ON TRACES OF PERMUTING n-DERIVATIONS AND PERMUTING GENERALIZED n-DERIVATIONS ON JORDAN IDEALS

Badr Nejjar, A. Mamouni and L. Oukhtite

Communicated by Najib Mahdou

MSC 2010 Classifications: Primary 16W10, 16W25; Secondary 16U80.

Keywords and phrases: derivation, generalized derivation, permuting n-derivation, Jordan ideal.

Abstract. In this paper we investigate some proprieties of permuting n-derivations acting on a Jordan Ideal of prime-rings. Some related results for left n-multipliers and generalized n-derivations are also discussed.

1 Introduction

In this paper, R will represent an associative ring. For any $x, y \in R$ the symbol [x, y] will denote the commutator xy - yx; while the symbol $x \circ y$ will stand for the anti-commutator xy + yx. R is 2-torsion free if whenever 2x = 0, with $x \in R$ implies x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. An additive subgroup J of R is said to be a Jordan ideal of R if $u \circ r \in J$, for all $u \in J$ and $r \in R$. A mapping $f : R \longrightarrow R$ is said to be centralizing (resp. commuting) on a subset S of R if $[f(x), x] \in Z(R)$ (resp. [f(x), x] = 0) for all $x \in S$. A derivation on R is an additive mapping $d : R \longrightarrow R$ such that d(xy) = d(x)y + xd(y) for all $x, y \in R$. An additive mapping $F : R \longrightarrow R$ is called a generalized derivation if there exists a derivation $d : R \longrightarrow R$ such that F(xy) = F(x)y + xF(y) for all $x, y \in R$. In this case, F is called the generalized derivation associated with d. For a fixed positive integer n, a map $\Delta : R^n \longrightarrow R$ is n-additive if it satisfies $\Delta(x_1, x_2, ..., x_i + x'_i, ..., x_n) = \Delta(x_1, x_2, ..., x_i, ..., x_n) + \Delta(x_1, x_2, ..., x'_i, ..., x_n)$ for all $x_i \in R$ and for every permutation $\pi(1), \pi(2), \pi(3),, \pi(n)$. A map $\delta : R \longrightarrow R$ is called the trace of Δ if $\delta(x) = \Delta(x, x, x, ..., x)$ for all $x \in R$. It is obvious to verify that if $\Delta : R \longrightarrow R$ is a permuting and n-additive mapping, then the trace δ of Δ satisfies the relation

$$\delta(x+y) = \delta(x) + \delta(y) + \sum_{i=1}^{n-1} \binom{n}{i} \Delta(x, x, ..., x, y, y, ..., y)$$

where x appears (n - i)-times and y appears *i*-times.

Park [9] introduced the notion of permuting *n*-derivation as follows: a permuting map $\Delta : \mathbb{R}^n \longrightarrow \mathbb{R}$ is said to be a permuting *n*-derivation if Δ is *n*-additive and $\Delta(x_1, x_2, ..., x_i x_i', ..., x_n) = x_i \Delta(x_1, x_2, ..., x_i', ..., x_n) + \Delta(x_1, x_2, ..., x_i, ..., x_n) x_i'$ for all $x_i, x_i' \in \mathbb{R}$. Clearly, a 1-derivation is a usual derivation and a 2-derivation is a symmetric bi-derivation. However, in the case of n = 3 we get the concept of tri-derivation.

An *n*-additive mapping $\Omega : \mathbb{R}^n \longrightarrow \mathbb{R}$ is called a generalized *n*-derivation of \mathbb{R} with associated *n*-derivation Δ if

$$\Omega(x_1, x_2, ..., x_i x_i, ..., x_n) = \Omega(x_1, x_2, ..., x_i, ..., x_n) x_i + x_i \Omega(x_1, x_2, ..., x_i', ..., x_n)$$

for all $x_i, x'_i \in R$.

