ yields $m \beta=m b$ for all $m \in \mathcal{M}$. Hence $\beta=b$ since \mathcal{M} is a faithful right \mathcal{B}-module. This completes the proof.

Lemma 2.7. Let $a \in \mathcal{A}, b \in \mathcal{B}$ and $u \in \mathcal{M}$. Then $\Phi\left(E_{a}+F_{b}+X_{u}\right)=\Phi\left(E_{a}\right)+\Phi\left(F_{b}\right)+\Phi\left(X_{u}\right)$.
Proof. By Lemma 2.4, we can find $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A)=\Phi\left(E_{a}\right)+$ $\Phi\left(F_{b}\right)+\Phi\left(X_{u}\right)$, where $A=E_{\alpha}+F_{\beta}+X_{v}$. By Lemma 2.2, we have $A E_{1}+E_{1} A=E_{2 \alpha}+X_{v}$. Hence $\Phi\left(r\left(A E_{1}+E_{1} A\right)\right)=\Phi\left(r\left(E_{2 \alpha}+X_{v}\right)\right)$. On the other hand, replacing T by E_{1} in Lemma 2.4, we get

$$
\Phi\left(r\left(A E_{1}+E_{1} A\right)\right)=\Phi\left(r\left(E_{a} E_{1}+E_{1} E_{a}\right)\right)+\Phi\left(r\left(F_{b} E_{1}+E_{1} F_{b}\right)\right)+\Phi\left(r\left(X_{u} E_{1}+E_{1} X_{u}\right)\right)
$$

So by Lemmas 2.2 and 2.3, we have $\Phi\left(r\left(E_{2 \alpha}+X_{v}\right)\right)=\Phi\left(r E_{2 a}\right)+\Phi\left(r X_{u}\right)$. From Lemma 2.5, it follows that $\Phi\left(r\left(E_{2 \alpha}+X_{v}\right)\right)=\Phi\left(r\left(E_{2 a}+X_{u}\right)\right)$. By the injectivity of Φ, we have $\alpha=a$ and $u=v$. Similarly, by using Lemmas 2.3 and 2.6, we can show that $\Phi\left(r\left(A F_{1}+F_{1} A\right)\right)=$ $\Phi\left(r\left(F_{2 \beta}+X_{v}\right)\right)=\Phi\left(r\left(F_{2 b}+X_{u}\right)\right)$ and hence $\beta=b$. Consequently, $\Phi\left(E_{a}+F_{b}+X_{m}\right)=$ $\Phi\left(E_{a}\right)+\Phi\left(F_{b}\right)+\Phi\left(X_{m}\right)$.

Lemma 2.8. Let $u, v \in \mathcal{M}$. Then $\Phi\left(X_{u}+X_{v}\right)=\Phi\left(X_{u}\right)+\Phi\left(X_{v}\right)$.
Proof. It is easy to check that Lemma 2.2 gives

$$
\begin{aligned}
X_{u}+X_{v} & =E_{1} X_{u}+X_{v} F_{1} \\
& =\left(E_{1}+X_{v}\right)\left(X_{u}+F_{1}\right) \\
& =\left(E_{1}+X_{v}\right)\left(X_{u}+F_{1}\right)+\left(X_{u}+F_{1}\right)\left(E_{1}+X_{v}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\Phi\left(X_{u}+X_{v}\right) & =\Phi\left(r\left(\left(\frac{1}{r} E_{1}+\frac{1}{r} X_{v}\right)\left(X_{u}+F_{1}\right)+\left(X_{u}+F_{1}\right)\left(\frac{1}{r} E_{1}+\frac{1}{r} X_{v}\right)\right)\right) \\
& =r\left(\Phi\left(\frac{1}{r} E_{1}+\frac{1}{r} X_{v}\right) \Phi\left(X_{u}+F_{1}\right)+\Phi\left(X_{u}+F_{1}\right) \Phi\left(\frac{1}{r} E_{1}+\frac{1}{r} X_{v}\right)\right)
\end{aligned}
$$

