Vol. 6(1)(2017), 6-14

Pointwise estimate for the Bergman Kernel of holomorphic line bundles

Said Asserda

Communicated by S. Donaldson

MSC 2010 Classifications: Primary 47B35; Secondary 32A25, 30H20.

Keywords and phrases : Bergman kernel, bounded geometry, line bundle, L^2 estimates for $\bar{\partial}$ -equation, Stein manifold.

Abstract. Under curvatures conditions, we prove upper pointwise estimates for the Bergman kernel of the L^2 -space of holomorphic sections of a holomorphic hermitian line bundle over a Stein Kähler manifold with bounded geometry.

1 Introduction and statment of the main result

Let L be a holomorphic hermitian line bundle over a complex manifold M, and let (U_j) be a covering of the manifold by open sets over which L is locally trivial. A section s of L is represented by a collection of complex valued functions f_j on U_j that are related by the holomorphic transition functions (g_{jk}) of the bundle

$$f_j = g_{jk} f_k$$
 on $U_j \cap U_k$

We say that s is holomorphic if each f_i is holomorphic on U_i . A metric h on L is given by a collection of real valued functions Φ_j on U_j , related so that

$$|s|_{h}^{2} := |f_{j}|^{2} e^{-\Phi_{j}}$$
 on U_{j}

is globally well defined. We will write h for the collection (Φ_j) , and refer to h as the metric on L. We say that L is positive, L > 0, if h can be chosen smooth with curvature

$$c(L) := i\partial \overline{\partial} \Phi_i$$

strictly positive, and that L is semipositive, $L \ge 0$, if it has a smooth metric of semipositive curvature. We say that $(L,h) \longrightarrow (M,g)$ has bounded curvature if $-M\omega_g \le c(L) \le M\omega_g$ for some positive constant M. Let $\mathcal{F}^2(M,L)$ the Hilbert space of holomorphic sections $s: M \longrightarrow L$ such that

$$\|s\|_{2} := \left(\int_{M} |s|_{h}^{2} dv_{g}\right)^{\frac{1}{2}} < \infty$$

Let P the orthogonal projection from the Hilbert space of $L^2(M, L)$ onto its closed subspace $\mathcal{F}^2(M, L)$.Let $K \in C^{\infty}(M \times M, L \otimes \overline{L})$ the reproducing (or Bergman) kernel of P, that is

$$K(z,w) = \sum_{j=1}^{d} s_j(z) \otimes \overline{s_j(w)} \in L_z \otimes \overline{L_w}$$

where \overline{L} is the conjugate bundle of L which is the hermitian anti-holomorphic line bundle \overline{L} whose transition functions are (\overline{g}_{jk}) , (s_j) is an orthonormal basis for $\mathcal{F}^2(M, L)$ and $0 \le d = dim\mathcal{F}^2(M, L) \le \infty$. The distribution kernel K is called the Bergman Kernel of $(L, h) \longrightarrow (M, g)$. For all $s \in L^2(M, L)$

$$(Ps)(z) = \int_M K(z, w) \bullet s(w) dv_g(w)$$

where

$$K(z, w) \bullet s(w) = \sum_{j=1}^{d} \langle s(w), s_j(w) \rangle \langle s_j(z) \rangle$$

Since

$$|K(z,w)|^2 = \sum_j \sum_k \langle s_j(z), s_k(z) \rangle \langle s_j(w), s_k(w) \rangle$$

then K(z, w) is Hermitian : |K(z, w)| = |K(w, z)|. The function |K(z, z)| is called the Bergman function of $\mathcal{F}^2(M, L)$. It satisfies

$$|K(z,z)| = \int_M |K(z,w)|^2 dv_g(w)$$

The main result of this paper is an estimate for the Bergman kernel of L similar to those obtained in [4,10] for weighted trivial line bundles with bounded curvature.

