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Abstract. Under curvatures conditions, we prove upper pointwise estimates for the Bergman

kernel of the L2-space of holomorphic sections of a holomorphic hermitian line bundle over a

Stein Kähler manifold with bounded geometry.

1 Introduction and statment of the main result

Let L be a holomorphic hermitian line bundle over a complex manifold M , and let (Uj) be a

covering of the manifold by open sets over which L is locally trivial. A section s of L is repre-

sented by a collection of complex valued functions fj on Uj that are related by the holomorphic

transition functions (gjk) of the bundle

fj = gjkfk on Uj ∩ Uk

We say that s is holomorphic if each fi is holomorphic on Ui. A metric h on L is given by a

collection of real valued functions Fj on Uj , related so that

|s|2h := |fj |2e−Fj on Uj

is globally well de�ned. We will write h for the collection (Fj) , and refer to h as the metric on

L. We say that L is positive, L > 0, if h can be chosen smooth with curvature

c(L) := i∂∂̄Fj

strictly positive, and that L is semipositive, L ≥ 0, if it has a smooth metric of semipositive

curvature. We say that (L, h) −→ (M, g) has bounded curvature if −Mωg ≤ c(L) ≤ Mωg for

some positive constantM . Let F2(M,L) the Hilbert space of holomorphic sections s :M −→ L
such that

∥s∥2 :=
(∫

M

|s|2hdvg
) 1

2

<∞

Let P the orthogonal projection from the Hilbert space of L2(M,L) onto its closed subspace

F2(M,L).Let K ∈ C∞(M ×M,L⊗ L) the reproducing ( or Bergman ) kernel of P , that is

K(z, w) =
d∑

j=1

sj(z)⊗ sj(w) ∈ Lz ⊗ Lw

where L is the conjugate bundle of L which is the hermitian anti-holomorphic line bundle L
whose transition functions are (gjk), (sj) is an orthonormal basis for F2(M,L) and 0 ≤ d =

dimF2(M,L) ≤ ∞. The distribution kernel K is called the Bergman Kernel of (L, h) −→
(M, g). For all s ∈ L2(M,L)

(Ps)(z) =

∫
M

K(z, w) • s(w)dvg(w)
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where

K(z, w) • s(w) =
d∑

j=1

< s(w), sj(w) > sj(z)

Since

|K(z, w)|2 =
∑
j

∑
k

< sj(z), sk(z) > < sj(w), sk(w) >

thenK(z, w) is Hermitian : |K(z, w)| = |K(w, z)|. The function |K(z, z)| is called the Bergman

function of F2(M,L). It satis�es

|K(z, z)| =
∫
M

|K(z, w)|2dvg(w)

The main result of this paper is an estimate for the Bergman kernel of L similar to those obtained

in [4,10] for weighted trivial line bundles with bounded curvature.

Theorem 1.1. Let (M, g) be a Stein Kähler manifold with bounded geometry. Let (L, h) −→
(M, g) be a hermitian holomorphic line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg

for some positive constant a. There are constants α, C > 0 such that for all z, w ∈M ,

|K(z, w)| ≤ Ce−αdg(z,w)

where dg is the geodesic distance associated to the metric g.

From the above estimate for the Bergman kernel, we obtain the boundedness of the Bergman

projection from Lp(M,L) to Fp(M,L).

Proposition 1.2. Let (M, g) be a Stein Kähler manifold with bounded geometry such that for all

ϵ > 0

sup
z∈M

∫
M

e−ϵdg(z,w)dVg(w) <∞

Let (L, h) −→ (M, g) be a hermitian holomorphic line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg

for some positive constant a. Let p ∈ [1,+∞]. Then the Bergman projection is bounded as a

map from Lp(M,L) to Fp(M,L).

2 Background

For the proof of Theorem 1.1, we need some notation and background.

De�nition 2.1. A Hermitian manifold (M, g) is said to have bounded geometry if there exists

positive numbers R and c such that for all z ∈ M there exists a biholomorphic mapping Fz :

(U, 0) ⊂ Cn −→ (V, z) ⊂M such that

(i) Fz(0) = z,
(ii) Bg(z,R) ⊂ Fz(U) and
(iii) 1

cge ≤ F ∗
z g ≤ cge on F

−1
z (Bg(z,R)) where ge is the euclidean metric.

