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Abstract. LetR ⊂ S and S ⊂ T be minimal ring extensions of (commutative) rings. Shapiro

and the author recently gave 13 mutually exclusive conditions on these minimal ring extensions

and their crucial maximal ideals to characterize when R ⊂ T satis�es FIP, that is, when R ⊂ T
has only �nitely many intermediate rings. Here we show that exactly two of these 13 conditions

imply that S is the only ring properly contained (via unital ring extensions) between R and T .
Moreover, if one assumes, in addition, thatR is quasi-local, we show that exactly two of the other

11 conditions imply that S is the only ring properly contained between R and T . In all, there are
seven (of the 13) conditions which each implies that S is not the only ring properly contained

betweenR and T . Also, for four of the 13 conditions, some examples satisfying the condition are

such that S is the only ring properly contained between R and T while other examples satisfying

the condition do not have this feature.

1 Introduction

This paper is a sequel to [12]. All rings considered below are commutative with identity; all

subrings, inclusions of rings, ring- or algebra-homomorphisms, modules and submodules are

unital. If A ⊆ B is a ring extension, it is convenient to let [A,B] denote the set of intermediate

rings (that is, the set of rings C such that A ⊆ C ⊆ B). Recall from [1] that if A ⊆ B is a

ring extension, then A ⊆ B is said to satisfy FIP if there are only �nitely many rings contained

between A and B (that is, if |[A,B]| < ∞). Whenever A ⊂ B satis�es FIP, one has a �nite

(maximal) chain of rings A = A0 ⊂ . . . ⊂ Ai ⊂ Ai+1 ⊂ . . . ⊂ An = B for some positive

integer n, such that Ai ⊂ Ai+1 is a minimal ring extension for all i = 0, . . . , n − 1. (As usual,

⊂ denotes proper inclusion. Some useful background on minimal ring extensions will be given

two paragraphs below.) Not all such �compositions" of minimal ring extensions produce a ring

extension A ⊂ B that satis�es FIP. In [12], Shapiro and the author focussed on the case n = 2.

Indeed, if R ⊂ S and S ⊂ T are each minimal ring extensions, [12, Theorem 4.1] gave 13

mutually exclusive conditions on these minimal ring extensions and their crucial maximal ideals

to characterize when R ⊂ T satis�es FIP. As |[R, T ]| ≥ 3 in general, much of the subsequent

material in [12] began to examine the relationship between each of the 13 conditions from [12,

Theorem 4.1] and the possible conclusion that |[R, T ]| = 3 (that is, the possible conclusion that

S is the only ring that is properly contained between R and T ).
The main purpose of this note is to further that examination. More precisely, we show in

Theorem 2.2 that exactly two of the 13 conditions from [12, Theorem 4.1] imply that |[R, T ]| =
3. Moreover, Theorem 2.4 shows that if one assumes, in addition, that R is quasi-local, then

exactly two of the other 11 conditions from [12, Theorem 4.1] implies that |[R, T ]| = 3. We also

show in Theorem 2.9 that exactly seven of the 13 conditions from [12, Theorem 4.1] imply that

|[R, T ]| > 3. The remaining conditions are studied further in Proposition 2.10 (with complete

answers for two of those conditions in Proposition 2.10 (b), (c)); see also Remark 2.11.

Recall (cf. [14]) that a ring extension A ⊂ B is a minimal ring extension if there does

not exist a ring properly contained between A and B. A minimal ring extension A ⊂ B is

either integrally closed (in the sense that A is integrally closed in B) or integral. If A ⊂ B
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is a minimal ring extension, it follows from [14, Théorème 2.2 (i) and Lemme 1.3] that there

exists a unique maximal ideal M of A (called the crucial maximal ideal of A ⊂ B) such that

the canonical injective ring homomorphism AM → BM (:= BA\M ) can be viewed as a minimal

ring extension while the canonical ring homomorphism AP → BP is an isomorphism for all

prime ideals P of A except M . A minimal ring extension A ⊂ B is integrally closed if and only

if A ↪→ B is a �at epimorphism (in the category of commutative rings). If A ⊂ B is an integral

minimal ring extension with crucial maximal ideal M , there are three possibilities: A ⊂ B is

said to be respectively inert, rami�ed, or decomposed if B/MB (= B/M ) is isomorphic, as an

algebra over the �eld K := A/M , to a minimal �eld extension of K, K[X]/(X2), or K × K.

(As usual, X denote an indeterminate over the ambient base ring.)

The dedication of this note stems from a conversation between Jack Ohm and the author in

November 1981. Having recently drafted [6] (where I had characterized the posets having a

unique order-compatible topology), I asked Ohm's advice about the feasibility of characterizing

the posets having only �nitely many order-compatible topologies. (In view of his paper [26]

with W. J. Lewis, Ohm was an expert on such matters.) His reply was that, in view of the

success of Ferrand and Olivier [14] in studying minimal ring extensions, a far better question

would be to ask to characterize the ring extensions R ⊂ T having a unique proper intermediate

ring. While that question remains open after more than 34 years, one can perhaps say that

Theorem 2.2 gives an initial answer of sorts to Ohm's question when R ⊂ T is viewed as

having arisen from a juxtaposition of two minimal ring extensions. We would also note here the

above-mentioned additional contributions in Theorem 2.4, Theorem 2.9 and Proposition 2.10.

As explained in Remark 2.11 (a), a characterization of �|[R, T ]| = 3" remains open in two of

the 13 conditions listed in Theorem 2.1 (unless one settles for a trivial characterization that is

recorded in Proposition 2.10 (a)). As one sees from Theorem 2.9, these are two (of the four)

conditions for which there exist data satisfying this condition such that |[R, T ]| = 3 and there

exist other data satisfying this condition such that |[R, T ]| > 3.

We assume that the reader has a copy of [12] at hand. Following [22, page 28], we let INC,

LO and GU respectively denote the incomparable, lying-over and going-up properties of ring

extensions. If A is a ring, then Spec(A) denotes the set of prime ideals of A. Any unexplained

material is either taken from the Introduction of [12] or is standard, as in [16], [22].

2 Results

For ease of reference, we begin by restating the main classi�cation result from [12]. There will

be no need here to make explicit the cumbersome conditions from [12, Proposition 3.5] that are

mentioned in parts (xii) and (xiii) of the following statement.

Theorem 2.1. ([12, Theorem 4.1]) Let R ⊂ S and S ⊂ T be minimal ring extensions, with

crucial maximal idealsM and N , respectively. Then R ⊂ T satis�es FIP if and only if (exactly)
one of the following conditions holds:

(i) Both R ⊂ S and S ⊂ T are integrally closed.

(ii) R ⊂ S is integral and S ⊂ T is integrally closed.

(iii) R ⊂ S is integrally closed, S ⊂ T is integral, and N ∩R ̸⊆ M .

(iv) Both R ⊂ S and S ⊂ T are integral and N ∩R ̸= M .

(v) Both R ⊂ S and S ⊂ T are inert, N ∩ R = M , and either R/M is �nite or there exists

γ ∈ TM such that TM = RM [γ].
(vi) R ⊂ S is decomposed, S ⊂ T is inert and N ∩R = M .

(vii) Both R ⊂ S and S ⊂ T are decomposed and N ∩R = M .

(viii) R ⊂ S is inert, S ⊂ T is decomposed, and N ∩R = M .

(ix) R ⊂ S is rami�ed, S ⊂ T is decomposed, and N ∩R = M .

(x) R ⊂ S is decomposed, S ⊂ T is rami�ed, and N ∩R = M .

(xi) R ⊂ S is rami�ed, S ⊂ T is inert, and N ∩R = M .

