ON *r*-JORDAN MAPS OF TRIANGULAR ALGEBRAS

Rachid Tribak and Driss Aiat Hadj Ahmed

Communicated by N. Mahdou

MSC 2010 Classifications: Primary 47B49, 47L35; Secondary 16W99.

Keywords and phrases: Triangular algebra, r-Jordan map, additivity.

Abstract. Let R be a commutative ring such that $\frac{1}{2} \in R$. We prove that if r is a fixed invertible element of R and Φ is a bijective map from a triangular R-algebra \mathcal{T} onto an arbitrary R-algebra which satisfies

$$\Phi(r(XY + YX)) = r(\Phi(X)\Phi(Y) + \Phi(Y)\Phi(X)) \; (\forall X, Y \in \mathcal{T}),$$

then Φ is automatically additive.

1 Introduction

Throughout this paper R will denote a commutative ring with $\frac{1}{2} \in R$. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ -bimodule, which is faithful as a left \mathcal{A} -module as well as a right \mathcal{B} -module, that is, for any $a \in \mathcal{A}$ and $b \in \mathcal{B}$, $a\mathcal{M} = \mathcal{M}b = \{0\}$ imply a = 0 and b = 0. The R-algebra

$$\mathcal{T} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B}) = \left\{ \left(\begin{array}{cc} a & m \\ & b \end{array} \right) : a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M} \right\}$$

under the usual matrix operations is called a triangular algebra (see [3] or [4]).

Let C and C' be unital R-algebras and let $r \in R$. A map $\Phi : C \to C'$ is called an r-Jordan map if it is a bijective map which satisfies

$$\Phi(r(XY+YX)) = r(\Phi(X)\Phi(Y) + \Phi(Y)\Phi(X)) \; \forall X, Y \in \mathcal{C}.$$

Recently, several authors have studied the additivity of r-Jordan maps. In [7], Molnár showed that every $\frac{1}{2}$ -Jordan map between standard operator algebras is additive. In [6], Lu showed that if $R = \mathbb{Q}$ the field of rational numbers and r is a nonzero rational number, then every r-Jordan map from a unital prime algebra containing a nontrivial idempotent, or a standard operator algebra, or a unital algebra which has a system of matrix units, onto an arbitrary algebra is additive.

In the present paper, we study the additivity of r-Jordan maps on triangular algebras. We will prove that if r is an invertible element of R, then every r-Jordan map from \mathcal{T} onto an arbitrary R-algebra is additive.

2 Main result

The following theorem is our main result.

Theorem 2.1. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ -bimodule which is faithful as a left \mathcal{A} -module and also as a right \mathcal{B} -module. Let $\mathcal{T} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular algebra, and \mathcal{C} be an algebra over R. Let r be an invertible element of R. Assume that $\Phi : \mathcal{T} \to \mathcal{C}$ is an r-Jordan map, that is, Φ is a bijective map satisfying

$$\Phi(r(XY+YX)) = r(\Phi(X)\Phi(Y) + \Phi(Y)\Phi(X)) \ \forall X, \ Y \in \mathcal{T}.$$

Then Φ is additive.

We have divided the proof of the last theorem into a sequence of lemmas.

Let $a \in \mathcal{A}, b \in \mathcal{B}$ and $u \in \mathcal{M}$. Throughout this paper we shall use the following notations:

$$E_a = \begin{pmatrix} a & 0 \\ 0 \end{pmatrix}, F_b = \begin{pmatrix} 0 & 0 \\ b \end{pmatrix} \text{ and } X_u = \begin{pmatrix} 0 & u \\ 0 \end{pmatrix}.$$

We begin with the following lemma which will be used frequently in the sequel.

Lemma 2.2. Let $a, a' \in A, b, b' \in B$ and $u, u' \in M$. The following relations hold:

(i) $E_a E_{a'} = E_{aa'}, E_a F_b = 0, E_a X_u = X_{au}.$ (ii) $F_b E_a = 0, F_b F_{b'} = F_{bb'}, F_b X_u = 0.$ (iii) $X_u E_a = 0, X_u F_b = X_{ub}, X_u X_{u'} = 0.$

Proof. The proof is straightforward. \Box

Throughout the remainder of this section, Φ is a map which satisfies the assumptions of Theorem 2.1.

