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Abstract. In this paper, we establish some �xed point results in cone b-metric spaces satisfy-

ing generalized contraction involving rational expressions. Also, as a consequence, some results

of integral type for such mapping is obtained. Our results extend and generalize several known

results from the existing literature.

1 Introduction and Preliminaries

It is well known that contractive type conditions play an important role in the study of �xed point

theory. The Banach contraction mapping [3] is one of the pivotal results of analysis. It is a very

popular tool in settling solvability problems in different �elds of mathematics. A variety of gen-

eralizations of the classical Banach contraction principle are available in the existing literature of

metric �xed point theory (see [1, 2, 4, 6, 7, 17] and many others). Many of these generalizations

are obtained by improving the underlying contraction condition. The famous Banach contraction

principle theorem states as follows.

Theorem 1.1. ([3]) Let (X, d) be a complete metric space and T be a mapping of X into itself

satisfying:

d(Tx, Ty) ≤ k d(x, y), ∀x, y ∈ X, (1.1)

where k is a constant in (0, 1). Then T has a unique �xed point x∗ ∈ X .

In 1989, Bakhtin [5] introduced b-metric spaces as a generalization of metric spaces. He

proved the contraction mapping principle in b-metric spaces that generalized the famous con-

traction principle in metric spaces. Czerwik used the concept of b-metric space and generalized

the renowned Banach �xed point theorem in b-metric spaces (see, [9, 10]). In 2007, Huang and

Zhang [15] introduced the concept of cone metric spaces as a generalization of metric spaces and

establish some �xed point theorems for contractive mappings in normal cone metric spaces. In

2008, Rezapour and Hamlbarani [21] omitted the assumption of normality in cone metric space,

which is a milestone in developing �xed point theory in cone metric space.

In 2011, Hussain and Shah [16] introduced the concept of cone b-metric space as a general-

ization of b-metric space and cone metric spaces. They established some topological properties

in such spaces and improved some recent results aboutKKM mappings in the setting of a cone

b-metric space. Cone b-metric spaces play a useful role in �xed point theory. In fact there exist

mappings with common �xed points which are contraction mappings in a cone b-metric space

but are not contraction mappings when de�ned in a cone metric space. Example 1.11 of this

paper illustrates this fact.

It can be seen that many of the generalized metric spaces are not necessarily Hausdorff (see,

[13, 19, 23, 24]). Proper examples of non Hausdorff rectangular metric space and rectangular

b-metric space can be found in [13, 22, 23] (see, also [12]). Note that spaces with non Hausdorff

topology play an important role in Tarskian approach to programming language semantics used
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in computer science.

In the present work we prove some �xed point results in cone b-metric spaces for mapping

satisfying generalized contraction involving rational expressions.

De�nition 1.2. ([15]) Let E be a real Banach space. A subset P of E is called a cone whenever

the following conditions hold:

(C1) P is closed, nonempty and P ̸= {0};

(C2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;

(C3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we de�ne a partial ordering ≤ with respect to P by x ≤ y if and only

if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x ̸= y, while x ≪ y will stand for
y − x ∈ P 0, where P 0 stands for the interior of P . If P 0 ̸= ∅ then P is called a solid cone (see

[25]).

There exists two kinds of cones: normal cones (with constantK) and non-normal ones ([11]).

Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering de�ned by P . Then P is

called normal if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y imply ∥x∥ ≤ K∥y∥, (1.2)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.3)

The least positive number K satisfying (1.2) is called the normal constant of P .

Example 1.3. ([25]) Let E = C1

R[0, 1] with ∥x∥ = ∥x∥∞ + ∥x′∥∞ on P = {x ∈ E : x(t) ≥ 0}.
This cone is not normal. Consider, for example, xn(t) =

tn

n and yn(t) =
1

n . Then 0 ≤ xn ≤ yn,

and limn→∞ yn = 0, but ∥xn∥ = maxt∈[0,1] | t
n

n |+maxt∈[0,1] |tn−1| = 1

n + 1 > 1; hence xn does

not converge to zero. It follows by (1.2) that P is a non-normal cone.

De�nition 1.4. ([15, 26]) Let X be a nonempty set. Suppose that the mapping d : X ×X → E
satis�es:

(CM1) 0 ≤ d(x, y) for all x, y ∈ X with x ̸= y and d(x, y) = 0 ⇔ x = y;

(CM2) d(x, y) = d(y, x) for all x, y ∈ X;

(CM3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [15] on X and (X, d) is called a cone metric space (CMS)

[15].