(xii) R ⊂ S is inert, S ⊂ T is rami�ed, N ∩ R = M , and the two conditions stated in [12,

Proposition 3.5 (a)] hold.
(xiii) Both R ⊂ S and S ⊂ T are rami�ed, N ∩R = M , and the two conditions stated in [12,

Proposition 3.5 (b)] hold.

We next present our �rst main result. To follow the proof of Theorem 2.2, the reader should



Two Minimal Ring Extensions Produces No New Intermediate Rings 33

have at hand a copy of [12], as well as copies of several of the articles therein cited, such as [8],

[9].

Theorem 2.2. Let R ⊂ S and S ⊂ T be minimal ring extensions, with crucial maximal idealsM
and N , respectively. Then, of the 13 conditions in the statement of Theorem 2.1, the only ones

of those conditions which imply that |[R, T ]| = 3 are conditions (vi) and (xi).

Proof. (i): Let R be a one-dimensional Prüfer domain having exactly two distinct maximal ide-

als, say M and N . (The construction of such a domain is classical: cf. [25]; for a Noetherian,

that is, a Dedekind, example of such a domain, ZZ\(2Z∪3Z) suf�ces.) Put S := RM , and let T
denote the quotient �eld of R. Since each overring of R (inside T ) is an intersection of localiza-
tions of R (at prime ideals of R) by [16, Theorem 26.1 (2)], it follows that the set of overrings

of R is [R, T ] = {R,S,RN , T}. Consequently, |[R, T ]| = 4. Note that by [16, Theorem 26.1

(1)], S inherits the property of being a Prüfer domain from R. Finally, since any Prüfer domain

is integrally closed (cf. [16, Theorem 24.3]), both R ⊂ S and S ⊂ T are integrally closed

extensions.

(ii): See [12, Remark 4.2 (d)].

(iii): See [12, Remark 4.2 (e)].

(iv): See [12, Remark 4.2 (f)].

(v): Classical �eld theory provides numerous relevant examples. For instance, take R := Q,

S := Q(
√
2) and T := Q(

√
2,
√
3). Note that both R ⊂ S and S ⊂ T are inert since [S : R] =

2 = [T : S]; N ∩ R = M since M = {0} = N ; and T = Q(
√
2+

√
3) = Q[

√
2+

√
3], so that√

2+
√
3 is a suitable γ. Finally, |[R, T ]| ̸= 3 since Q(

√
3) ∈ [R, T ] \ {R,S, T}.

(vi): Suppose that R ⊂ S is decomposed, S ⊂ T is inert and N ∩ R = M . We will prove

that |[R, T ]| = 3. By [12, Proposition 3.1 (c), (d)], we may assume, without loss of generality,

that (R,M) is quasi-local. Consider the �eld K := R/M . As R ⊂ S is decomposed, the

canonical ring homomorphism f : K → S/N is an isomorphism (cf. [9, Theorem 2.2]). It

will be convenient to use f to identify S/N with K. Once again using the fact that R ⊂ S
is decomposed (and citing [9, Theorem 2.2] once again), we have that S/M ∼= R/M × R/M
canonically. Thus, we can identify S/M with K × K. Next, note that since S ⊂ T is inert,

L := T/N is a �eld and K ⊂ L is a minimal �eld extension. Then it follows from the proof of

[12, Proposition 3.3 (c)] thatM is an ideal of T and T/M ∼= T/N×R/M canonically (regardless

of whether K is in�nite). It is now harmless to identify T/M with L × K. In addition, since

K ⊂ L is a minimal �eld extension, it is easy to verify thatK×K ⊂ L×K is an inert extension,

with crucial maximal ideal {0}×K. Thus, since a standard homomorphism theorem reveals that

|[R/M,T/M ]| = |[R, T ]|, we can replace R with K, S with K ×K, and T with L×K.

We will prove that ifA ∈ [K,L×K]\{K}, thenA is eitherK×K or L×K (that is, either S or

T ). If there exists z ∈ (A∩S)\K, thenA ⊇ K[z] = S, whence the minimality of S ⊂ T ensures

that A is either S or T , as desired. Thus, without loss of generality, (A∩S = K and) there exists

w ∈ A \S. We can write w = (x, y), with x ∈ L \K and y ∈ K. Recall thatK is identi�ed with

the diagonal inK×K = S. Hence, (y, y) ∈ K ⊂ A, and so (x− y, 0) = (x, y)− (y, y) ∈ A \S.
Thus, by abus de langage, we may take y = 0, so that w = (x, 0) ∈ A \ S (and x ∈ L \K). So,

A ⊇ K[w] = K[(x, 0)] = K + (xK[x]× {0}).

Since K[x] = L and x is a nonzero element of the �eld L, we have xK[x] = xL = L, and so

A ⊇ K + (L× {0}). The upshot is that if c ∈ K and d ∈ L, then

(c+ d, c) = (c, c) + (d, 0) ∈ K + (L× {0}) ⊆ A.

Now, �x c ∈ K and e ∈ L. Then d := e− c ∈ L, and so (e, c) = (c+ d, c) ∈ A. In other words,

L × K ⊆ A, whence A = T , thus completing the proof of the assertion concerning condition

(vi).

(vii): See [12, Remark 4.2 (h)].

(viii): See [12, Remark 4.2 (i)].

(ix): See [12, Remark 4.2 (j)].

(x): See [12, Remark 4.2 (k)].

(xi): Suppose that R ⊂ S is rami�ed, S ⊂ T is inert and N ∩ R = M . We will prove

that |[R, T ]| = 3. As in the proof for condition (vi), an appeal to [12, Proposition 3.1 (c), (d)]
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allows us to assume, without loss of generality, that (R,M) is quasi-local. We will prove that if

A ∈ [R, T ] \ {R}, then A is either S or T . If there exists z ∈ (A ∩ S) \ R, then A ⊇ R[z] = S,
whence the minimality of S ⊂ T ensures that A is either S or T , as desired. Thus, without loss
of generality, A ∩ S = R and there exists u ∈ A \ S. Notice that u ∈ T \ N . Since the �inert"

property of S ⊂ T ensures that N is the unique maximal ideal of T , this means that u is a unit

of T . To complete the proof concerning condition (xi), it will suf�ce to show that the above

situation leads to a contradiction.

As R ⊂ S is a rami�ed minimal ring extension, we get that N ̸⊆ R, whence R + N = S.
Furthermore, since u ̸∈ S, the minimality of S ⊂ T gives that S[u] = T and, moreover, that

R+N ⊂ R[u]+N = T . In addition, sinceR[u]∩S = R, it follows thatN∩R[u] = N∩R = M .

Consequently, we have the following ring isomorphism:

T/N = (R[u] +N)/N ∼= R[u]/(R[u] ∩N) = R[u]/M.

In particular, M is an ideal of R[u]. Thus R[u]M = M , and so the (conductor) ring (M :T
M) := {w ∈ T | wM ⊆ M} contains R[u]. Notice that (M :T M) also contains S, since M is

an ideal of S. Hence, (M :T M) also contains S[u] (= T ). Therefore, (M :T M) = T . In other

words, M is an ideal of T .
In fact, M is a common ideal of R, S and T . By [8, Lemma II.3], R/M ⊂ S/M inherits

the �minimal ring extension" property from R ⊂ S. Moreover, R/M ⊂ S/M is rami�ed, with

crucial maximal ideal 0. Similarly, we see that S/M ⊂ T/M is a minimal ring extension;

moreover, it is inert and has crucial maximal ideal N/M , since the extension (S/M)/(N/M) ⊂
(T/M)/(N/M) can be identi�ed with S/N ⊂ T/N . In addition, [8, Lemma II.3] ensures that

|[R, T ]| = |[R/M,T/M ]|. Therefore, by replacing R with R/M , S with S/M , T with T/M , A
with A/M , and u with the coset u+M , this change of notation has reduced us to the following

situation: R is a �eld, which we conventionally denote by K; S = K[X]/(X2); S ⊂ T is inert;

A ∈ [K,T ] \ {K}; and u ∈ A is a unit of T such that u ̸∈ S and K[u] ∩ S = K.