It follows from Lemma 2.7 that

$$
\begin{aligned}
\Phi\left(X_{u}+X_{v}\right) & =r\left(\left(\Phi\left(\frac{1}{r} E_{1}\right)+\Phi\left(\frac{1}{r} X_{v}\right)\right)\left(\Phi\left(X_{u}\right)+\Phi\left(F_{1}\right)\right)\right) \\
& +r\left(\left(\Phi\left(X_{u}\right)+\Phi\left(F_{1}\right)\right)\left(\Phi\left(\frac{1}{r} E_{1}\right)+\Phi\left(\frac{1}{r} X_{v}\right)\right)\right) \\
& =r\left(\Phi\left(\frac{1}{r} E_{1}\right) \Phi\left(X_{u}\right)+\Phi\left(X_{u}\right) \Phi\left(\frac{1}{r} E_{1}\right)\right) \\
& +r\left(\Phi\left(\frac{1}{r} E_{1}\right) \Phi\left(F_{1}\right)+\Phi\left(F_{1}\right) \Phi\left(\frac{1}{r} E_{1}\right)\right) \\
& +r\left(\Phi\left(\frac{1}{r} X_{v}\right) \Phi\left(X_{u}\right)+\Phi\left(X_{u}\right) \Phi\left(\frac{1}{r} X_{v}\right)\right) \\
& +r\left(\Phi\left(\frac{1}{r} X_{v}\right) \Phi\left(F_{1}\right)+\Phi\left(F_{1}\right) \Phi\left(\frac{1}{r} X_{v}\right)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Phi\left(X_{u}+X_{v}\right) & =\Phi\left(E_{1} X_{u}+X_{u} E_{1}\right)+\Phi\left(E_{1} F_{1}+F_{1} E_{1}\right) \\
& +\Phi\left(X_{v} X_{u}+X_{u} X_{v}\right)+\Phi\left(X_{v} F_{1}+F_{1} X_{v}\right)
\end{aligned}
$$

This implies that $\Phi\left(X_{u}+X_{v}\right)=\Phi\left(X_{u}\right)+\Phi\left(X_{v}\right)$ by Lemma 2.2.

Lemma 2.9. Let $a, a^{\prime} \in \mathcal{A}$. Then $\Phi\left(E_{a}+E_{a^{\prime}}\right)=\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)$.

Proof. By Lemma 2.4, there exist $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A)=\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)$, where $A=E_{\alpha}+F_{\beta}+X_{v}$. Moreover, for any $T \in \mathcal{T}$, we have

$$
\begin{aligned}
\Phi(r(A T+T A)) & =r(\Phi(A) \Phi(T)+\Phi(T) \Phi(A)) \\
& =r\left(\left(\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)\right) \Phi(T)+\Phi(T)\left(\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)\right)\right) \\
& =r\left(\Phi\left(E_{a}\right) \Phi(T)+\Phi(T) \Phi\left(E_{a}\right)\right)+r\left(\Phi\left(E_{a^{\prime}}\right) \Phi(T)+\Phi(T) \Phi\left(E_{a^{\prime}}\right)\right) \\
& =\Phi\left(r\left(E_{a} T+T E_{a}\right)\right)+\Phi\left(r\left(E_{a^{\prime}} T+T E_{a^{\prime}}\right)\right)
\end{aligned}
$$

By setting $T=F_{1}$, we get $\Phi\left(r\left(F_{2 \beta}+X_{v}\right)\right)=\Phi(0)+\Phi(0)=0$ by Lemmas 2.2 and 2.3. So the injectivity of Φ gives $v=0$ and $\beta=0$.