The concept of a cone metric space is more general than that of a metric space, because each

metric space is a cone metric space where E = R and P = [0,+∞).

Example 1.5. ([15]) LetE = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},X = R and d : X×X → E
de�ned by d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric

space with normal cone P where K = 1.

Example 1.6. ([20]) Let E = ℓ2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ) a metric space,

and d : X ×X → E de�ned by d(x, y) = {ρ(x, y)/2n}n≥1. Then (X, d) is a cone metric space.

Clearly, the above examples show that the class of cone metric spaces contains the class of

metric spaces.
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De�nition 1.7. ([16]) Let X be a nonempty set and s ≥ 1 be a given real number. A mapping

d : X × X → E is said to be cone b-metric if and only if, for all x, y, z ∈ X, the following

conditions are satis�ed:

(CbM1) 0 ≤ d(x, y) with x ̸= y and d(x, y) = 0 ⇔ x = y;

(CbM2) d(x, y) = d(y, x);

(CbM3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space (CbMS).

Remark 1.8. The class of cone b-metric spaces is larger than the class of cone metric space since

any cone metric space must be a cone b-metric space. Therefore, it is obvious that cone b-metric

spaces generalize b-metric spaces and cone metric spaces.

We give some examples, which show that introducing a cone b-metric space instead of a cone

metric space is meaningful since there exist cone b-metric space which are not cone metric space.

Example 1.9. ([14]) Let E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} ⊂ E, X = R and

d : X × X → E de�ned by d(x, y) = (|x − y|p, α|x − y|p), where α ≥ 0 and p > 1 are two

constants. Then (X, d) is a cone b-metric space with the coef�cient s = 2p > 1, but not a cone

metric space.

Example 1.10. ([14]) Let X = ℓp with 0 < p < 1, where ℓp = {{xn} ⊂ R :
∑∞

n=1
|xn|p < ∞}.

Let d : X ×X → R+ de�ned by d(x, y) =
(∑∞

n=1
|xn − yn|p

) 1

p

, where x = {xn}, y = {yn} ∈
ℓp. Then (X, d) is a cone b-metric space with the coef�cient s = 2p > 1, but not a cone metric

space.

Example 1.11. ([14]) Let X = {1, 2, 3, 4}, E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0}. De�ne
d : X ×X → E by

d(x, y) =

{
(|x− y|−1, |x− y|−1) if x ̸= y,

0, if x = y.

Then (X, d) is a cone b-metric space with the coef�cient s = 6

5
> 1. But it is not a cone

metric space since the triangle inequality is not satis�ed,

d(1, 2) > d(1, 4) + d(4, 2), d(3, 4) > d(3, 1) + d(1, 4).

De�nition 1.12. ([16]) Let (X, d) be a cone b-metric space, x ∈ X and {xn} be a sequence in

X . Then

• {xn} is a Cauchy sequence whenever, if for every c ∈ E with 0 ≪ c, then there is a natural
number N such that for all n,m ≥ N , d(xn, xm) ≪ c;

• {xn} converges to x whenever, for every c ∈ E with 0 ≪ c, then there is a natural number

N such that for all n ≥ N , d(xn, x) ≪ c. We denote this by limn→∞ xn = x or xn → x as

n→ ∞.

• (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.

In the following (X, d) will stands for a cone b-metric space with respect to a cone P with

P 0 ̸= ∅ in a real Banach space E and ≤ is partial ordering in E with respect to P .

The following lemmas are often used (in particular when dealing with cone metric spaces in

which the cone need not be normal).

Lemma 1.13. ([18]) Let P be a cone and {an} be a sequence in E. If c ∈ int P and 0 ≤ an → 0

as n→ ∞, then there exists N such that for all n > N , we have an ≪ c.
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Lemma 1.14. ([18]) Let x, y, z ∈ E, if x ≤ y and y ≪ z, then x≪ z.

Lemma 1.15. ([16]) Let P be a cone and 0 ≤ u≪ c for each c ∈ int P , then u = 0.

Lemma 1.16. ([8]) Let P be a cone, if u ∈ P and u ≤ k u for some 0 ≤ k < 1, then u = 0.

Lemma 1.17. ([18]) Let P be a cone and a ≤ b+ c for each c ∈ int P , then a ≤ b.

2 Main Results

In this section we shall prove some �xed point theorems for generalized contractions in the

framework of cone b-metric spaces.

Theorem 2.1. Let (X, d) be a complete cone b-metric space (CCbMS) with the coef�cient s ≥ 1.