We claim that L := K[u] is a �eld. Observe that N ∩ L = N ∩ R[u] = N ∩ R = M = {0}.
Hence,

T/N = (K[u] +N)/N = (L+N)/N ∼= L/(N ∩ L) = L/{0} ∼= L.

The upshot is that L ∼= T/N , which is a �eld, thus proving the above claim.

As usual, let x denote X + (X2) ∈ K[X]/(X2) (= S). Then N = Kx and we can write

S = K ⊕Kx (additively). Also, T = K[u] +N = L+Kx. AsK ⊂ L, we can pick ξ ∈ L \K.

Since T is a ring, the product ξx ∈ T , and so there exist elements a ∈ L and b ∈ K such that

ξx = a+ bx. Thus, (ξ − b)x = a ∈ L. Since x2 = 0, we get that a is a nilpotent element of the

�eld L, whence a = 0. It follows that 0 = (ξ − b)x ∈ Lx. Therefore, since Lx ∼= L as L-vector
spaces, ξ − b = 0 ∈ L, whence ξ = b ∈ K, the desired contradiction. This completes the proof

of the assertion concerning condition (xi).

(xii): Consider the following data from [12, Remark 3.6 (a)]: R := K, S := L and T :=
L[X]/(X2), where K ⊂ L is a minimal (�eld) extension of �nite �elds. We have seen that

condition (xii) applies to this set of data. It remains only to �nd a ring in [R, T ] \ {R,S, T}. It is
easy to verify that (K +XL[X])/(X2L[X]) is such a ring.

(xiii): We will slightly modify the data from the second example constructed in [12, Remark

3.7 (b)] (which was an example that did not satisfy FIP). Begin with a �nite �eld K. (This is

the main difference from the second example in [12, Remark 3.7 (b)], whose construction began

with an in�nite �eld.) As before, let V be a two-dimensional K-vector space, and �x a one-

dimensional K-subspace W of V . With R := K, consider the idealizations S := R(+)W and

T := R(+)V . Note that, contrary to the corresponding situation in [12, Remark 3.7 (b)], R ⊂ T
satis�es FIP, since the current hypotheses on K and V ensure that T is �nite. Also, we can see

directly that the �N ∩R = M" condition is satis�ed, since (0(+)W ) ∩K = 0.

On the other hand, much of the earlier argument carries over. Indeed, as in the proof of [12,

Remark 3.7 (b)], it follows from [7, Remark 2.9] that R ⊂ S is a minimal ring extension; from

[27, Lemma 2.1] that both R ⊂ S and S ⊂ T are subintegral extensions, whence R ⊂ S is

rami�ed; from [27, Proposition 2.8 (3)] that S ⊂ T is a minimal ring extension; that S ⊂ T
is an integral extension; and that S ⊂ T is neither inert nor decomposed, and hence must be

rami�ed. It remains only to �nd a ring in [R, T ]\{R,S, T}. To that end, pick a (necessarily one-
dimensional) K-subspace U of V such that V = W ⊕ U as an internal direct sum of K-vector

spaces. It is obvious that the ring R(+)U is in [R, T ] \ {R,S, T}.
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Despite the example given in Theorem 2.2 (i), the verdict would have been different in that

context if the base ring R had been constrained to be quasi-local. (As recalled in the proof

of Theorem 2.4 below, the modern theory of normal pairs essentially reduces that context to

the archetypical example where R is a two-dimensional valuation domain with one-dimensional

overring S and quotient �eld T .) This naturally leads one to ask if there are any other conditions

from the statement of Theorem 2.1 where the verdict in Theorem 2.2 would have been different

for the case of a quasi-local base ring R. Theorem 2.4 answers this question. Part (ii) of its proof

will depend on Lemma 2.3, which is of some independent interest. We have bene�tted from

access to a preprint of [3], as [3, Corollary 2.8] established the special case of Lemma 2.3 where

B is a domain. We do not believe that the domain-theoretic methodology of [3] can be adapted

to yield a proof of Lemma 2.3 in the generality that is given below.

Lemma 2.3. Let A ⊂ B be a ring extension, with A∗ denoting the integral closure of A in B.

Suppose that A is quasi-local, A ⊂ A∗ is a minimal ring extension, and (A∗, B) is a normal pair.

Then A∗ is the least element in [A,B] \ {A}; that is, A∗ ⊆ C for each C ∈ [A,B] \ {A}.

Proof. Suppose not. Then, since A ⊂ A∗ is a minimal ring extension, there exists D ∈ [A,B] \
{A} with A∗ ∩D = A. (The preceding observation was also made in the proof of [3, Corollary

2.8].) Pick u ∈ D \ A. We claim that A ⊂ A[u] has INC. Suppose this claim fails. Then

we can pick prime ideals Q1 ⊂ Q2 of A[u] lying over the same prime ideal P of A. Since

A[u] ⊆ A∗[u] is an integral extension, it has LO and GU (cf. [22, Theorem 44]), and soQ1 ⊂ Q2

can be covered by some chain q1 ⊂ q2 of prime ideals of A∗[u]. As (A∗, B) is a normal pair,

so is (A∗, A∗[u]). Thus, A∗ ⊆ A∗[u] is a P-extension, in the sense of [18]. (This follows from

[23, Chapter I, Theorem 5.2]; the cited result is especially noteworthy, as it contains numerous

characterizations of normal pairs of arbitrary rings.) Hence, by [5, Theorem], A∗ ⊆ A∗[u] has
INC. So, the chain q1 ⊂ q2 contracts to distinct prime ideals p1 ⊂ p2 of A

∗. This chain lies over

P , contradicting the fact that A ⊆ A∗ (being integral) has INC. This proves the above claim.

By [5, Theorem], u is primitive over A; that is, u is the root of some polynomial in A[X]
having a unit coef�cient. By the (u, u−1)-Lemma (as generalized to rings, for instance, as in

[9, Lemma 3.8]), u−1 belongs to the maximal ideal, say m, of A. Consequently, every prime

ideal of D (or, similarly, of A[u]) is a (prime) ideal of A; that is, Spec(A[u]) ⊆ Spec(A) as sets.
Therefore, by the claim, each prime ideal of A[u] is isolated in its �ber (above itself in Spec(A)).
Since A is integrally closed in A[u], it follows from Zariski's Main Theorem (as in [13]) that

there exists f ∈ A \ m such that Af = A[u]f canonically (that is, the canonical A-algebra
homomorphism Af → A[u]f is an isomorphism). As f is a unit of A, this means that A = A[u]
canonically, contradicting u ̸∈ A.

Theorem 2.4. Let R ⊂ S and S ⊂ T be minimal ring extensions, with crucial maximal ideals

M and N , respectively. Assume, in addition, that R is quasi-local. Then, of the 13 conditions in

the statement of Theorem 2.1, the only ones of those conditions which imply that |[R, T ]| = 3

(given that R is quasi-local) are conditions (i), (ii), (vi) and (xi).

Proof. The arguments for the 9 conditions (iii), (iv), (v), (vii), (viii), (ix), (x), (xii) and (xiii)

which were given in the proof of Theorem 2.2 either featured quasi-local R or were valid in

the case of quasi-local R. Hence, each of those 9 arguments can be applied here as well. (Al-

ternatively, instead of rereading each of those 9 arguments, one could obtain the same overall

conclusion via [12, Proposition 3.1 (c), (d)].) Of course, the assertions for condition (vi) and (xi)

also carry over from Theorem 2.2 (where the earlier proofs concerning (vi) and (xi) were valid

regardless of whether R is quasi-local). It remains only to prove the assertions for the conditions

(i) and (ii).