Theorem 1.1. Let (M,g) be a Stein Kähler manifold with bounded geometry. Let $(L,h) \rightarrow (M,g)$ be a hermitian holomorphic line bundle with bounded curvature such that

$$c(L) + Ricci(g) \ge a\omega_g$$

for some positive constant a. There are constants α , C > 0 such that for all $z, w \in M$,

$$|K(z,w)| \le Ce^{-\alpha d_g(z,w)}$$

where d_q is the geodesic distance associated to the metric g.

From the above estimate for the Bergman kernel, we obtain the boundedness of the Bergman projection from $L^p(M, L)$ to $\mathcal{F}^p(M, L)$.

Proposition 1.2. Let (M,g) be a Stein Kähler manifold with bounded geometry such that for all $\epsilon > 0$

$$\sup_{z\in M}\int_M e^{-\epsilon d_g(z,w)}dV_g(w)<\infty$$

Let $(L,h) \longrightarrow (M,g)$ be a hermitian holomorphic line bundle with bounded curvature such that

$$c(L) + Ricci(g) \ge a\omega_g$$

for some positive constant a. Let $p \in [1, +\infty]$. Then the Bergman projection is bounded as a map from $L^p(M, L)$ to $\mathcal{F}^p(M, L)$.

2 Background

For the proof of Theorem 1.1, we need some notation and background.

Definition 2.1. A Hermitian manifold (M, g) is said to have bounded geometry if there exists positive numbers R and c such that for all $z \in M$ there exists a biholomorphic mapping F_z : $(U,0) \subset \mathbb{C}^n \longrightarrow (V,z) \subset M$ such that (i) $F_z(0) = z$, (ii) $B_g(z,R) \subset F_z(U)$ and (iii) $\frac{1}{c}g_e \leq F_z^*g \leq cg_e$ on $F_z^{-1}(B_g(z,R))$ where g_e is the euclidean metric. By (*iii*)

$$\forall w \in B_g(z, R) : \frac{1}{c} \|F_z^{-1}(w)\|_e \le d_g(w, z) \le c \|F_z^{-1}(w)\|_e$$

Remark 2.2. If an Hermitian manifold (M,g) has bounded geometry then the geodesic exponential map $\exp_z : T_z^{\mathbb{R}}M \to M$ is defined on a ball $B(0,r) \subset T_z^{\mathbb{R}}M$ for any r < R and provide a diffeomorphism of this ball onto the ball $B_g(z,r) \subset M$. It follows that the manifold (M,g) is complete.

Remark 2.3. It is well known that if (M, g) has bounded geometry and $Ric(g) \ge Kg$ then (M, g) satisfy the uniform ball size condition ([3] Prop. 14), i.e. for every $r \in \mathbb{R}^+$

$$\inf_{z\in M} vol(B_g(z,r)) > 0 \quad \text{and} \quad \sup_{z\in M} vol(B_g(z,r)) < \infty$$

Also by volume comparison theorem [2], there are nonnegative constants C, α, β such that

$$vol_g(B_g(z,r)) \le Cr^{\alpha}e^{\beta r}, \quad \forall r \ge 1, \ z \in M$$

In particular if (M, g) has polynomial volume growth, i.e $\beta = 0$, then

$$\sup_{z \in M} \int_{M} e^{-\epsilon d_{g}(z,w)} dV_{g}(w) = \sup_{z \in M} \int_{0}^{\infty} \operatorname{vol}_{g}(\partial B(z,r)) e^{-\epsilon r} dr \leq C(\epsilon)$$

Bounded geometry allows one to produce an exhausion function which behaves like the distance function and whose gradient and hessian are bounded on M [9].

Lemma 2.4. Let (M, g) be a Hermitian manifold with bounded geometry. For every $z \in M$ there exists a smooth function $\Psi_z : M \longrightarrow \mathbb{R}$ such that (i) $C_1 d_g(., z) \leq \Psi_z \leq C_2 (d_g(., z) + 1)$, (ii) $|\partial \Psi_z|_g \leq C_3$, and (iii) $-C_4 \omega_g \leq i \partial \bar{\partial} \Psi_z \leq C_5 \omega_g$. Furthermore, the constants in (i), (ii) and (iii) depend only on the constants associated with the bounded geometry of (M, g).