Lemma 2.3. *We have* $\Phi(0) = 0$ *.*

Proof. Since Φ is surjective, there exists $A \in \mathcal{T}$ such that $\Phi(A) = 0$. Thus

$$\begin{split} \Phi(0) &= & \Phi(r(0A + A0)) \\ &= & r(\Phi(0)\Phi(A) + \Phi(A)\Phi(0)) \\ &= & r(\Phi(0)0 + 0\Phi(0)) = 0. \Box \end{split}$$

Lemma 2.4. Let $a \in A$, $b \in B$ and $u \in M$. Then there exist $\alpha \in A$, $\beta \in B$ and $v \in M$ such that $\Phi(A) = \Phi(E_a) + \Phi(F_b) + \Phi(X_u)$, where $A = E_\alpha + F_\beta + X_v$. Moreover, for every $T \in T$, we have $\Phi(r(AT + TA)) = \Phi(r(E_aT + TE_a)) + \Phi(r(F_bT + TF_b)) + \Phi(r(X_uT + TX_u))$.

Proof. The first part follows easily from the surjectivity of Φ . The second part follows from the fact that $\Phi(r(XY + YX)) = r(\Phi(X)\Phi(Y) + \Phi(Y)\Phi(X)) \forall X, Y \in \mathcal{T}$. \Box

Lemma 2.5. Let $a \in \mathcal{A}$ and $u \in \mathcal{M}$. Then $\Phi(E_a + X_u) = \Phi(E_a) + \Phi(X_u)$.

Proof. By Lemma 2.4, there exist $\alpha \in A$, $\beta \in B$ and $v \in M$ such that $\Phi(A) = \Phi(E_a) + \Phi(X_u)$, where $A = E_{\alpha} + F_{\beta} + X_v$. Moreover, for any $T \in \mathcal{T}$, we have

$$\Phi(r(AT + TA)) = \Phi(r(E_aT + TE_a)) + \Phi(r(X_uT + TX_u)).$$

If we take $T = F_1$, we get $\Phi(r(F_{2\beta} + X_v)) = \Phi(0) + \Phi(rX_u)$ by Lemma 2.2. Hence $\Phi(r(F_{2\beta} + X_v)) = \Phi(rX_u)$ by Lemma 2.3. The injectivity of Φ gives u = v and $\beta = 0$. Now replacing T by X_m with $m \in \mathcal{M}$, we obtain $\Phi(rX_{\alpha m}) = \Phi(0) + \Phi(rX_{am}) = \Phi(rX_{am})$ by Lemmas 2.2 and 2.3. Again by the injectivity of Φ , we get $\alpha m = am$ for every $m \in \mathcal{M}$. Since \mathcal{M} is a faithful left \mathcal{A} -module, we have $\alpha = a$. It follows that $\Phi(E_a + X_u) = \Phi(E_a) + \Phi(X_u)$. \Box

Lemma 2.6. Let $b \in \mathcal{B}$ and $u \in \mathcal{M}$. Then $\Phi(F_b + X_u) = \Phi(F_b) + \Phi(X_u)$.

Proof. By Lemma 2.4, there exist $\alpha \in \mathcal{A}, \beta \in \mathcal{B}$ and $v \in \mathcal{M}$ such that $\Phi(A) = \Phi(F_b) + \Phi(X_u)$, where $A = E_{\alpha} + F_{\beta} + X_v$. Moreover, for any $T \in \mathcal{T}$, we have

$$\Phi(r(AT + TA)) = \Phi(r(F_bT + TF_b)) + \Phi(r(X_uT + TX_u)).$$

If $T = E_1$, then $\Phi(r(E_{2\alpha} + X_v)) = \Phi(0) + \Phi(rX_u) = \Phi(rX_u)$ by Lemmas 2.2 and 2.3. Now, the injectivity of Φ implies u = v and $\alpha = 0$.

If $T = X_m$ with $m \in \mathcal{M}$, then $\Phi(rX_{m\beta}) = \Phi(0) + \Phi(rX_{mb})$, and the injectivity of Φ yields $m\beta = mb$ for all $m \in \mathcal{M}$. Hence $\beta = b$ since \mathcal{M} is a faithful right \mathcal{B} -module. This completes the proof. \Box

Lemma 2.7. Let $a \in A$, $b \in B$ and $u \in M$. Then $\Phi(E_a + F_b + X_u) = \Phi(E_a) + \Phi(F_b) + \Phi(X_u)$.