(i): Suppose that R ⊂ S and S ⊂ T are each integrally closed minimal ring extensions and

that R is quasi-local. We will prove that |[R, T ]| = 3. Much of the analysis proceeds as in [12,

Remark 2.2 (a)]. Indeed, as in that earlier work, we see via [23, Theorem 5.6, Chapter I] that

(R, T ) is a normal pair, in the sense of [4] (that is, each C ∈ [R, T ] is integrally closed in T ); via
the pullback characterization of normal pairs with a quasi-local base ring [9, Theorem 6.8] that

R has a divided prime idealQ (that is, Q ∈ Spec(R) such thatQRQ = Q) such that T = RQ and

D := R/Q is a valuation domain; and that D has Krull dimension 2, its quotient �eld is T/Q,

and the one-dimensional overring of D (inside T/Q) is S/Q.
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The argument can now be �nished quickly. By a standard homomorphism theorem, there

is a bijection between [R, T ] and [R/Q, T/Q]. Consequently, |[R, T ]| = |[R/Q, T/Q]| =
|{R/Q, S/Q, T/Q}| = 3, as asserted.

(ii): Suppose that R ⊂ S is an integral minimal ring extension, S ⊂ T is an integrally closed

minimal ring extension, and R is quasi-local. To prove that |[R, T ]| = 3, it suf�ces to show that

if C ∈ [R, T ] \ {R}, then S ⊆ C (for then the minimality of S ⊂ T would ensure that C is either

S or T ). This, in turn, is an immediate consequence of Lemma 2.3 (which applies since S is the

integral closure of R in T ).

Remark 2.5. (a) As was the case with [3, Corollary 2.8], we see that Lemma 2.3 generalizes the

well known result [17, Theorem 2.4] of Gilmer and Heinzer that if A is a quasi-local domain

with quotient �eld B, with A∗ denoting the integral closure of A (in B), such that A∗ is a Prüfer
domain and A ⊂ A∗ is a minimal ring extension, then A∗ is contained in each proper overring

of A (which is contained in B).

(b) In [17, page 138], Gilmer and Heinzer remark that if A is a domain with quotient �eld B
and a proper overring C (inside B) such that C is contained in each proper overring of A, then
A is quasi-local. This leads us to the following question: would the assertion in Lemma 2.3 fail

if one deletes the hypothesis that A is quasi-local? The answer is in the af�rmative, even if one

also assumes that A is Noetherian and of Krull dimension 1. To see this, it suf�ces to consider

the data in [12, Remark 4.2 (d)], where Z[2i] plays the role of a suitable base ring.
(c) The fact that each of the conditions (i) and (ii) behaved differently in Theorem 2.4 than it

had in Theorem 2.2 reveals one sense in which the organization of [12] cannot be made signi�-

cantly more ef�cient. To wit: the conclusions in [12, Proposition 3.1 (c), (d)] cannot be extended

to the contexts where at least one of the minimal ring extensions R ⊂ S, S ⊂ T is not integral.

The introduction noted that Theorem 2.2 gave �an initial answer of sorts" to Ohm's question,

but it seems clear that one should try to say more about the remaining ambiguities. The process

of working toward a more complete answer to Ohm's question actually began in Theorem 2.4. In

Theorem 2.9, we will supplement the above results with a another one of our main (classi�cation)

results. Note that we have placed the �|[R, T ]| = 3"-related discussion of condition (ix) from

Theorem 2.1 into a separate result, Theorem 2.8, because the discussion for that condition is

conspicuously harder (and perhaps more interesting) than the discussions for any of the other

conditions. Prior to the proof of Theorem 2.8, it will be convenient to isolate two lemmas.

Lemma 2.6. Let (R,M) and (S,N) be quasi-local rings such that N2 = 0 and S is a (unital)
ring extension of R. Then the following conditions are equivalent:

(1) R ⊂ S is a(n integral) rami�ed (minimal) ring extension (with crucial maximal ideal

M);
(2) S is R-algebra isomorphic to the idealization R(+)R/M .

Proof. (2) ⇒ (1): Assume (2). It is then harmless to view S = R(+)R/M . By [7, Corollary

2.5], R ⊂ S is a(n integral) minimal ring extension (necessarily with crucial maximal ideal

M ). Lastly, to show that R ⊂ S is rami�ed, one need only appeal to [27, Lemma 2.1] (which

establishes the more general fact that if E is any module over a ring A, then the ring extension

A ⊆ A(+)E is subintegral).

(1) ⇒ (2): Assume (1). Since R ⊂ S is rami�ed, [11, Proposition 2.12] provides q ∈ S \ R
such that S = R[q], q2 ∈ R, q3 ∈ R and Mq ⊆ R. It follows easily from the proof of [11,

Proposition 2.12] that we can pick such an element q ∈ N . As N2 = 0, it follows that q2 = 0 =
q3, whence S = R[q] = R+Rq.

We claim that R ∩ Rq = 0. Suppose the claim fails. Then there exist nonzero elements

r1, r2 ∈ R such that r1 = r2q ∈ Sq ⊆ N . As N 2 = 0 and r1 ̸= 0, we have r2 ∈ (S \ N) ∩
R ⊆ R \ M ; that is, r2 is a unit of R. Consequently, q = (r2)−1r1 ∈ R ∩ N = M , whence

S = R[q] ⊆ R[M ] = R ⊂ S, the desired contradiction. This completes the proof of the above

claim.

Combining the facts that S = R + Rq, R ∩ Rq = 0 and q2 = 0, we see easily that S is

R-algebra isomorphic to the idealization R(+)Rq. It is now harmless to view S = R(+)Rq.
To complete the proof, it will suf�ce to show that Rq ∼= R/M as R-modules. In fact, since

R ⊂ R(+)Rq is a minimal ring extension, it follows from [7, Remark 2.9] that Rq is a simple
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R-module. But, up to R-module isomorphism, R/M is the only simple R-module, whence

Rq ∼= R/M , as required.

Lemma 2.7 was motivated by the treatment in [21, Theorem 2.25] of the Chinese Remain-

der Theorem for �rings" possibly without identity. It is interesting to note that the converse of

Lemma 2.7 can be extracted from the proof of [28, Theorem 18, page 280].

Lemma 2.7. Let A be a ring and W an A-module, with U and V being A-submodules of W . If

the canonical A-module homomorphism f : W → W/U ⊕W/V is surjective, then U +V = W .

Proof. Suppose, on the contrary, that there exists w ∈ W \ (U + V ). By hypothesis, there exists
ξ ∈ W such that f(ξ) = (w+U, V ); that is, such that (ξ+U, ξ+V ) = (w+U, V ). Consequently,
w − ξ ∈ U and ξ ∈ V . Hence, w = (w − ξ) + ξ ∈ U + V , the desired contradiction.

The proof of Theorem 2.8 will use the following de�nition from [15]. A ring extension

A ⊆ B is called a λ-extension if the poset [A,B] is linearly ordered (with respect to inclusion).

If A ⊆ B are rings such that |[A,B]| ≤ 3, then A ⊆ B is a λ-extension; the converse is false.

Theorem 2.8. Let R,S, T,M and N satisfy condition (ix) in the statement of Theorem 2.1; that

is, let R ⊂ S be a(n integral) rami�ed (minimal) ring extension with crucial maximal ideal M
and let S ⊂ T be a(n integral) decomposed (minimal) ring extension with crucial maximal ideal

N such that N ∩R = M . Then |[R, T ]| > 3 (and |[R, T ]| < ∞).