By taking $T=X_{m}$ with $m \in \mathcal{M}$, we can get $\Phi\left(r X_{\alpha m}\right)=\Phi\left(r E_{a} X_{m}\right)+\Phi\left(r E_{a^{\prime}} X_{m}\right)=$ $\Phi\left(r X_{a m}\right)+\Phi\left(r X_{a^{\prime} m}\right)$ since $\beta=0$. Thus $\Phi\left(r X_{\alpha m}\right)=\Phi\left(r X_{\left(a+a^{\prime}\right) m}\right)$ by Lemma 2.8. The injectivity of Φ and the fact that \mathcal{M} is a faithful left \mathcal{A}-module show that $\alpha=a+a^{\prime}$. Consequently, $\Phi\left(E_{a}+E_{a^{\prime}}\right)=\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)$.

Lemma 2.10. For every $b, b^{\prime} \in \mathcal{B}$, we have $\Phi\left(F_{b}+F_{b^{\prime}}\right)=\Phi\left(F_{b}\right)+\Phi\left(F_{b^{\prime}}\right)$.
Proof. The proof is similar to that of Lemma 2.9.
Proof of Theorem 2.1. Let $S=E_{a}+F_{b}+X_{u}$ and $S^{\prime}=E_{a^{\prime}}+F_{b^{\prime}}+X_{u^{\prime}}$, where $a, a^{\prime} \in \mathcal{A}, b$, $b^{\prime} \in \mathcal{B}$ and $u, u^{\prime} \in \mathcal{M}$. Combining the above lemmas, we get the following equalities:

$$
\begin{aligned}
\Phi\left(S+S^{\prime}\right) & =\Phi\left(\left(E_{a}+E_{a^{\prime}}\right)+\left(F_{b}+F_{b^{\prime}}\right)+\left(X_{u}+X_{u^{\prime}}\right)\right) \\
& =\Phi\left(E_{a}+E_{a^{\prime}}\right)+\Phi\left(F_{b}+F_{b^{\prime}}\right)+\Phi\left(X_{u}+X_{u^{\prime}}\right) \\
& =\Phi\left(E_{a}\right)+\Phi\left(E_{a^{\prime}}\right)+\Phi\left(F_{b}\right)+\Phi\left(F_{b^{\prime}}\right)+\Phi\left(X_{u}\right)+\Phi\left(X_{u^{\prime}}\right) \\
& =\Phi\left(E_{a}+F_{b}+X_{u}\right)+\Phi\left(E_{a^{\prime}}+F_{b^{\prime}}+X_{u^{\prime}}\right) \\
& =\Phi(S)+\Phi\left(S^{\prime}\right)
\end{aligned}
$$

This proves the theorem.

3 Applications

We begin with the following application of Theorem 2.1.
Proposition 3.1. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ bimodule that is faithful as a left \mathcal{A}-module and also as a right \mathcal{B}-module. Let $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular algebra. Assume that both \mathcal{A} and \mathcal{B} have only trivial idempotents. If $\Phi: \mathcal{T} \rightarrow$ \mathcal{T} is a $\frac{1}{2}$-Jordan map satisfying $\Phi(\alpha X)=\alpha \Phi(X)$ for all $\alpha \in R$ and $X \in \mathcal{T}$, then Φ is either an automorphism or an anti-automorphism.

Proof. By Theorem 2.1, Φ is additive. So Φ is a Jordan endomorphism of \mathcal{T}. By [1, Theorem 2.1], Φ is either an automorphism or an anti-automorphism.

We conclude this paper by applying Theorem 2.1 to the two classical examples of triangular algebras: upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras. Let $\mathcal{M}_{l \times m}(R)$ denote the set of all $l \times m$ matrices with entries in R. We denote by $\mathcal{T}_{n}(R)$ the algebra of all $n \times n$ upper triangular matrices over R. For $n \geq 2$ and each $1 \leq l \leq n-1$, the algebra $\mathcal{T}_{n}(R)$ can be represented as a triangular algebra of the form

$$
\mathcal{T}_{n}(R)=\left(\begin{array}{ll}
\mathcal{T}_{l}(R) & \mathcal{M}_{l \times(n-l)}(R) \\
& \mathcal{T}_{n-l}(R)
\end{array}\right)
$$

Corollary 3.2. Let r be an invertible element of R and let \mathcal{C} be an algebra over R. Then every r-Jordan map $\Phi: \mathcal{T}_{n}(R) \rightarrow \mathcal{C}$ is additive.