Proof. By Lemma 2.4, we can find $\alpha \in A$, $\beta \in B$ and $v \in M$ such that $\Phi(A) = \Phi(E_a) + \Phi(F_b) + \Phi(X_u)$, where $A = E_{\alpha} + F_{\beta} + X_v$. By Lemma 2.2, we have $AE_1 + E_1A = E_{2\alpha} + X_v$. Hence $\Phi(r(AE_1 + E_1A)) = \Phi(r(E_{2\alpha} + X_v))$. On the other hand, replacing T by E_1 in Lemma 2.4, we get

$$\Phi(r(AE_1 + E_1A)) = \Phi(r(E_aE_1 + E_1E_a)) + \Phi(r(F_bE_1 + E_1F_b)) + \Phi(r(X_uE_1 + E_1X_u)).$$

So by Lemmas 2.2 and 2.3, we have $\Phi(r(E_{2\alpha} + X_v)) = \Phi(rE_{2a}) + \Phi(rX_u)$. From Lemma 2.5, it follows that $\Phi(r(E_{2\alpha} + X_v)) = \Phi(r(E_{2a} + X_u))$. By the injectivity of Φ , we have $\alpha = a$ and u = v. Similarly, by using Lemmas 2.3 and 2.6, we can show that $\Phi(r(AF_1 + F_1A)) = \Phi(r(F_{2\beta} + X_v)) = \Phi(r(F_{2b} + X_u))$ and hence $\beta = b$. Consequently, $\Phi(E_a + F_b + X_m) = \Phi(E_a) + \Phi(F_b) + \Phi(X_m)$. \Box

Lemma 2.8. Let $u, v \in \mathcal{M}$. Then $\Phi(X_u + X_v) = \Phi(X_u) + \Phi(X_v)$.

Proof. It is easy to check that Lemma 2.2 gives

$$X_u + X_v = E_1 X_u + X_v F_1$$

= $(E_1 + X_v) (X_u + F_1)$
= $(E_1 + X_v) (X_u + F_1) + (X_u + F_1) (E_1 + X_v).$

Thus we have

$$\Phi(X_u + X_v) = \Phi\left(r\left(\left(\frac{1}{r}E_1 + \frac{1}{r}X_v\right)(X_u + F_1) + (X_u + F_1)\left(\frac{1}{r}E_1 + \frac{1}{r}X_v\right)\right)\right)$$

= $r\left(\Phi\left(\frac{1}{r}E_1 + \frac{1}{r}X_v\right)\Phi(X_u + F_1) + \Phi(X_u + F_1)\Phi\left(\frac{1}{r}E_1 + \frac{1}{r}X_v\right)\right).$

It follows from Lemma 2.7 that

$$\Phi(X_u + X_v) = r\left(\left(\Phi\left(\frac{1}{r}E_1\right) + \Phi\left(\frac{1}{r}X_v\right)\right)\left(\Phi\left(X_u\right) + \Phi\left(F_1\right)\right)\right) \\ + r\left(\left(\Phi\left(X_u\right) + \Phi\left(F_1\right)\right)\left(\Phi\left(\frac{1}{r}E_1\right) + \Phi\left(\frac{1}{r}X_v\right)\right)\right)\right) \\ = r\left(\Phi\left(\frac{1}{r}E_1\right)\Phi\left(X_u\right) + \Phi\left(X_u\right)\Phi\left(\frac{1}{r}E_1\right)\right) \\ + r\left(\Phi\left(\frac{1}{r}E_1\right)\Phi\left(F_1\right) + \Phi\left(F_1\right)\Phi\left(\frac{1}{r}E_1\right)\right) \\ + r\left(\Phi\left(\frac{1}{r}X_v\right)\Phi\left(X_u\right) + \Phi\left(X_u\right)\Phi\left(\frac{1}{r}X_v\right)\right) \\ + r\left(\Phi\left(\frac{1}{r}X_v\right)\Phi\left(F_1\right) + \Phi\left(F_1\right)\Phi\left(\frac{1}{r}X_v\right)\right) \\ + r\left(\Phi\left(\frac{1}{r}X_v\right)\Phi\left(F_1\right) + \Phi\left(F_1\right)\Phi\left(\frac{1}{r}X_v\right)\right).$$

Therefore,

$$\Phi(X_u + X_v) = \Phi(E_1 X_u + X_u E_1) + \Phi(E_1 F_1 + F_1 E_1) + \Phi(X_v X_u + X_u X_v) + \Phi(X_v F_1 + F_1 X_v).$$

This implies that $\Phi(X_u + X_v) = \Phi(X_u) + \Phi(X_v)$ by Lemma 2.2. \Box

Lemma 2.9. Let $a, a' \in \mathcal{A}$. Then $\Phi(E_a + E_{a'}) = \Phi(E_a) + \Phi(E_{a'})$.