Proof. By [12, Proposition 3.1 (a), (c), (d)], we can assume, without loss of generality, that R is

quasi-local, with unique maximal ideal M . Since R ⊂ S is rami�ed, (S,N) is quasi-local, with
N2 ⊆ M ⊂ N . Also, since S ⊂ T is decomposed, T has exactly two distinct maximal ideals,

say Q1 and Q2; and Q1 ∩ Q2 = N . Note that Q1 ̸⊆ N (for otherwise, Q1 ⊆ Q2, contradicting

the fact that the extension S ⊂ T , being integral, satis�es INC); similarly, Q2 ̸⊆ N .

Now, consider the conductor C := (R : T ). Observe that C ⊆ M (⊆ N ). Moreover, the

integral extension R/C ⊂ T/C inherits FIP from R ⊂ T (cf. [8, Proposition II.4]). As FIP

implies the FCP condition, the extension R/C ⊂ T/C satis�es FCP, and so [9, Theorem 4.2 (a)]

ensures that R/C is an Artinian ring. Since S/C and T/C are each algebra-�nite integral ring

extensions, hence module-�nite ring extensions, of R/C, it follows that S/C and T/C are also

Artinian rings. Using a standard homomorphism theorem, it is easy to verify that R/C ⊂ S/C
(resp., S/C ⊂ T/C) is a rami�ed (resp., decomposed) extension having crucial maximal ideal

M/C (resp., N/C). Therefore, since the assignment A 7→ A/C gives a bijection [R, T ] →
[R/C, T/C], one can, without loss of generality, replace the tower R ⊂ S ⊂ T with the tower

R/C ⊂ S/C ⊂ T/C. Thus, we can henceforth assume that R,S and T are Artinian rings

and (R : T ) = 0. Note that this change of notation leaves unchanged the facts that R ⊂ S is

rami�ed, with crucial maximal ideal M ; S ⊂ T is decomposed, with crucial maximal ideal N ;

and N ∩R = M . In addition, the above-noted facts connecting N,Q1 and Q2 remain unaltered.

As M = (R : S), we have that M2Qi = M(MQi) ⊆ M(Q1Q2) = M(Q1 ∩Q2) = MN ⊆
MS = M ⊆ R for i = 1, 2. Also, if u is a unit of T , thenM2u = M(uM) ⊆ M(uN) = MN ⊆
R. Consequently, M2T ⊆ R; that is, M2 ⊆ (R : T ) = 0. Thus, M2 = 0.

There are two cases. In the �rst (and much easier) case,M = 0; that is, R is a �eld. Respect-

ing convention, we let K := R. As K ⊂ S is rami�ed, we may also view S := K[X]/(X2).
We will obtain a contradiction from the assumption that |[K,T ]| = 3. Let us �rst consider the

subcase where the K-algebra T is decomposable (as a direct product of at least two nonzero

K-algebras). Then, since the hypothesis |[K,T ]| = 3 ensures that K ⊂ T is a λ-extension, [15,
Theorem 3.4] gives that T ∼= K × L as K-algebras, for some �eld L (such that K ⊂ L is a

λ-extension). It is now harmless to view T = K × L. Therefore, T has no nonzero nilpotent

elements, contradicting the presence of X + (X2) ∈ S ⊂ T . In the remaining subcase, T is an

indecomposable K-algebra. As T is an Artinian ring, it follows from the structure theorem for

Artinian rings in [28, Theorem 3, page 205] that T is (quasi-)local, contradicting that Q1 and Q2

are (the) distinct maximal ideals of T . This completes the proof that |[R, T ]| > 3 when M = 0.

In the remaining case, M ̸= 0 (= M2). As (R : T ) = 0, it follows that MT ̸⊆ R. On the

other hand, the fact that N = (S : T ) gives that MT ⊆ NT = N ⊆ S, and so the minimality

of the ring extension R ⊂ S ensures that R +MT = S. Therefore, R +MT = S = R + N ,

with MT ⊆ N . We claim that, in fact, MT = N . To see this, consider any element n ∈ N . One
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has n = r +
∑

miti for some r ∈ R and some �nitely many elements mi ∈ M , ti ∈ T . Then
r = n −

∑
miti ∈ N + MT = N , so that r ∈ N ∩ R = M and n ∈ M +MT = MT , thus

proving the claim that N = MT . As a consequence, we have N2 = M2T = 0T = 0. Hence, by

Lemma 2.6, S is R-algebra isomorphic to R(+)R/M . It is harmless to identify S = R(+)R/M .

We turn next to a �ner description of the structure of T . As the extension S ⊂ T is de-

composed, [11, Proposition 2.12] provides u ∈ T such that T = S[u], u2 − u ∈ N and

uN ⊆ S. Observe that N (= Q1 ∩ Q2) is the nilradical of T . Since idempotents can be lifted

modulo any nil ideal (cf. [24, Proposition 1, page 72]), there exists e = e2 ∈ T such that

u− e ∈ N . As u ∈ e+N ⊆ S[e], it follows that S[e] = T . Note that u is neither 0 nor 1 (since

S ̸= T ). As u(1 − u) = 0, it follows that T can be expressed as the internal ring direct product

T = Tu × T (1− u), where neither Tu nor T (1− u) is 0. The canonical projection maps show

that Tu and T (1−u) are each homomorphic images of T and, hence, are each Artinian rings. In

addition, Tu and T (1 − u) are each (quasi-)local, since T has only two maximal ideals. Let q1
denote the unique maximal ideal of Tu and let q2 denote the unique maximal ideal of T (1− u).
From now on, it will be convenient to write A := Tu and B := T (1− u).

Recall that the prime ideals of T are Q1 and Q2; they can also be described by q1 × B and

A× q2. (It will occasionally be convenient to regard the elements of T as the ordered pairs in the

external direct product Tu × T (1 − u) = A × B.) For the moment, we choose notation so that

Q1 = q1 × B and Q2 = A × q2. Regardless of whether these descriptions for Q1 and Q2 may

eventually need to be interchanged, we have N = Q1 ∩Q2 = q1 × q2.
Recall that T = S[e] for some idempotent element e ∈ T . We can write e = e1 + e2, where

e1 and e2 are idempotent elements of A and B, respectively (such that e1e2 = 0). By applying

the canonical �rst projection T → A, we get that A = S[e1]. (This notation does not necessarily

mean that S ⊆ A; it means only that A is generated as an S-algebra by e1.) Now, since A is

quasi-local and any quasi-local ring has only 0 and 1 as its idempotent elements, it follows thatA
is a surjective (ring) homomorphic image of S. Therefore, A is S-algebra isomorphic to S/I for

some ideal I of S. There is no harm in identifying A = S/I . Similarly, by using the canonical

second projection T → B, we can identify B = S/J for some ideal J of S. Note that neither I
nor J coincides with S, since T is not quasi-local (and hence cannot be isomorphic to either A or

B). Consequently, I and J are each contained inN , since S is quasi-local. Furthermore, I (resp.,
J) is uniquely determined as the annihilator of the S-module A (respectively, B). Also, since

the canonical homomorphism h : S → T = A×B = S/I × S/J is injective (it is essentially an

inclusion map!), it follows that I ∩ J = 0. We claim that I + J = N .

The above homomorphism h restricts to an injective S-module homomorphism h∗ : N →
N/I×N/J ; we will use h∗ to viewN ⊆ N/I×N/J . Note thatN/I is the (unique) prime ideal of

S/I = A; that is, N/I = q1. Similarly, N/J = q2. Therefore, N ⊆ N/I ×N/J = q1 × q2 = N .

It follows that the inclusion N ⊆ N/I ×N/J is actually an equality of sets; in other words, h∗

is an isomorphism and, in particular, surjective. This places our current data into the context of

Lemma 2.7, an application of which gives that I + J = N , thus proving the above claim.