Proposition 3.3. The following conditions are equivalent:
(i) R contains no idempotents except 0 and 1 ;
(ii) If Φ is a 1-Jordan map from the R-algebra $\mathcal{T}_{n}(R)(n \geq 2)$ onto an arbitrary R-algebra satisfying $\Phi(\alpha X)=\alpha \Phi(X)$ for all $\alpha \in R$ and $X \in \mathcal{T}_{n}(R)$, then Φ is an isomorphism or an anti-isomorphism.

Proof. This follows from Theorem 2.1 and [2, Theorem p.198].
Nest algebras. (see [5]) A nest \mathcal{N} is a chain of closed subspaces of a complex Hilbert space \mathcal{H} containing $\{0\}$ and \mathcal{H} which is closed under arbitrary intersections and closed linear spans. The nest algebra associated to \mathcal{N} is the algebra

$$
\mathcal{T}(\mathcal{N})=\{T \in \mathcal{B}(\mathcal{H}): T(N) \subset N \text { for all } N \in \mathcal{N}\}
$$

A nest algebra $\mathcal{T}(\mathcal{N})$ is called trivial if $\mathcal{N}=\{0, \mathcal{H}\}$. If $\mathcal{T}(\mathcal{N})$ is a nontrivial nest algebra and $N \in \mathcal{N} \backslash\{0, \mathcal{H}\}$, then $\mathcal{T}(\mathcal{N})$ can be represented as a triangular algebra of the form

$$
\mathcal{T}(\mathcal{N})=\left(\begin{array}{ll}
\mathcal{T}\left(\mathcal{N}_{1}\right) & E \mathcal{T}(\mathcal{N})(1-E) \\
& \mathcal{T}\left(\mathcal{N}_{2}\right)
\end{array}\right)
$$

where E is the orthonormal projection onto $N, \mathcal{N}_{1}=E(\mathcal{N})$ and $\mathcal{N}_{2}=(1-E)(\mathcal{N})$. Note that \mathcal{N}_{1} and \mathcal{N}_{2} are nests of N and N^{\perp}, respectively. Moreover, $\mathcal{T}\left(\mathcal{N}_{1}\right)=E \mathcal{T}(\mathcal{N}) E$ and $\mathcal{T}\left(\mathcal{N}_{2}\right)=(1-E) \mathcal{T}(\mathcal{N})(1-E)$ are nest algebras.

Corollary 3.4. Let \mathcal{S} be an algebra over the field \mathbb{C} and let r be a nonzero complex number. Then every r-Jordan map $\Phi: \mathcal{T}(\mathcal{N}) \rightarrow \mathcal{S}$ is additive.

References

[1] D. Aiat Hadj Ahmed and L. Ben Yakoub, Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra, Internat. J. Math. Math. Sci. 13, 2125-2132 (2005).
[2] K. I. Beidar, M. Brešar and M. A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312, 197-201 (2000).
[3] D. Benkovič and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280, 797-824 (2004).
[4] W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63, 117-127 (2001).
[5] K. R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series 191, Longman, Harlow (1988).
[6] F. Lu, Jordan maps on associative algebras, Comm. Algebra 31(5), 2273-2286 (2003).
[7] L. Molnár, Jordan maps on standard operator algebras, in: Z. Daroczy and Zs. Pales (Eds.), Functional Equations-Results and Advances, Kluwer Academic Publishers (2001).

Author information

Rachid Tribak and Driss Aiat Hadj Ahmed, Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz, Souani, BP : 3117, Tangier, Morocco.
E-mail: tribak12@yahoo.com, ait_hadj@yahoo.com
Received: August 23, 2015
Accepted: October 13, 2015.