By (iii)

∀ w ∈ Bg(z,R) :
1

c
∥F−1

z (w)∥e ≤ dg(w, z) ≤ c∥F−1

z (w)∥e

Remark 2.2. If an Hermitian manifold (M, g) has bounded geometry then the geodesic expo-

nential map expz : TR
z M → M is de�ned on a ball B(0, r) ⊂ TR

z M for any r < R and provide

a diffeomorphism of this ball onto the ball Bg(z, r) ⊂ M . It follows that the manifold (M, g) is
complete.
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Remark 2.3. It is well known that if (M, g) has bounded geometry andRic(g) ≥ Kg then (M, g)
satisfy the uniform ball size condition ([3] Prop. 14), i.e. for every r ∈ R+

inf
z∈M

vol(Bg(z, r)) > 0 and sup
z∈M

vol(Bg(z, r)) <∞

Also by volume comparison theorem [2], there are nonnegative constants C,α, β such that

volg(Bg(z, r)) ≤ Crαeβr, ∀ r ≥ 1, z ∈M

In particular if (M, g) has polynomial volume growth, i.e β = 0, then

sup
z∈M

∫
M

e−ϵdg(z,w)dVg(w) = sup
z∈M

∫ ∞

0

volg(∂B(z, r))e
−ϵrdr ≤ C(ϵ)

Bounded geometry allows one to produce an exhausion function which behaves like the distance

function and whose gradient and hessian are bounded onM [9].

Lemma 2.4. Let (M, g) be a Hermitian manifold with bounded geometry. For every z ∈M there

exists a smooth function Yz :M −→ R such that

(i) C1dg(., z) ≤ Yz ≤ C2(dg(., z) + 1),
(ii) |∂Yz|g ≤ C3, and

(iii) −C4ωg ≤ i∂∂̄Yz ≤ C5ωg.

Furthermore, the constants in (i), (ii) and (iii) depend only on the constants associated with the

bounded geometry of (M, g).

We recall Demailly's theorem [5], which generalizes Hörmander's L2 estimates [6] (Theorem

2.2.1, p. 104) for forms with values in a line bundle.

Theorem 2.5. Let (X,ω) be a complete Kähler manifold, (L, h) a holomorphic hermitian line

bundle over X, and let ϕ be a locally integrable function over X. If the curvature c(L) is such
that

c(L) +Ric(ω) + i∂∂̄ϕ ≥ γω

for some positive and continuous function γ on X , then for all v ∈ L2

(0,1)(X,L, loc), ∂̄-closed

and such that ∫
X

γ−1|v|2e−ϕdvω <∞

there exists u ∈ L2(X,L) such that

∂̄u = v and

∫
X

|u|2he−ϕdvω ≤
∫
X

γ−1|v|2ω,he
−ϕdvω

Also, we recall J.McNeal-D.Varolin's theorem [8](Theorem 2.2.1, p. 104), which generalizes

Berndtsson-Delin's improved L2-estimate of ∂̄-equation having minimal L2-norm [1],[4] for

forms with values in a line bundle.

Theorem 2.6. Let (M, g) be a Stein Kähler manifold, and (L, h) −→ (M, g) a holomorphic

hermitian line bundle with Hermitian metric h. Suppose there exists a smooth function η :M →
R and a positive, a.e. strictly positive Hermitian (1, 1)-form Q onM such that

c(L) +Ric(g) + i∂∂̄η − i∂η ∧ ∂̄η ≥ Q

Let v be an L-valued (0, 1)-form such that v = ∂̄u for some L-valued section u satisfying∫
M

|u|2hdvg <∞

Then the solution u0 of ∂̄u = v having minimal L2-norm i.e∫
M

< u0, σ > dvg = 0 for all σ ∈ F2(M,L)

satis�es the estimate ∫
M

|u0|2heηdvg ≤
∫
M

|v|2Q,heηdvg.



Pointwise estimate for the Bergman Kernel 9

3 Preliminary results

3.1 Weighted Bergman Inequalities

Proposition 3.1. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry

and lower Ricci curvature bound. Let (L, h) −→ (M, g) be a hermitian holomorphic line bundle

with bounded curvature. Fix p ∈]0,∞[. Then for each r > 0 there exists a constant Cr such that

if s ∈ F2(M,L) then

|s(z)|p ≤ Cp
r

∫
Bg(z,r)

|s|pdvg (3.1)

in particular Fp(M,L) ⊂ F∞(M,L) and

|∇|s(z)|p|g(z) ≤ Cp
r

∫
Bg(z,r)

|s|pdvg (3.2)

Proof. Since (M, g) has bounded geometry there exists positive numbers R and c such that for

all z ∈M there exists a biholomorphic mapping Yz : (U, 0) ⊂ Cn −→ (V, z) ⊂M such that

(i) Yz(0) = z,
(ii) Bg(z,R) ⊂ Yz(U) and
(iii) 1

cge ≤ Y
∗
zg ≤ cge on Y

−1
z (Bg(z,R)) where ge is the euclidean metric.