We recall Demailly's theorem [5], which generalizes Hörmander's L^2 estimates [6] (Theorem 2.2.1, p. 104) for forms with values in a line bundle.

Theorem 2.5. Let (X, ω) be a complete Kähler manifold, (L, h) a holomorphic hermitian line bundle over X, and let ϕ be a locally integrable function over X. If the curvature c(L) is such that

$$c(L) + Ric(\omega) + i\partial\bar{\partial}\phi \ge \gamma\omega$$

for some positive and continuous function γ on X, then for all $v \in L^2_{(0,1)}(X, L, loc)$, $\bar{\partial}$ -closed and such that

$$\int_X \gamma^{-1} |v|^2 e^{-\phi} dv_\omega < \infty$$

there exists $u \in L^2(X, L)$ such that

$$\bar{\partial}u = v$$
 and $\int_X |u|_h^2 e^{-\phi} dv_\omega \le \int_X \gamma^{-1} |v|_{\omega,h}^2 e^{-\phi} dv_\omega$

Also, we recall J.McNeal-D.Varolin's theorem [8](Theorem 2.2.1, p. 104), which generalizes Berndtsson-Delin's improved L^2 -estimate of $\bar{\partial}$ -equation having minimal L^2 -norm [1],[4] for forms with values in a line bundle.

Theorem 2.6. Let (M, g) be a Stein Kähler manifold, and $(L, h) \longrightarrow (M, g)$ a holomorphic hermitian line bundle with Hermitian metric h. Suppose there exists a smooth function $\eta : M \rightarrow \mathbb{R}$ and a positive, a.e. strictly positive Hermitian (1, 1)-form Θ on M such that

$$c(L) + Ric(g) + i\partial\bar{\partial}\eta - i\partial\eta \wedge \bar{\partial}\eta \ge \Theta$$

Let v be an L-valued (0,1)-form such that $v = \overline{\partial} u$ for some L-valued section u satisfying

$$\int_M |u|_h^2 dv_g < \infty$$

Then the solution u_0 of $\overline{\partial} u = v$ having minimal L^2 -norm i.e

$$\int_M \langle u_0, \sigma \rangle dv_g = 0 \text{ for all } \sigma \in \mathcal{F}^2(M, L)$$

satisfies the estimate

$$\int_M |u_0|_h^2 e^{\eta} dv_g \le \int_M |v|_{\Theta,h}^2 e^{\eta} dv_g.$$

3 Preliminary results

3.1 Weighted Bergman Inequalities

Proposition 3.1. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry and lower Ricci curvature bound. Let $(L, h) \longrightarrow (M, g)$ be a hermitian holomorphic line bundle with bounded curvature. Fix $p \in]0, \infty[$. Then for each r > 0 there exists a constant C_r such that if $s \in \mathcal{F}^2(M, L)$ then

$$|s(z)|^{p} \le C_{r}^{p} \int_{B_{g}(z,r)} |s|^{p} dv_{g}$$
(3.1)

in particular $\mathcal{F}^p(M,L) \subset \mathcal{F}^\infty(M,L)$ and

$$|\nabla|s(z)|^{p}|_{g}(z) \le C_{r}^{p} \int_{B_{g}(z,r)} |s|^{p} dv_{g}$$
(3.2)

Proof. Since (M, g) has bounded geometry there exists positive numbers R and c such that for all $z \in M$ there exists a biholomorphic mapping $\Psi_z : (U, 0) \subset \mathbb{C}^n \longrightarrow (V, z) \subset M$ such that (i) $\Psi_z(0) = z$, (ii) $B_c(z, R) \subset \Psi_z(U)$ and

(ii) $B_g(z, R) \subset \Psi_z(U)$ and (iii) $\frac{1}{c}g_e \leq \Psi_z^*g \leq cg_e$ on $\Psi_z^{-1}(B_g(z, R))$ where g_e is the euclidean metric. Consider the (1, 1)-form defined on $B_e(0, \delta(R)) \subset = \Psi_z^{-1}(B_g(z, R)) \subset \mathbb{C}^n$ by

$$\Theta := \Psi_z^* c(L)$$

Since $-K\omega_g \leq c(L) \leq K\omega_g$, by [11] Lemma 4.1 there exists a function $\phi \in C^2(B_e(0, \delta))$ such that

$$i\partial\bar{\partial}\phi = \Theta$$
 and $\sup_{B_e(0,\delta)} (|\phi| + |d\phi|_{g_e}) \le M$