Because of the existence of the chain R ⊂ T of minimal ring extensions, it is clear that

|[R, T ]| = 3 if and only if the poset [R, T ] is linearly ordered (under inclusion); that is, if and

only if R ⊂ T is a λ-extension. We now proceed by reductio ad absurdum. In other words,

we suppose that |[R, T ]| = 3 (equivalently, that R ⊂ T is a λ-extension) and it will suf�ce to

produce a contradiction. To do so, we will need to consider some (sub)cases (for each of which,

we will obtain a contradiction). The analysis of these cases will depend upon a key result of

Gilbert [15, Theorem 2.12]. Application of this result require the use of the following de�nitions

from [15], as applied to the direct product T = A × B. Following [15], we put T1 := A and

T2 := B. Let π1 and π2 denote the canonical projections T → T1 and T → T2, respectively. Let

j denote the inclusion map R ↪→ T . For i = 1, 2, consider the kernels Ii := ker(πi ◦ j) (⊆ R);
and the images Ri := im(πi ◦ j) (⊆ Ti). Of course, R/Ii ∼= Ri, which is a subring of Ti. Also,

J1 := π1(I2), which is an ideal of R1; and J2 := π2(I1), which is an ideal of R2.

We can now state the application of [15, Theorem 2.12] that is appropriate to our context. The

ring extension R ⊂ T is a λ-extension if and only if (after possibly relabeling by interchanging

T1 and T2) we have that R1 = T1 and the following set T is linearly ordered by inclusion:

T := [R2, T2] ∪ {G | G is a proper, possibly zero, ideal of at least one ring in [R2, T2] such that

G ⊇ J2}. Determining the elements of T will require effectively using the above de�nitions to

calculate R2 and J2 (or, if we needed to interchange T1 and T2, calculating R1 and J1). To do so
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in each of the promised (sub)cases, we will need more precise descriptions of the ideals I and J
of S(+)R/M . We turn next to that task.

It will be convenient to let K := R/M . According to [19, Theorem 25.1 (1), (2)], there exist

ideals I and J of R and R-submodules C and D of K such that I = I(+)C, J = J (+)D,

IK ⊆ C, and JK ⊆ D. Since I ∩ J = 0 and I + J = N (= M(+)K), we have that

I ∩ J = 0, C ∩D = 0, I + J = M,C +D = K, IK ⊆ C, andJK ⊆ D.

The �nal two conditions displayed above are automatically satis�ed, given the other conditions,

since the fact that I and J are each contained in M ensures that IK = 0 = JK ⊆ C ∩ D.

Next, note that since K is a simple R-module, C and D are each members of {0,K}. Thus, the
restrictions on the above data are as follows: I ∩ J = 0; I + J = M ; and exactly one of C,D
is K (while the other one of C,D is 0).

In any event, we have I = I(+)W , for some W ∈ {0,K}. Then, as S = R(+)K and

A = S/I , we also have R1 = im(π1 ◦ j) = (R+ I)/I =

((R(+)0) + (I(+)W ))/(I(+)W ) ∼= (R(+)W )/(I(+)W ) ∼= R/I(+){0};

similarly, T1 = S/I = (R(+)K)/(I(+)W ) ∼= R/I(+)K/W . Therefore, R1 = T1 if and only

if K/W = 0; that is, if and only if I = I(+)K.

Next, it is important to mention that the proof of [15, Theorem 2.12] reveals the following. If

a particular permutation/relabeling of A,B leads to R1 = T1 then without any further permuta-

tion, the characterization of R ⊂ T being a λ-extension is exactly as stated above, with T being

stated in terms of [R2, T2] (rather than possibly in terms of [R1, T1]). Accordingly, the plentitude
of (sub)cases really amounts to just one (sub)case, namely, the following: ideals I and J of R
such that I = I(+)K, J = J (+)0, I ∩ J = 0, and I + J = M . To complete the proof (by

obtaining the desired contradiction), it remains only to �nd a pair of incomparable elements of

the set T .

We have T2 = B = S/J = (R(+)K)/(J (+)0) ∼= R/J (+)K and, by adapting the above

reasoning, R2 = im(π2 ◦ j) = (R(+)0)/(J (+)0) ∼= R/J (+)0 (viewed canonically as a unital

subring of R/J (+)K = T2). In addition, I1 = ker(π1 ◦ j) = {r ∈ R | (r, 0) ∈ I(+)K} = I.
Hence,

J2 = π2(I1) = π2(I) = ((I(+)0) + J)/J = ((I + J )(+)0)/(J (+)0),

which is isomorphic to (((I+J )/J )(+)0)/(J (+)0) ∼= (I+J )/J (+)0 = M/J (+)0, viewed
inside R/J (+)0 = R2. Thus, according to the above application of [15, Theorem 2.12] (and the

de�nition of the set T ), it suf�ces to �nd incomparable ideals (possibly zero, possibly unit ideals)

of (possibly different) rings in [R2, T2] = [R/J (+)0, R/J (+)K] which containM/J (+)0. As

T = {M/J (+)0, R/J (+)0,M/J (+)K,R/J (+)K},

one (in fact, the only) pair of such incomparable objects consists of R/J (+)0 and M/J (+)K.

We next provide the promised classi�cation result.

Theorem 2.9. Consider the 13 conditions, (i)-(xiii), in the statement of Theorem 2.1. Then:

(a) If data satisfy condition (vi) or condition (xi), then |[R, T ]| = 3.

(b) If data satisfy any of the seven conditions (iii), (iv), (vii), (viii), (ix), (x) and (xii), then
|[R, T ]| > 3 (and |[R, T ]| < ∞).

(c) For each of the four conditions (i), (ii), (v) and (xiii), there exist data satisfying this

condition for which |[R, T ]| = 3 and there exist other data satisfying this condition for which

|[R, T ]| > 3 (and |[R, T ]| < ∞).

Proof. For (a), see the proofs of the corresponding parts of Theorem 2.2.

For (b), all but one assertion can be handled by consulting the corresponding parts of Theorem

2.2, the therein-cited parts of [12, Remark 4.2], and Theorem 2.8. The remaining task is to verify

the assertion concerning condition (xii). To that end, suppose thatR ⊂ S is an inert minimal ring

extension with crucial maximal idealM , S ⊂ T is a rami�ed minimal ring extension with crucial
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maximal ideal N , N ∩ R = M and (what, in this context, becomes equivalent to the �nal part

of the description of (xii) in Theorem 2.1) R ⊂ T satis�es FIP. By [12, Proposition 3.1], we can

assume, without loss of generality, that (R,M) is quasi-local. As R ⊂ S is inert, it follows that

N = M and that (S,N) is quasi-local. Consider the �eldsK := R/M and S := S/M . As S ⊂ T
is rami�ed, we can identify T/M = T/N = L[X]/(X2) = L⊕Lx, where x := X+(X2) is such
that x2 = 0 ̸= x. Since M (= N ) is a common ideal of R and T , a standard homomorphism

theorem gives a bijection [R, T ] → [R/M,T/M ] (= [K,L ⊕ Lx]). Therefore, to complete a

proof of the assertion concerning (xii), it suf�ces to prove that [K,L ⊕ Lx] ≥ 4. This, in turn,

follows by considering the intermediate ring K ⊕ Lx. This completes the proof of (b).

(c): As above, a proof of (c) can begin by consulting the corresponding parts of Theorem

2.2 and the therein-cited parts of [12, Remark 4.2]. After doing so, we are left with the task

of verifying that each of the two conditions (v) and (xiii) is satis�ed by some data for which

|[R, T ]| = 3. For (v), it suf�ces to take R ⊂ S ⊂ T to be a suitable tower of �nite �elds, such as

F2 ⊂ F4 ⊂ F16. In Remark 2.11, we will return to the principle that underlies such reasoning.