Consider the (1, 1)-form de�ned on Be(0, δ(R)) ⊂⊂ Y−1
z (Bg(z,R)) ⊂ Cn by

Q := Y∗
zc(L)

Since −Kωg ≤ c(L) ≤ Kωg, by [11] Lemma 4.1 there exists a function ϕ ∈ C2(Be(0, δ)) such
that

i∂∂̄ϕ = Q and sup
Be(0,δ)

(|ϕ|+ |dϕ|ge) ≤M

On Bg(z, η) ⊂⊂ Yz(Be(0, δ(R)), consider the C2-function

ψ := ϕ ◦Y−1

z

By (iii) we have

i∂∂̄ψ = c(L) and sup
Bg(z,η)

(|ψ|+ |∇ψ|g) ≤M
′

whereM
′
and η depend only on R and c.

Let e be a frame of L arround z ∈ Bg(z, η) and F(w) = − log |e(w)|2. Then i∂∂̄ψ = i∂∂̄F on

Bg(z, η). Hence the function

ρ(w) = F(w)−F(z) + ψ(z)− ψ(w)

is pluriharmonic. Then ρ = ℜ(F ) for some holomorphic function F with ℑ(F )(z) = 0 and

sup
Bg(z,η)

|F−F(z)−ℜ(F )| = sup
Bg(z,η)

|ψ − ψ(z)| ≤ C (3.3)

sup
Bg(z,η)

|∇(F−F(z)−ℜ(F ))|g = sup
Bg(z,η)

|∇ψ|g ≤ C (3.4)

We can suppose 0 < r ≤ η. According to [7] , for all z ∈M and all holomorphic functions f on

Bg(z, η) and all ζ ∈ Bg(z, η/2)

|f(ζ)|p ≤ C

Vol(Bg(ζ, η/2))

∫
Bg(ζ,η)

|f(w)|pdvg

where C depend only inK,n, η. Since g has sbounded geometry Vol(Bg(z, η/2)) ≽ 1 uniformly

in z. Hence

|f(ζ)|p ≤ C

∫
Bg(ζ,η)

|f(w)|pdvg
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Let s ∈ Fp(M,L) and s = fe on Bg(z, η). We have

|s|ph = |fe−F
2 |pe−

p
2
F(z)e−

p
2
(F−F(z)−ℜ(F ))

≤ Cp|fe−F
2 |pe−

p
2
F(z)

By mean value inequality

|f(z)e−
F (z)
2 |pe−

p
2
F(z) ≤ cpr

∫
Bg(z,r)

|fe−F
2 |pe−

p
2
F(z)dvg

≤ Cp
r

∫
Bg(z,r)

|fe−F(w)|pdvg

Hence

|s(z)|ph ≤ Cp
r

∫
Bg(z,r)

|s|pdvg

By (2.3) and (2.4)

|∇|s|ph|g ≤ e−
p
2
F(z)e−

p
2
(F−F(z)−ℜ(F )))|∇|fe−F

2 |p|

+
p

2
|fe−F

2 |pe−
p
2
F(z)e−

p
2
(F−F(z)−ℜ(F ))|∇(F−F(z)−ℜ(F ))|g

≤ e−
p
2
F(z)e−

p
2
(F−F(z)−ℜ(F ))|∇|fe−F

2 |p|

+
p

2
|s|phe

− p
2
(F−F(z)−ℜ(F ))|∇(F−F(z)−ℜ(F ))|g

≤ Cp
(
e−

p
2
F(z)|∇|fe−F

2 |p|+ p

2
|s|ph

)
By mean value inequality ( Cauchy formula for partial derivates ), there exists cr > 0 such that

|∇|fe−F
2 |p|(z) ≤ cpr

∫
Bg(z,r)

|fe−F
2 |pdvg

≤ Cp
r

∫
Bg(z,r)

|s|pdvg

From this it follows

|∇|fe−F
2 |p|(z)e−

p
2
F(z) ≤ cpr

∫
Bg(z,r)

|fe−F
2 |pe−

p
2
F(z)dvg ≤ Cp

r

∫
Bg(z,r)

|s|pdvg

Thus we get (2.2).