Suppose that the mapping T : X → X satis�es:

d(Tx, Ty) ≤ a d(x, y) + b
d(x, Tx) d(y, Ty)

1+ d(x, y)

+c
d(x, Tx) d(y, Ty)

1+ d(Tx, Ty)
(2.1)

for all x, y ∈ X , where a, b, c are nonnegative reals with sa+ sb+ sc < 1. Then T has a unique

�xed point in X.

Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where xn = Txn−1, n ≥ 1,

that is, xn+1 = Txn = Tn+1x0. From (2.1), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ a d(xn−1, xn) + b
d(xn−1, Txn−1) d(xn, Txn)

1+ d(xn−1, xn)

+c
d(xn−1, Txn−1) d(xn, Txn)

1+ d(Txn−1, Txn)

= a d(xn−1, xn) + b
d(xn−1, xn) d(xn, xn+1)

1+ d(xn−1, xn)

+c
d(xn−1, xn) d(xn, xn+1)

1+ d(xn, xn+1)

≤ (a+ b+ c) d(xn−1, xn)

= k d(xn−1, xn), (2.2)

where k = a+ b+ c. As sa+ sb+ sc < 1, it follows that 0 < k < 1

s .

By induction, we have

d(xn+1, xn) ≤ k d(xn−1, xn) ≤ k2 d(xn−2, xn−1) ≤ . . .

≤ kn d(x0, x1). (2.3)
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Letm,n ≥ 1 andm > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ sknd(x1, x0) + s2kn+1d(x1, x0) + s3kn+2d(x1, x0)

+ · · ·+ smkn+m−1d(x1, x0)

= skn[1+ sk + s2k2 + s3k3 + · · ·+ (sk)m−1]d(x1, x0)

≤
[ skn

1− sk

]
d(x1, x0).

Let 0 ≪ r be given. Notice that skn

1−skd(x1, x0) → 0 as n → ∞ since 0 < sk < 1. Making full

use of ([14], Lemma 1.8), we �nd n0 ∈ N such that( skn

1− sk

)
d(x1, x0) ≪ r

for each n > n0. Thus,

d(xn, xm) ≤
( skn

1− sk

)
d(x1, x0) ≪ r

for all n,m ≥ 1. So, by ([14], Lemma 1.9), {xn} is a Cauchy sequence in (X, d). Since (X, d)
is a complete cone b-metric space, there exists z ∈ X such that xn → z as n→ ∞. Take n1 ∈ N
such that d(xn, z) ≪ r

s(a+1) for all n > n1. Hence,

d(z, Tz) ≤ s[d(z, Txn) + d(Txn, T z)]

= sd(z, xn+1) + sd(Txn, T z)

≤ s
[
a d(xn, z) + b

d(xn, Txn) d(z, Tz)

1+ d(xn, z)
+ c

d(xn, Txn) d(z, Tz)

1+ d(Txn, T z)

]
+sd(z, xn+1)

= s
[
a d(xn, z) + b

d(xn, xn+1) d(z, Tz)

1+ d(xn, z)
+ c

d(xn, xn+1) d(z, Tz)

1+ d(xn+1, T z)

]
+sd(z, xn+1)

≤ s(a+ 1) d(xn, z).

This implies that

d(z, Tz) ≪ r,

for each n > n1. Then, by Lemma 1.15, we deduce that d(z, Tz) = 0, that is, Tz = z. Thus z is
a �xed point of T .

Uniqueness

Let z∗ be another �xed point T , that is, Tz∗ = z∗ such that z ̸= z∗. Then from (2.1), we have

d(z, z∗) = d(Tz, Tz∗)

≤ a d(z, z∗) + b
d(z, Tz) d(z∗, T z∗)

1+ d(z, z∗)
+ c

d(z, Tz) d(z∗, T z∗)

1+ d(Tz, Tz∗)

= a d(z, z∗) + b
d(z, z) d(z∗, z∗)

1+ d(z, z∗)
+ c

d(z, z) d(z∗, z∗)

1+ d(z, z∗)

≤ a d(z, z∗).
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By Lemma 1.16, d(z, z∗) = 0 and so z = z∗. This shows that z is a unique �xed point of T .
This completes the proof.

Theorem 2.2. Let (X, d) be a complete cone b-metric space (CCbMS) with the coef�cient s ≥ 1.