On $B_g(z,\eta) \subset \Psi_z(B_e(0,\delta(R)))$, consider the C^2 -function

$$\psi := \phi \circ \Psi_z^-$$

By (iii) we have

$$i\partial \bar{\partial} \psi = c(L)$$
 and $\sup_{B_g(z,\eta)} (|\psi| + |\nabla \psi|_g) \le M'$

where M' and η depend only on R and c.

Let e be a frame of L arround $z \in B_g(z, \eta)$ and $\Phi(w) = -\log |e(w)|^2$. Then $i\partial \bar{\partial} \psi = i\partial \bar{\partial} \Phi$ on $B_g(z, \eta)$. Hence the function

$$\rho(w) = \Phi(w) - \Phi(z) + \psi(z) - \psi(w)$$

is pluriharmonic. Then $\rho = \Re(F)$ for some holomorphic function F with $\Im(F)(z) = 0$ and

$$\sup_{B_g(z,\eta)} |\Phi - \Phi(z) - \Re(F)| = \sup_{B_g(z,\eta)} |\psi - \psi(z)| \le C$$
(3.3)

$$\sup_{B_g(z,\eta)} |\nabla(\Phi - \Phi(z) - \Re(F))|_g = \sup_{B_g(z,\eta)} |\nabla\psi|_g \le C$$
(3.4)

We can suppose $0 < r \le \eta$. According to [7], for all $z \in M$ and all holomorphic functions f on $B_g(z,\eta)$ and all $\zeta \in B_g(z,\eta/2)$

$$|f(\zeta)|^p \leq \frac{C}{\operatorname{Vol}(B_g(\zeta,\eta/2))} \int_{B_g(\zeta,\eta)} |f(w)|^p dv_g$$

where C depend only in K, n, η . Since g has shounded geometry $\operatorname{Vol}(B_g(z, \eta/2)) \succeq 1$ uniformly in z. Hence

$$|f(\zeta)|^p \le C \int_{B_g(\zeta,\eta)} |f(w)|^p dv_g$$

Let $s \in \mathcal{F}^p(M, L)$ and s = fe on $B_g(z, \eta)$. We have

$$\begin{split} |s|_{h}^{p} &= |fe^{-\frac{F}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)}e^{-\frac{p}{2}(\Phi-\Phi(z)-\Re(F))} \\ &\leq C^{p}|fe^{-\frac{F}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)} \end{split}$$

By mean value inequality

$$\begin{split} |f(z)e^{-\frac{F(z)}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)} &\leq c_{r}^{p}\int_{B_{g}(z,r)}|fe^{-\frac{F}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)}dv_{g}\\ &\leq c_{r}^{p}\int_{B_{g}(z,r)}|fe^{-\Phi(w)}|^{p}dv_{g} \end{split}$$

Hence

$$|s(z)|_h^p \le C_r^p \int_{B_g(z,r)} |s|^p dv_g$$

By (2.3) and (2.4)

$$\begin{split} |\nabla|s|_{h}^{p}|_{g} &\leq e^{-\frac{p}{2}\Phi(z)}e^{-\frac{p}{2}(\Phi-\Phi(z)-\Re(F)))}|\nabla|fe^{-\frac{F}{2}}|^{p}| \\ &+ \frac{p}{2}|fe^{-\frac{F}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)}e^{-\frac{p}{2}(\Phi-\Phi(z)-\Re(F))}|\nabla(\Phi-\Phi(z)-\Re(F))|_{g} \\ &\leq e^{-\frac{p}{2}\Phi(z)}e^{-\frac{p}{2}(\Phi-\Phi(z)-\Re(F))}|\nabla|fe^{-\frac{F}{2}}|^{p}| \\ &+ \frac{p}{2}|s|_{h}^{p}e^{-\frac{p}{2}(\Phi-\Phi(z)-\Re(F))}|\nabla(\Phi-\Phi(z)-\Re(F))|_{g} \\ &\leq C^{p}\left(e^{-\frac{p}{2}\Phi(z)}|\nabla|fe^{-\frac{F}{2}}|^{p}| + \frac{p}{2}|s|_{h}^{p}\right) \end{split}$$