3.2 Slow Growth of Bergman Sections

Lemma 3.2. Let (M, g) be a Kähler manifold with bounded geometry and lower Ricci curvature

bound. Let (L, h) −→ (M, g) be a hermitian holomorphic line bundle with bounded curvature.

Then there exists δ > 0 with the following properties : if z ∈M, s ∈ Fp(M,L), ∥s∥p ≤ 1 then

|s(z)|h ≥ a =⇒ |s(w)|h ≥ a

2
, ∀ w ∈ Bg(z, δ).

Proof. Le R > δ > 0. By (3.2) of proposition 3.1 and mean value theorem for all w ∈
Bg(z,R/2)

||s(w)|ph − |s(z)|ph| ≤ Cp
r dg(w, z)

(∫
Bg(z,R)

|s(ζ)|pdvg
)

≤ δCp
R∥s∥

p
p

Hence if δ is small enough

∀w ∈ Bg(z, δ) : |s(w)|ph ≥ ap − δCp
R ≥ ap

2p
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3.3 Diagonal Bounds for the Bergman Kernel

As a consequence of (3.1) proposition 3.1, we obtain the following proposition.

Proposition 3.3. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry

and lower Ricci curvature bound. Let (L, h) −→ (M, g) be a hermitian holomorphic line bundle

with bounded curvature. There is a constant C > 0 such that for all z ∈ M : |K(z, z)| ≼ C.

Therefore |K(z, w)| ≤ C for all z, w ∈M .

Proof. Proof. Let (sj) be a orhonormal basis of F2(M,L). By de�nition of the Bergman Kernel

K(z, w) =
∑
j

sj(z)⊗ sj(w)

By (3.1) of Proposition 3.1 the evaluation

evz : F2(M,L) −→ Lz

s −→ s(z)

is continuous and

∥evz∥ = |K(z, z)| ≼ 1

uniformly in z ∈M . Hence

|K(z, w)| ≤
∑
j

|sj(z)||sj(w)|

≤
√
|K(z, z)|

√
|K(w,w)| ≼ 1

The following result gives bounds for the Bergman kernel in a small but uniform neighborhood

of the diagonal

Proposition 3.4. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry

and lower Ricci curvature bound. Let (L, h) −→ (M, g) be a hermitian holomorphic line bundle

with bounded curvature. There are constants δ, C1, C2 > 0 such that for all z ∈ M and w ∈
Bg(z, δ)

C1|K(z, z)| ≤ |K(z, w)| ≤ C2|K(z, z)|
Proof. Let z ∈M . Fix a frame e in a neighborhood U of the point z and consider an orhonormal

basis (sj)dj=1
of F2(X,L) ( where 1 ≤ d ≤ ∞). In U each si is represented by a holomorphic

function fi such that si(x) = fi(x)e(x). Let

sz(w) := |e(z)|
d∑

i=1

fi(z)si(w)

Then

|sz(w)| =
∣∣∣( d∑

i=1

fi(z)si(w)
)
⊗ e(z)

∣∣∣
=

∣∣∣ d∑
i=1

si(w)⊗ si(z)
∣∣∣

= |K(w, z)|

and ∫
M

|sz|2dvg(w) =

∫
M

|K(w, z)|2dvg(w)

= |K(z, z)| ≼ 1

Hence, by lemma 3.2, there exists C, δ > 0 independant of z such that

|K(w, z)| = |sz(w)| ≥ C|sz(z)| = C|K(z, z)|

for all w ∈ Bg(z, δ).
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4 Proofs of Theorem 1.1 and Proposition 1.2

4.1 Proof of Theorem 1.1

Let z, w ∈ M such that dg(z, w) ≥ δ where δ > 0 as in Proposition 3.4. Fix a smooth function

χ ∈ C∞
0
(Bg(w, δ/2)) such that

(i) 0 ≤ χ ≤ 1,

(ii) χ = 1 in Bg(w, δ/4),
(iii) |∂̄χ|g ≼ χ.
Let sz ∈ F2(M,L) de�ned by

sz(w) := |e(z)|
d∑

i=1

fi(z)si(w)

where (si)1≤i≤d is an orthonormal basis of F2(M,L) and e is a local frame of L around z. Then
|sz(w)| = |K(w, z)| and ∥sz∥2 = |K(z, z)| ≼ 1. Also

sz(w)⊗
e(z)

|e(z)|
= K(w, z)

By (3.1) of Proposition 3.1

|sz(w)|2 ≼
∫
B(w,δ/2)