Finally, to prove the assertion concerning (xiii), we revisit a special case of the data from [12,

Remark 3.6 (b)]. Speci�cally, takeR := K := F2 = {0, 1}; S := K[X]/(X2) = K⊕Kx, where
x := X+(X2) is such that x2 = 0 ̸= x; and T := S[Y ]/(Y 3, Y 2−x) = K[y] = K+Ky+Ky2,
where y := Y + (Y 3, Y 2 − x) satis�es y2 = x ̸= 0 = y3. By virtue of what was proved in [12,

Remark 3.6 (b)], it remains only to show that |[R, T ]| = 3. Observe that S = {0, 1, x, 1 + x}
and T = {0, 1, y, 1 + y, x, 1 + x, x + y, 1 + x + y}. To complete a proof of the assertion

concerning (xiii), it suf�ces to show that there is no ring A ∈ [K,T ] \ {K,S, T}. By considering
its dimension as a K-vector space (or by using Lagrange's Theorem from elementary group

theory), we see that any such A would have cardinality 4 and would consist of 0, 1 and two

other elements. Since any such A would need to be closed under addition, there are only two

candidates for A, namely, A1 := {0, 1, y, 1 + y} and A2 := {0, 1, x + y, 1 + x + y}. However,
neither A1 nor A2 is closed under multiplication, since y(1 + y) = y + y2 = y + x ̸∈ A1 and

(x+ y)2 = x2 + 2xy + y2 = 0+ 2y3 + y2 = 0+ x = x ̸∈ A2. The proof is complete.

To fully answer Ohm's question (when viewed as arising via the juxtaposition of two mini-

mal ring extensions), one should offer a characterization of |[R, T ]| = 3 for each of the situations

where any ambiguity remains, namely, the four situations noted in Theorem 2.9 (c). For the �rst

and second of those situations (i.e., concerning conditions (i) and (ii) from Theorem 2.1), Propo-

sition 2.10 (b), (c) will give a complete answer. For the third situation (concerning condition (v)

from Theorem 2.1), the question will be reduced to a problem in �eld theory in Remark 2.11.

Finally, in regard to condition (xiii) from Theorem 2.1, parts (d) and (e) of Proposition 2.10 will

give a fuller (but still incomplete) answer, including an answer when the base ring (which may

be assumed quasi-local) has an in�nite residue �eld. For the sake of completeness, Proposition

2.10 (a) includes a rather trivial characterization, in the spirit of the literature on �subrings max-

imal without a given element", of �|[R, T ]| = 3" which is applicable to each of the 13 conditions

in the statement of Theorem 2.1.

The following background will be needed in the statement of Proposition 2.10 (b) and the

proof of Proposition 2.10 (e). Let A be a ring. Then, as usual, Max(A) denotes the set of

maximal ideals of A. Also, as in [16, Section 33], the Nagata ring A(X) is de�ned to be the

ring of fractions A[X]S, where S is the multiplicatively closed subset of A[X] consisting of

the polynomials whose coef�cients generate A as a ring. Now, let A ⊆ B be rings. By the

proof of the Proposition preceding [8, Proposition II.9], the given inclusion of rings and the

assignment X 7→ X induce an injective ring homomorphism A(X) → B(X), by means of

which we view A(X) ⊆ B(X). Also, the support of the ring extension A ⊆ B is de�ned

as Supp(B/A) := {P ∈ Spec(A) | AP = BP canonically} (that is, such that the canonical

injective ring homomorphism AP → BP is an isomorphism); and we put MSupp(T/R) :=
Max(R) ∩ Supp(T/R).

Proposition 2.10. (a) Let R ⊂ S and S ⊂ T be minimal ring extensions such that R ⊂ T sat-

is�es FIP. (In other words, consider data satisfying any of the 13 conditions in the statement

of Theorem 2.1.) Then |[R, T ]| = 3 if and only if there exists α ∈ T such that α ∈ B for each

B ∈ [R, T ] \ {R, T}. (Necessarily, S = R[α] for any such α.)
(b)Given data that satisfy condition (i) in the statement of Theorem 2.1, letm := |MSupp(T/R)|;

and for each k = 1, . . . ,m, let Gk be the set of antichains of Supp(T/R) that have cardinality k.
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Then |[R, T ]| = 3 if and only if
∑m

i=1
|Gi| = 2.

(c) Given data that satisfy condition (ii) in the statement of Theorem 2.1, then |[R, T ]| = 3 if

and only if, whenever u ∈ T is not integral over R, then R[u] = T .
(d) If data satisfy condition (xiii) in the statement of Theorem 2.1 and R/M is in�nite, then

|[R, T ]| = 3.

(e) If data satisfy condition (xiii) in the statement of Theorem 2.1 andR(X) ⊂ T (X) satis�es
FIP, then |[R, T ]| = 3.

Proof. (a) The elementary proof of this assertion is left to the reader.

(b) Since (R, T ) is a normal pair (cf. [23, Theorem 5.6, Chapter I]) and R ⊂ T satis�es FIP,

we can apply [10, Theorem 4.3], with the upshot that |[R, T ]| = 1+
∑m

i=1
|Gi|. The assertion is

now immediate.

(c) This assertion was established in [12, Remark 4.2 (b)].

(d) By [12, Proposition 3.1 (a), (c), (d)], we can replace R ⊂ S ⊂ T with RM ⊂ SM ⊂ TM ;

that is, without loss of generality, (R,M) is quasi-local. (Note also that, up to isomorphism, this

change of notation has not changed R/M .) Observe that the extension R ⊂ T is subintegral,

since it results from juxtaposing two subintegral (minimal) extensions. Consequently, by [10,

Proposition 4.13], the poset [R, T ] is linearly ordered by inclusion. Thus, S is comparable with

each intermediate ring of R ⊂ T , and so it follows easily from the minimality of R ⊂ S and

S ⊂ T that [R, T ] = {R,S, T}.
(e) As in the proof of (d), we can assume, without loss of generality, that (R,M) is quasi-

local. Consider the induced tower of Nagata rings, R(X) ⊂ S(X) ⊂ T (X). By [10, Theorem

3.4], R(X) ⊂ S(X) and S(X) ⊂ T (X) are each rami�ed minimal ring extensions. By [10, The-

orem 3.4 (c)] (cf. also [10, Lemma 3.3]), their crucial maximal ideals are MR(X) and NS(X),
respectively. As S(X) = R(X) ⊗R S canonically by [10, Lemma 3.1(e)] and �nite intersec-

tions commute with the formation of rings of fractions, the hypothesis that N ∩ R = M leads

to NS(X) ∩ R(X) = MR(X). (In detail, with R(X) = R[X]S, we get as above that S(X) =
S[X]S canonically, whence NS(X) ∩ R(X) = (NS[X] ∩ R[X])S = MR[X]S = MR(X).)
It is well known that the residue �eld of R(X) can be identi�ed as follows: R(X)/MR(X) =
(R/M)(X), which is in�nite. Therefore, since R(X) ⊂ T (X) satis�es FIP, we can apply

(d) to the above tower of Nagata rings, the upshot being that |[R(X), T (X)]| = 3. As in the

proof of (d), R ⊂ T is subintegral, and so [10, Proposition 4.14] can be applied, giving that

|[R, T ]| = |[R(X), T (X)]|, which completes the proof.

Remark 2.11. (a) The above work in Theorem 2.2, Theorem 2.4 and Proposition 2.10 (b), (c)

has determined necessary and suf�cient conditions for |[R, T ]| = 3 when any of the following

11 conditions from the statement of Theorem 2.1 applies: (i), (ii), (iii), (iv), (vi), (vii), (viii),

(ix), (x), (xi) and (xii). Unless one accepts the triviality in Proposition 2.10 (a) as a �nal answer,

a more desirable answer is less complete when either of the remaining conditions applies (that

is, for conditions (v) and (xiii) from that statement). This remark offers all that we know at this

time with respect to a possible characterization of |[R, T ]| = 3 when one of these two conditions

applies.