Suppose that the mapping T : X → X satis�es (for some n):

d(Tnx, Tny) ≤ a d(x, y) + b
d(x, Tnx) d(y, Tny)

1+ d(x, y)

+c
d(x, Tnx) d(y, Tny)

1+ d(Tnx, Tny)
(2.4)

for all x, y ∈ X , where a, b, c are nonnegative reals with sa+ sb+ sc < 1. Then T has a unique

�xed point in X.

Proof. By Theorem 2.1 there exists z ∈ X such that Tnz = z. Then

d(Tz, z) = d(TTnz, Tnz) = d(TnTz, Tnz)

≤ a d(Tz, z) + b
d(Tz, TnTz) d(z, Tnz)

1+ d(Tz, z)

+c
d(Tz, TnTz) d(z, Tnz)

1+ d(TnTz, Tnz)

≤ a d(Tz, z) + b
d(Tz, TTnz) d(z, Tnz)

1+ d(Tz, z)

+c
d(Tz, TTnz) d(z, Tnz)

1+ d(TTnz, Tnz)

= a d(Tz, z) + b
d(Tz, Tz) d(z, z)

1+ d(Tz, z)

+c
d(Tz, Tz) d(z, z)

1+ d(Tz, z)

≤ a d(Tz, z).

By Lemma 1.16, d(Tz, z) = 0 and so Tz = z. This shows that T has a unique �xed point in X.

This completes the proof.

Putting a = k, b = c = 0 in Theorem 2.1, then we have the following result.

Corollary 2.3. Let (X, d) be a complete cone b-metric space (CCbMS) with the coef�cient s ≥ 1.

Suppose that the mapping T : X → X satis�es:

d(Tx, Ty) ≤ k d(x, y)

for all x, y ∈ X , where k ∈ (0, 1) is a constant with sk < 1. Then T has a unique �xed point in

X .

Remark 2.4. Corollary 2.3 extends well known Banach contraction principle from complete

metric space to that setting of complete cone b-metric space considered in this paper.

Other consequences of our results for the mapping involving contractions of integral type are

the following.

Denote L the set of functions φ : [0,∞) → [0,∞) satisfying the following hypothesis:

(h1) φ is a Lebesgue-integrable mapping on each compact subset of [0,∞);

(h2) for any ε > 0 we have
∫ ε

0
φ(t) dt > 0.
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Theorem 2.5. Let (X, d) be a complete cone b-metric space (CCbMS) with the coef�cient s ≥ 1.

Suppose that the mapping T : X → X satis�es:∫ d(Tx,Ty)

0

ψ(t) dt ≤ a

∫ d(x,y)

0

ψ(t) dt+ b

∫ d(x,Tx) d(y,Ty)
1+d(x,y)

0

ψ(t) dt

+ c

∫ d(x,Tx) d(y,Ty)
1+d(Tx,Ty)

0

ψ(t) dt

for all x, y ∈ X , where a, b, c are nonnegative reals with sa+ sb+ sc < 1 and ψ ∈ L. Then T
has a unique �xed point in X .

Putting a = k, b = c = 0 in Theorem 2.5, we have the following result.

Theorem 2.6. Let (X, d) be a complete cone b-metric space (CCbMS) with the coef�cient s ≥ 1.

Suppose that the mapping T : X → X satis�es:∫ d(Tx,Ty)

0

ψ(t) dt ≤ k

∫ d(x,y)

0

ψ(t) dt

for all x, y ∈ X , where k is a nonnegative real with 0 < sk < 1 and ψ ∈ L. Then T has a unique

�xed point in X.

Remark 2.7. Theorem 2.6 extends Theorem 2.1 of Branciari [4] from complete metric space to

that setting of complete cone b-metric space considered in this paper.

Example 2.8. Let E = CR[0, 1], P = {f ∈ E : f ≥ 0} ⊂ E, X = [0,∞) and d(x, y) =
|x − y|2 et. Then (X, d) is a cone b-metric space with the coef�cient s = 2. But it is not a cone

metric space. We consider the mappings T : X → X de�ned by T (x) = 2x+3

5
. Hence

d(Tx, Ty) =
∣∣∣(2x+ 3

5

)
−
(2y + 3

5

)∣∣∣2 et
=

4

25
|x− y|2 et

≤ 1

2
|x− y|2 et

=
1

2
d(x, y).

Clearly 1 ∈ X is the unique �xed point of T .

3 Conclusion

In this paper, we establish some �xed point results for generalized contractions in the setting of

cone b-metric spaces. Also, as a consequence, we obtain some results of integral type for such

mapping. Our results extend and generalize several results from the existing literature.
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