By mean value inequality (Cauchy formula for partial derivates), there exists $c_r > 0$ such that

$$\begin{split} |\nabla| f e^{-\frac{F}{2}} |^{p} |(z) &\leq c_{r}^{p} \int_{B_{g}(z,r)} |f e^{-\frac{F}{2}} |^{p} dv_{g} \\ &\leq C_{r}^{p} \int_{B_{g}(z,r)} |s|^{p} dv_{g} \end{split}$$

From this it follows

$$|\nabla|fe^{-\frac{F}{2}}|^{p}|(z)e^{-\frac{p}{2}\Phi(z)} \leq c_{r}^{p}\int_{B_{g}(z,r)}|fe^{-\frac{F}{2}}|^{p}e^{-\frac{p}{2}\Phi(z)}dv_{g} \leq C_{r}^{p}\int_{B_{g}(z,r)}|s|^{p}dv_{g} \leq C_{r}^{p}\int_{B_{g}(z,r)$$

Thus we get (2.2).

3.2 Slow Growth of Bergman Sections

Lemma 3.2. Let (M,g) be a Kähler manifold with bounded geometry and lower Ricci curvature bound. Let $(L,h) \longrightarrow (M,g)$ be a hermitian holomorphic line bundle with bounded curvature. Then there exists $\delta > 0$ with the following properties : if $z \in M$, $s \in \mathcal{F}^p(M,L)$, $||s||_p \leq 1$ then

$$|s(z)|_h \ge a \Longrightarrow |s(w)|_h \ge \frac{a}{2}, \ \forall \ w \in B_g(z, \delta)$$

Proof. Le $R > \delta > 0$. By (3.2) of proposition 3.1 and mean value theorem for all $w \in B_g(z, R/2)$

$$\begin{aligned} ||s(w)|_h^p - |s(z)|_h^p| &\leq C_r^p d_g(w, z) \left(\int_{B_g(z, R)} |s(\zeta)|^p dv_g \right) \\ &\leq \delta C_R^p ||s||_p^p \end{aligned}$$

Hence if δ is small enough

$$\forall w \in B_g(z, \delta) : |s(w)|_h^p \ge a^p - \delta C_R^p \ge \frac{a^p}{2^p}$$

3.3 Diagonal Bounds for the Bergman Kernel

As a consequence of (3.1) proposition 3.1, we obtain the following proposition.

Proposition 3.3. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry and lower Ricci curvature bound. Let $(L, h) \longrightarrow (M, g)$ be a hermitian holomorphic line bundle with bounded curvature. There is a constant C > 0 such that for all $z \in M$: $|K(z, z)| \preceq C$. Therefore $|K(z, w)| \leq C$ for all $z, w \in M$.

Proof. Proof. Let (s_j) be a orhonormal basis of $\mathcal{F}^2(M, L)$. By definition of the Bergman Kernel

$$K(z,w) = \sum_{j} s_{j}(z) \otimes \overline{s_{j}(w)}$$

By (3.1) of Proposition 3.1 the evaluation

$$ev_z$$
 : $\mathcal{F}^2(M,L) \longrightarrow L_z$
 $s \longrightarrow s(z)$

is continuous and

$$\|ev_z\| = |K(z,z)| \preceq 1$$

uniformly in $z \in M$. Hence

$$|K(z,w)| \leq \sum_{j} |s_{j}(z)| |s_{j}(w)|$$
$$\leq \sqrt{|K(z,z)|} \sqrt{|K(w,w)|} \leq 1$$

The following result gives bounds for the Bergman kernel in a small but uniform neighborhood of the diagonal