Suppose that condition (v) applies. Thanks to [12, Theorem 3.1], one can assume that (R,M)
is quasi-local; that is, |[R, T ]| = 3 if and only if |[RM , TM ]| = 3. (In fact, the reduction to the

subcase of a quasi-local base ring can similarly be made for any of the scenarios in Theorem 2.1

where bothR ⊂ S and S ⊂ T are integral (minimal) ring extensions. In particular, this reduction

can also be made for condition (xiii).) The question of when |[R, T ]| = 3, given that case (v)

applies, remains open. But we would note that much can be said, thanks to the archetypical

subcase arising from a FIP-tower of �elds. For instance, as noted in [12, Remark 4.3 (a)], the

classical theory of �nite �elds shows that if Fq ⊂ Fr are �nite �elds (where q = pn, for some

prime number p and some positive integer n, and necessarily, r = pm for some positive integer

m which is divisible by n), then |[Fq,Fr]| = 3 if and only if m = s2n for some prime number

s. In general, since the hypotheses of (v) imply that M = N , the assignment A 7→ A/M gives

an order-isomorphism [R, T ] → [R/M,T/M ]. Therefore, what remains of our task in regard

to (v) can be reduced to studying a FIP-tower of (without loss if generality, in�nite) �elds. In

short, the question in regard to condition (v) has been reduced to a question in �eld theory, that

is, characterizing towers of minimal �eld extensions K ⊂ F ⊂ L such that K is in�nite and

|[K,L]| = 3.
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Suppose, �nally, that condition (xiii) applies. As noted above, one can assume that (R,M)
is quasi-local. Further study of this situation may be aided by noting that [12, Proposition 3.5

(b)] can be sharpened; indeed, the ring therein denoted by �A" is actually T , since (iii) implies

that R ⊂ T is subintegral. Beyond that observation, the question of when |[R, T ]| = 3, given

that case (xiii) applies, remains open. But we would note that Proposition 2.10 (d), (e) did settle

the subcase where R/M is in�nite (and its subcase where R(X) ⊂ T (X) satis�es FIP); and that
parts (b) and (c) below will provide additional examples which may help one to formulate an

eventual characterization.

We wish to stress that unless one is content with the triviality in Proposition 2.10 (a) or with

the reduction to a problem in �eld theory that was noted two paragraphs ago, Ohm's question

remains open for data satisfying either condition (v) or condition (xiii) from the statement of

Theorem 2.1.

(b) Among the statements of the conditions in Theorem 2.1, those of conditions (xii) and

(xiii) are especially cumbersome (because of their reference to the statement of [12, Proposition

3.5]). Consequently, it is perhaps not surprising that the analysis of the �|[R, T ]| = 3" issue for

condition (xiii) that was just given in (a) is less complete than for the analysis for any of the other

12 conditions. Nevertheless, as we showed via the example in the �nal paragraph of the proof of

Theorem 2.9, it is not dif�cult to provide data that satisfy condition (xiii) and �|[R, T ]| = 3". We

next give a companion for that example.

Let K be a �eld and let T := K[X]/(X3). Viewing K ⊂ T as usual, we have T = K[u] =
K ⊕Ku⊕Ku2, where u := X + (X3) satis�es u3 = 0 ̸= u2. It is convenient to put R := K. It

was shown in [15, Proposition 3.5] that |[R, T ]| = 3. Next, consider S := K[u2] = K ⊕Ku2 ∼=
K[Y ]/(Y 2). It is clear that R ⊂ S is a(n integral) rami�ed (minimal ring) extension, necessarily

with crucial maximal ideal M := 0. Note that N := (S : T ) = Ku2, which is the unique

maximal ideal of S; that S/N ∼= K; and that T/N = K ⊕ Kv, where v := u + N satis�es

v2 = 0 ̸= v. Consequently, S ⊂ T is also a rami�ed extension, with crucial maximal ideal N .

Since N ∩ R = M and |[R, T ]| = 3, the assembled data satisfy condition (xiii) in Theorem 2.1

regardless of whether the �eld K is �nite.

(c) It was mentioned in the Introduction of [12] that [15, Remarks 4.15 (a)] gives an example

of integral minimal ring extensions R ⊂ S and S ⊂ T such that |[R, T ]| = 3. In fact, the

discussion in [15, Remarks 4.15 (a)] is extremely terse. It may be helpful to develop an explicit

example along the lines indicated in [15, Remarks 4.15 (a)]. We close by giving what is perhaps

the simplest such example. It turns out to be another companion for the example in the �nal

paragraph of the proof of Theorem 2.9; that is, another example that satis�es condition (xiii) in

Theorem 2.1 and |[R, T ]| = 3. As the somewhat intricate example given below is based on some

material [15, pages 72-75] from an unpublished doctoral dissertation, we will provide extensive

details (along with appropriate references).

Take R := Z/4Z = {0, 1, 2, 3}, where as usual, a denotes a + 4Z for all a ∈ Z. Next, take
T := R[X]/(X2). Note that t := X + (X2) ∈ T satis�es t2 = 0 ̸= t and T = R[t] = R+Rt is

{0, 1, 2, 3, t, 2t, 3t, 1+ t, 1+ 2t, 1+ 3t, 2+ t, 2+ 2t, 2+ 3t, 3+ t, 3+ 2t, 3+ 3t}

which has cardinality 16. It is easy to check that (R : T ) = 0. Therefore, [15, Proposition

4.12] gives a bijection between [R, T ] and the set of ideals of the ring R/(R : T ) (∼= R). Thus,
|[R, T ]| = |{0, 2R,R}| = 3. Of course, R ⊂ T is an integral extension. Hence, to complete

a proof of the assertions, it suf�ces to �nd a ring S ∈ [R, T ] such that R ⊂ S is a rami�ed

(integral minimal ring) extension with crucial maximal ideal M , S ⊂ T is a rami�ed extension

with crucial maximal ideal N , and N ∩ R = M . We will show that S := R + R2t has all the
desired properties.

Observe that S = {0, 1, 2, 3, 2t, 1+ 2t, 2+ 2t, 3+ 2t, }, which has cardinality 8. Also, since
2(2t) = 4t = 0, it follows that (R : S) = {0, 2}, the unique maximal ideal of R, which we

denote by M ; and R/M = {0+M, 1+M} ∼= F2. Moreover,

S/M = (R+R2t)/M = R/M + (R/M + 2t) = (R/M)[2t],

where 2t ∈ S/M is a (nonzero) nilpotent element having nilpotency index 2. Consequently,

S/M ∼= (R/M)[Y ]/(Y 2) (where Y denotes a new indeterminate which is algebraically indepen-

dent of X), whence R ⊂ S is indeed a rami�ed extension with crucial maximal ideal M .
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Next, observe that the set of nonunits of S is N := {0, 2, 2t, 2 + 2t} and that N forms an

ideal of S. Consequently, S is quasi-local, with unique maximal ideal N . Clearly, N ∩R = M .

Also, one checks easily that the conductor (S : T ) = N . In addition, S/N = {N, 1+N} ∼= F2

(since R ⊂ S is rami�ed). Therefore, to show that S ⊂ T is a rami�ed extension with crucial

maximal ideal N , it suf�ces to prove that T/N ∼= S/N × S/N (∼= F2 × F2). But in fact,

T/N = {N, 1+N, t+N, 1+ t+N} = (S/N)[t+N ],

where t + N ∈ T/N is a (nonzero) nilpotent element having nilpotency index 2. As above, it

follows that S ⊂ T is a rami�ed minimal ring extension with crucial maximal ideal N . This

completes our veri�cation that the above data constructed as indicated by Gilbert [15, Remarks

4.15 (a)] satis�es both condition (xiii) in Theorem 2.1 and |[R, T ]| = 3.
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