Proof. By Lemma 2.4, there exist $\alpha \in A$, $\beta \in B$ and $v \in M$ such that $\Phi(A) = \Phi(E_a) + \Phi(E_{a'})$, where $A = E_{\alpha} + F_{\beta} + X_v$. Moreover, for any $T \in \mathcal{T}$, we have

$$\begin{aligned} \Phi(r(AT + TA)) &= r(\Phi(A)\Phi(T) + \Phi(T)\Phi(A)) \\ &= r((\Phi(E_a) + \Phi(E_{a'}))\Phi(T) + \Phi(T)(\Phi(E_a) + \Phi(E_{a'}))) \\ &= r(\Phi(E_a)\Phi(T) + \Phi(T)\Phi(E_a)) + r(\Phi(E_{a'})\Phi(T) + \Phi(T)\Phi(E_{a'})) \\ &= \Phi(r(E_aT + TE_a)) + \Phi(r(E_{a'}T + TE_{a'})). \end{aligned}$$

By setting $T = F_1$, we get $\Phi(r(F_{2\beta} + X_v)) = \Phi(0) + \Phi(0) = 0$ by Lemmas 2.2 and 2.3. So the injectivity of Φ gives v = 0 and $\beta = 0$.

By taking $T = X_m$ with $m \in \mathcal{M}$, we can get $\Phi(rX_{\alpha m}) = \Phi(rE_aX_m) + \Phi(rE_{a'}X_m) = \Phi(rX_{am}) + \Phi(rX_{a'm})$ since $\beta = 0$. Thus $\Phi(rX_{\alpha m}) = \Phi(rX_{(a+a')m})$ by Lemma 2.8. The injectivity of Φ and the fact that \mathcal{M} is a faithful left \mathcal{A} -module show that $\alpha = a + a'$. Consequently, $\Phi(E_a + E_{a'}) = \Phi(E_a) + \Phi(E_{a'})$. \Box

Lemma 2.10. For every $b, b' \in \mathcal{B}$, we have $\Phi(F_b + F_{b'}) = \Phi(F_b) + \Phi(F_{b'})$.

Proof. The proof is similar to that of Lemma 2.9. \Box

Proof of Theorem 2.1. Let $S = E_a + F_b + X_u$ and $S' = E_{a'} + F_{b'} + X_{u'}$, where $a, a' \in A, b, b' \in B$ and $u, u' \in M$. Combining the above lemmas, we get the following equalities:

$$\Phi(S+S') = \Phi((E_a + E_{a'}) + (F_b + F_{b'}) + (X_u + X_{u'}))$$

= $\Phi(E_a + E_{a'}) + \Phi(F_b + F_{b'}) + \Phi(X_u + X_{u'})$
= $\Phi(E_a) + \Phi(E_{a'}) + \Phi(F_b) + \Phi(F_{b'}) + \Phi(X_u) + \Phi(X_{u'})$
= $\Phi(E_a + F_b + X_u) + \Phi(E_{a'} + F_{b'} + X_{u'})$
= $\Phi(S) + \Phi(S')$.

This proves the theorem. \Box

3 Applications

We begin with the following application of Theorem 2.1.

Proposition 3.1. Let \mathcal{A} and \mathcal{B} be unital algebras over the ring R. Let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ bimodule that is faithful as a left \mathcal{A} -module and also as a right \mathcal{B} -module. Let $\mathcal{T} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be the triangular algebra. Assume that both \mathcal{A} and \mathcal{B} have only trivial idempotents. If $\Phi : \mathcal{T} \to \mathcal{T}$ is a $\frac{1}{2}$ -Jordan map satisfying $\Phi(\alpha X) = \alpha \Phi(X)$ for all $\alpha \in R$ and $X \in \mathcal{T}$, then Φ is either an automorphism or an anti-automorphism.