Proposition 3.4. Let (M, g) be a complete noncompact Kähler manifold with bounded geometry and lower Ricci curvature bound. Let $(L, h) \longrightarrow (M, g)$ be a hermitian holomorphic line bundle with bounded curvature. There are constants $\delta, C_1, C_2 > 0$ such that for all $z \in M$ and $w \in B_g(z, \delta)$

$$C_1|K(z,z)| \le |K(z,w)| \le C_2|K(z,z)|$$

Proof. Let $z \in M$. Fix a frame e in a neighborhood U of the point z and consider an orhonormal basis $(s_j)_{j=1}^d$ of $\mathcal{F}^2(X, L)$ (where $1 \leq d \leq \infty$). In U each s_i is represented by a holomorphic function f_i such that $s_i(x) = f_i(x)e(x)$. Let

$$s_z(w) := |e(z)| \sum_{i=1}^d \overline{f_i(z)} s_i(w)$$

Then

$$|s_{z}(w)| = \left| \left(\sum_{i=1}^{d} \overline{f_{i}(z)} s_{i}(w) \right) \otimes \overline{e(z)} \right|$$
$$= \left| \sum_{i=1}^{d} s_{i}(w) \otimes \overline{s_{i}(z)} \right|$$
$$= |K(w, z)|$$

and

$$\int_{M} |s_z|^2 dv_g(w) = \int_{M} |K(w,z)|^2 dv_g(w)$$
$$= |K(z,z)| \leq 1$$

Hence, by lemma 3.2, there exists $C, \delta > 0$ independent of z such that

$$|K(w,z)| = |s_z(w)| \ge C|s_z(z)| = C|K(z,z)|$$

for all $w \in B_q(z, \delta)$.

11

4 **Proofs of Theorem 1.1 and Proposition 1.2**

4.1 Proof of Theorem 1.1

Let $z, w \in M$ such that $d_g(z, w) \ge \delta$ where $\delta > 0$ as in Proposition 3.4. Fix a smooth function $\chi \in C_0^{\infty}(B_g(w, \delta/2))$ such that (i) $0 \le \chi \le 1$, (ii) $\chi = 1$ in $B_g(w, \delta/4)$, (iii) $|\bar{\partial}\chi|_a \prec \chi$.

(iii) $|\bar{\partial}\chi|_g \preceq \chi$ Let $s_z \in \mathcal{F}^2(M, L)$ defined by

$$s_z(w) := |e(z)| \sum_{i=1}^d \overline{f_i(z)} s_i(w)$$

where $(s_i)_{1 \le i \le d}$ is an orthonormal basis of $\mathcal{F}^2(M, L)$ and e is a local frame of L around z. Then $|s_z(w)| = |K(w, z)|$ and $||s_z||_2 = |K(z, z)| \le 1$. Also

$$s_z(w) \otimes \overline{\frac{e(z)}{|e(z)|}} = K(w,z)$$

By (3.1) of Proposition 3.1

$$|s_{z}(w)|^{2} \preceq \int_{B(w,\delta/2)} \chi(\zeta) |s_{z}(\zeta)|^{2} dv_{g} \preceq ||s_{z}||^{2}_{L^{2}(\chi dv_{g})}$$

We have

$$\|s_z\|_{L^2(\chi dV_g)} = \sup_{\sigma} | < \sigma, s_z >_{L^2(\chi dv_g)} |$$

where $\sigma \in \mathcal{F}^2(B_g(z, \delta), L)$ such that $\|\sigma\|_{L^2(\chi dv_g)} = 1$. Since