χ(ζ)|sz(ζ)|2dvg ≼ ∥sz∥2L2(χdvg)

We have

∥sz∥L2(χdVg) = sup
σ

| < σ, sz >L2(χdvg) |

where σ ∈ F2(Bg(z, δ), L) such that ∥σ∥L2(χdvg) = 1. Since∣∣∣ < σ, sz >L2(χdvg)

∣∣∣
C

=
∣∣∣ ∫

M

< χ(w)σ(w), sz(w) > dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), |e(z)|fi(z)si(w) > dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > fi(z)|e(z)|dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > fi(z)e(z)dvg(w)
∣∣∣
Lz

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > si(z)dvg(w)
∣∣∣
Lz

=
∣∣∣ ∫

M

K(z, w) • χ(w)σ(w)dvg(w)
∣∣∣
Lz

= |P (χσ)(z)|Lz

then

∥sz∥L2(χdVg) = sup
σ

|P (χσ)(z)|

Since c(L) +Ricci(g) ≥ ag, by Theorem 2.5 there exists a solution u of ∂̄u = ∂̄χ.σ such that∫
M

|u|2dvg ≼
∫
M

|∂̄χ|2g|σ|2dvg <∞

Let uσ = χσ − P (χσ) be the solution having minimal L2-norm of

∂̄u = ∂̄χ.σ
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Since χ(z) = 0 ∣∣∣ < σ, sz >L2(χdvg)

∣∣∣
C
= |P (χσ)(z)|Lz = |uσ(z)|Lz

Since B(z, δ/2) ∩ B(w, δ/2) = ∅, the section uσ is holomorphic in Bg(z, δ/2). Let ϵ ∈]0, 2/δ],
By (3.1) Proposition 3.1

|uσ(z)|2Lz
≼

∫
Bg(z,δ/2)

|uσ(ζ)|2Lζ
dvg ≼

∫
Bg(z,δ/2)

e−ϵd(ζ,z)|uσ(ζ)|2Lζ
dvg (4.1)

Let η := −ϵFz where Fz is as in lemma 2.4 and Q = ϵωg. Choose ϵ small enough such that

c(L) +Ricci(g)− iϵ∂∂̄Fz − iϵ2∂Fz ∧ ∂̄Fz − ϵωg ≥ 0

By Theorem 2.6 ∫
M

e−ϵFz |uσ|2dvg ≼
∫
M

e−ϵFz |∂̄χ|2g|σ|2dvg

Since C1dg(., z) ≤ Fz ≤ C2(dg(., z) + 1), by (4.1)

|uσ(z)|2Lz
≼

∫
M

e−ϵC1dg(ζ,z)χ(ζ)|σ(ζ)|2dvg

Since ζ ∈ Bg(w, δ) we have

dg(ζ, z) ≥ dg(z, w)− dg(w, ζ)

≽ dg(z, w)− δ ≽ dg(z, w)

Finally

|K(z, w)| ≼ sup
σ

|uσ(z)|Lz ≼ e−αdg(z,w).

4.2 Proof of Proposition 1.2

If p = ∞, we have

∥Ps∥∞ =
∥∥∥ ∫

M

K(z, w).s(w)dvg(w)
∥∥∥
∞

≤ ∥s∥∞ sup
z∈M

∫
M

|K(z, w)|dvg(w)

≼ ∥s∥∞ sup
z∈M

∫
M

e−αdg(z,w)dvg(w)

≼ ∥s∥∞

and then P is bounded from L∞(M,L) to F∞(M,L).
If p ∈ [1,∞[, we have∫

M

|Ps(z)|pdvg(w) =

∫
M

∣∣∣ ∫
M

K(z, w).s(w)dvg(w)
∣∣∣pdvg(z)

≤
∫
M

∣∣∣ ∫
M

|s(w)|K(z, w)|dvg(w)
∣∣∣pdvg(z)

≤
∫
M

((∫
M

|K(z, w)|dvg(w)
)p−1

×
∫
M

|s(w)|p|K(z, w)|dvg(w)
)
dvg(z)( Jensen inequality)

≼
∫
M

(∫
M

e−αdg(w,z)dvg(w)
)p−1

×
∫
M

|s(w)|p|K(z, w)|dvg(w)
)
dvg(z)
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Thus ∫
M

|Ps(z)|pdvg(w) ≼
∫
M

∫
M

|s(w)|pe−αdg(w,z)dvg(w)dvg(z)

≼
∫
M

|s(w)|pdvg(w)

and then P is bounded from Lp(M,L) to Fp(M,L).
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