Proof. By Theorem 2.1, Φ is additive. So Φ is a Jordan endomorphism of \mathcal{T} . By [1, Theorem 2.1], Φ is either an automorphism or an anti-automorphism. \Box

We conclude this paper by applying Theorem 2.1 to the two classical examples of triangular algebras: upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras. Let $\mathcal{M}_{l \times m}(R)$ denote the set of all $l \times m$ matrices with entries in R. We denote by $\mathcal{T}_n(R)$ the algebra of all $n \times n$ upper triangular matrices over R. For $n \geq 2$ and each $1 \leq l \leq n-1$, the algebra $\mathcal{T}_n(R)$ can be represented as a triangular algebra of the form

$$\mathcal{T}_{n}(R) = \begin{pmatrix} \mathcal{T}_{l}(R) & \mathcal{M}_{l \times (n-l)}(R) \\ & \mathcal{T}_{n-l}(R) \end{pmatrix}.$$

Corollary 3.2. Let r be an invertible element of R and let C be an algebra over R. Then every r-Jordan map $\Phi : \mathcal{T}_n(R) \to C$ is additive.

Proposition 3.3. The following conditions are equivalent:

(i) *R* contains no idempotents except 0 and 1;

(ii) If Φ is a 1-Jordan map from the R-algebra $\mathcal{T}_n(R)$ $(n \ge 2)$ onto an arbitrary R-algebra satisfying $\Phi(\alpha X) = \alpha \Phi(X)$ for all $\alpha \in R$ and $X \in \mathcal{T}_n(R)$, then Φ is an isomorphism or an anti-isomorphism.

Proof. This follows from Theorem 2.1 and [2, Theorem p.198]. \Box

Nest algebras. (see [5]) A nest \mathcal{N} is a chain of closed subspaces of a complex Hilbert space \mathcal{H} containing $\{0\}$ and \mathcal{H} which is closed under arbitrary intersections and closed linear spans. The nest algebra associated to \mathcal{N} is the algebra

$$\mathcal{T}(\mathcal{N}) = \{T \in \mathcal{B}(\mathcal{H}) : T(N) \subset N \text{ for all } N \in \mathcal{N}\}.$$

A nest algebra $\mathcal{T}(\mathcal{N})$ is called *trivial* if $\mathcal{N} = \{0, \mathcal{H}\}$. If $\mathcal{T}(\mathcal{N})$ is a nontrivial nest algebra and $N \in \mathcal{N} \setminus \{0, \mathcal{H}\}$, then $\mathcal{T}(\mathcal{N})$ can be represented as a triangular algebra of the form

$$\mathcal{T}\left(\mathcal{N}
ight) = \left(egin{array}{cc} \mathcal{T}\left(\mathcal{N}_{1}
ight) & E\mathcal{T}\left(\mathcal{N}
ight)\left(1-E
ight) \\ & \mathcal{T}\left(\mathcal{N}_{2}
ight) \end{array}
ight),$$

where E is the orthonormal projection onto N, $\mathcal{N}_1 = E(\mathcal{N})$ and $\mathcal{N}_2 = (1-E)(\mathcal{N})$. Note that \mathcal{N}_1 and \mathcal{N}_2 are nests of N and N^{\perp} , respectively. Moreover, $\mathcal{T}(\mathcal{N}_1) = E\mathcal{T}(\mathcal{N})E$ and $\mathcal{T}(\mathcal{N}_2) = (1-E)\mathcal{T}(\mathcal{N})(1-E)$ are nest algebras.

Corollary 3.4. Let S be an algebra over the field \mathbb{C} and let r be a nonzero complex number. Then every r-Jordan map $\Phi : \mathcal{T}(\mathcal{N}) \to S$ is additive.

References

- D. Aiat Hadj Ahmed and L. Ben Yakoub, Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra, *Internat. J. Math. Math. Sci.* 13, 2125–2132 (2005).
- [2] K. I. Beidar, M. Brešar and M. A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, *Linear Algebra Appl.* 312, 197–201 (2000).
- [3] D. Benkovič and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280, 797–824 (2004).
- [4] W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63, 117–127 (2001).
- [5] K. R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series 191, Longman, Harlow (1988).
- [6] F. Lu, Jordan maps on associative algebras, Comm. Algebra 31(5), 2273–2286 (2003).
- [7] L. Molnár, Jordan maps on standard operator algebras, in: Z. Daroczy and Zs. Pales (Eds.), Functional Equations-Results and Advances, Kluwer Academic Publishers (2001).

Author information

Rachid Tribak and Driss Aiat Hadj Ahmed, Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz, Souani, BP : 3117, Tangier, Morocco. E-mail: tribak12@yahoo.com, ait_hadj@yahoo.com

Received: August 23, 2015

Accepted: October 13, 2015.