$$\begin{split} \left| <\sigma, s_z >_{L^2(\chi dv_g)} \right|_{\mathbb{C}} &= \left| \int_M <\chi(w)\sigma(w), s_z(w) > dv_g(w) \right|_{\mathbb{C}} \\ &= \left| \sum_{i=1}^d \int_M <\chi(w)\sigma(w), |e(z)|\overline{f_i(z)}s_i(w) > dv_g(w) \right|_{\mathbb{C}} \\ &= \left| \sum_{i=1}^d \int_M <\chi(w)\sigma(w), s_i(w) > f_i(z)|e(z)|dv_g(w) \right|_{\mathbb{C}} \\ &= \left| \sum_{i=1}^d \int_M <\chi(w)\sigma(w), s_i(w) > f_i(z)e(z)dv_g(w) \right|_{L_z} \\ &= \left| \sum_{i=1}^d \int_M <\chi(w)\sigma(w), s_i(w) > s_i(z)dv_g(w) \right|_{L_z} \\ &= \left| \int_M K(z, w) \bullet \chi(w)\sigma(w)dv_g(w) \right|_{L_z} \\ &= \left| P(\chi\sigma)(z) \right|_{L_z} \end{split}$$

then

$$\|s_z\|_{L^2(\chi dV_g)} = \sup_{\sigma} |P(\chi \sigma)(z)|$$

Since $c(L) + Ricci(g) \ge ag$, by Theorem 2.5 there exists a solution u of $\bar{\partial}u = \bar{\partial}\chi.\sigma$ such that

$$\int_{M} |u|^2 dv_g \preceq \int_{M} |\bar{\partial}\chi|_g^2 |\sigma|^2 dv_g < \infty$$

Let $u_{\sigma} = \chi \sigma - P(\chi \sigma)$ be the solution having minimal L^2 -norm of

$$\bar{\partial}u = \bar{\partial}\chi.\sigma$$

Since $\chi(z) = 0$

$$<\sigma, s_z>_{L^2(\chi dv_g)}\Big|_{\mathbb{C}}=|P(\chi\sigma)(z)|_{L_z}=|u_\sigma(z)|_{L_z}$$

Since $B(z, \delta/2) \cap B(w, \delta/2) = \emptyset$, the section u_{σ} is holomorphic in $B_g(z, \delta/2)$. Let $\epsilon \in]0, 2/\delta]$, By (3.1) Proposition 3.1

$$|u_{\sigma}(z)|_{L_{z}}^{2} \preceq \int_{B_{g}(z,\delta/2)} |u_{\sigma}(\zeta)|_{L_{\zeta}}^{2} dv_{g} \preceq \int_{B_{g}(z,\delta/2)} e^{-\epsilon d(\zeta,z)} |u_{\sigma}(\zeta)|_{L_{\zeta}}^{2} dv_{g}$$
(4.1)

Let $\eta := -\epsilon \Phi_z$ where Φ_z is as in lemma 2.4 and $\Theta = \epsilon \omega_g$. Choose ϵ small enough such that

$$c(L) + Ricci(g) - i\epsilon\partial\bar{\partial}\Phi_z - i\epsilon^2\partial\Phi_z \wedge \bar{\partial}\Phi_z - \epsilon\omega_g \ge 0$$

By Theorem 2.6

$$\int_{M} e^{-\epsilon \Phi_{z}} |u_{\sigma}|^{2} dv_{g} \preceq \int_{M} e^{-\epsilon \Phi_{z}} |\bar{\partial}\chi|_{g}^{2} |\sigma|^{2} dv_{g}$$

< $C_{2}(d_{\sigma}(.,z)+1),$ by (4.1)

Since $C_1 d_g(., z) \le \Phi_z \le C_2 (d_g(., z) + 1)$, by (4.1)

$$|u_{\sigma}(z)|_{L_{z}}^{2} \preceq \int_{M} e^{-\epsilon C_{1}d_{g}(\zeta,z)} \chi(\zeta) |\sigma(\zeta)|^{2} dv_{g}$$

Since $\zeta \in B_g(w, \delta)$ we have

$$\begin{array}{rcl} d_g(\zeta,z) & \geq & d_g(z,w) - d_g(w,\zeta) \\ & \succeq & d_g(z,w) - \delta \succeq d_g(z,w) \end{array}$$

Finally

$$K(z,w)| \preceq \sup_{\sigma} |u_{\sigma}(z)|_{L_z} \preceq e^{-\alpha d_g(z,w)}.$$

4.2 **Proof of Proposition 1.2**

If $p = \infty$, we have

$$\begin{split} \|Ps\|_{\infty} &= \left\| \int_{M} K(z,w) \cdot s(w) dv_{g}(w) \right\|_{\infty} \\ &\leq \|s\|_{\infty} \sup_{z \in M} \int_{M} |K(z,w)| dv_{g}(w) \\ &\preceq \|s\|_{\infty} \sup_{z \in M} \int_{M} e^{-\alpha d_{g}(z,w)} dv_{g}(w) \\ &\preceq \|s\|_{\infty} \end{split}$$

and then P is bounded from $L^{\infty}(M, L)$ to $\mathcal{F}^{\infty}(M, L)$. If $p \in [1, \infty[$, we have

$$\begin{split} \int_{M} |Ps(z)|^{p} dv_{g}(w) &= \int_{M} \left| \int_{M} K(z, w) . s(w) dv_{g}(w) \right|^{p} dv_{g}(z) \\ &\leq \int_{M} \left| \int_{M} |s(w)| K(z, w)| dv_{g}(w) \right|^{p} dv_{g}(z) \\ &\leq \int_{M} \left(\left(\int_{M} |K(z, w)| dv_{g}(w) \right)^{p-1} \\ &\times \int_{M} |s(w)|^{p} |K(z, w)| dv_{g}(w) \right) dv_{g}(z) \text{(Jensen inequality)} \\ &\preceq \int_{M} \left(\int_{M} e^{-\alpha d_{g}(w, z)} dv_{g}(w) \right)^{p-1} \\ &\times \int_{M} |s(w)|^{p} |K(z, w)| dv_{g}(w) \right) dv_{g}(z) \end{split}$$

Thus

$$\begin{split} \int_{M} |Ps(z)|^{p} dv_{g}(w) & \preceq \quad \int_{M} \int_{M} |s(w)|^{p} e^{-\alpha d_{g}(w,z)} dv_{g}(w) dv_{g}(z) \\ & \preceq \quad \int_{M} |s(w)|^{p} dv_{g}(w) \end{split}$$

and then P is bounded from $L^p(M, L)$ to $\mathcal{F}^p(M, L)$.

References

- [1] B.Berndtsson : Uniform estimates weights for the $\bar{\partial}$ -equation, J. Geom. Anal. 7 (1997), 195-215.
- [2] R.L.Bishop, R.J.Crittenden : Geometry of manifolds. AP, New York, 1964.
- [3] C.B.Croke : Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ecole Norm. Sup. 13 (1980) 419-435.
- [4] H.Delin : Pointwise estimates for the weighted Bergman projection kernel in \mathbb{C}^n , using a weighted L^2 estimate for the $\bar{\partial}$ equation, Ann. Inst. Fourier (Grenoble) 48 (1998), 967-997.
- [5] J.P.Demailly : Estimations L^2 pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup. 4e Sér. 15 (1982) 457-511.
- [6] L.Hörmander : An Introduction to Complex Analysis in Several Variables, third ed., North-Holland, Amsterdam, 1990.
- [7] P.Li, R.Schoen : L^p and mean value properties of subharmonic functions on Riemannian manifolds. Acta Mathematica 1984, Volume 153, pp 279-301.
- [8] J.D.McNeal, D.Varolin : L^2 estimates for the $\bar{\partial}$ operator. Bull.Math.Sci.(5) 179-249 (2015).
- [9] T.Napier : Convexity properties of coverings of smooth projective varieties, Math. Ann. 286 (1990),433-479.
- [10] A.Schuster, D.Varolin : New estimates for the minimal L^2 solution of $\bar{\partial}$ and applications to geometric function theory in weighted Bergman spaces. J. Reine Angew. Math. 691 (2014), 173-201.
- [11] A.Schuster and D.Varolin : Toeplitz operators and Carleson measures on generalized Bergman-Fock spaces, Integr. Equ. Oper. Theory 72 (2012), 363-392.

Author information

Said Asserda, Ibn Tofail University, Faculty of Sciences, Department of Mathematics, Kenitra, Morocco. E-mail: asserda-said@univ-ibntofail.ac.ma

Received: March 7, 2016.

Accepted: May 18, 2016