An additive subgroup J of R is said to be a Jordan ideal of R if $u \circ r \in J$, for all $u \in J$ and $r \in R$. We shall use without explicit mention the fact that if J is a nonzero Jordan ideal of a ring R, then $2[R, R]J \subseteq J$ and $2J[R, R] \subseteq J$ ([8], Lemma 2.4). Moreover, from ([1], proof of Lemma 3) we have $4j^2R \subset J$ and $4Rj^2 \subset J$ for all $j \in J$. Since $4jrj = 2\{j(jr+rj) + (jr+rj)\}$

 $rj)j\} - \{2j^2 \cdot r + r \cdot 2j^2\}$, it follows that $4jRj \subset J$ for all $j \in J$ (see [1], proof of Theorem 3). Many results in literature indicate how the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result due to Posner [7] states that a prime ring R which admits a nonzero centralizing derivation is commutative. Since then, several authors have done a great deal of work concerning commutativity of prime and semi-prime rings admitting different kinds of maps which are centralizing on some appropriate subsets of R ([3] and [6] for a further references). More recently several authors have studied various identities involving trace of permuting n-derivations (generalized n-derivation) and have obtained interesting theorems. In this paper we establish analogous results for the traces of permuting n-derivations (generalized n-derivation) acting on Jordan ideals.

2 Main results

The following lemmas are essential for developing the proofs of our results.

Lemma 2.1. ([6], Lemma 2.4) Let n be a fixed positive integer and let R be a n!-torsion free prime ring. Suppose that $y_1, y_2, ..., y_n \in R$ satisfy $\lambda y_1 + \lambda^2 y_2 + ... + \lambda^n y_n = 0$, ($or \in Z(R)$) for $\lambda = 1, 2, 3, ..., n$. Then $y_i = 0$ (or $y_i \in Z(R)$) for all i.

Lemma 2.2. ([4])] Let R be a prime ring. Let $d : R \to R$ be a derivation and $a \in R$. If ad(x) = 0 holds for all $x \in J$, then we have either a = 0 or d = 0.

Proof. Assume that: ad(x) for all $\in J$. Replacing x by $4xj^2$, where $j \in J$, we get $axd(j^2) = 0$, so that $aJd(j^2) = 0$. Applying ([8], Lemma 2.6) we have a = 0 or $d(j^2) = 0$ for all $j \in J$. In the last case,([5], Lemma 3) implies that d = 0. \Box

Theorem 2.3. Let $n \ge 2$ be a fixed positive integer and R be a (n + 1)!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting n-derivation Δ such that the trace δ satisfies $[[\delta(x), x], x] \in Z(R)$ for all $x \in J$. Then δ is commuting on J.

Proof. We are given that

$$[[\delta(x), x], x] \in Z(R) \quad \text{for all} \quad x \in J.$$
(2.1)

An easier computation shows that the trace δ of Δ satisfies the relation:

$$\delta(x+y) = \delta(x) + \delta(y) + \sum_{r=1}^{n-1} \binom{n}{r} h_r(x,y) \quad \text{for all } x, y \in J$$
(2.2)

where $h_r(x, y) = \Delta(x, x, x, ..., x, y, y, ..., y)$; y appears r times and x appears n - r times. Consider a positive integer $k, 1 \le k \le n + 1$. Replacing x by x + ky in (2.1), we obtain

$$kQ_1(x,y) + k^2 Q_2(x,y) + \dots + k^{n+1} Q_{n+1}(x,y) = 0 \quad \text{for all } x, y \in J$$
(2.3)

where $Q_i(x, y)$ denotes the sum of the terms in which y appears i times. Using (2.3) together with Lemma 2.1, we have

$$[[\delta(x), x], y] + [[\delta(x), y], x] + n[[\Delta(x, x, x, ..., y), x], x] \in Z(R)$$
(2.4)

for all $x, y \in J$. Replacing y by $4y^2z$ in (2.4), where $z \in J$, we get

$$[[\delta(x), x], y^2 z] + [[\delta(x), y^2 z], x] + n[[\Delta(x, x, x, ..., y^2 z), x], x] \in Z(R).$$
(2.5)

for all $x, y, z \in J$. Substituting $8xy^2z$ for y in (2.4), we get $x([[\delta(x), x], y^2z] + [[\delta(x), y^2z], x] + n[[\Delta(x, x, x, ..., y^2z), x], x]) + (n+2)[[\delta(x), x], x]y^2z$

$$+(2n+1)[\delta(x),x][y^{2}z,x] + n\delta(x)[[y^{2}z,x],x] \in Z(R)$$
(2.6)

which leads to

$$(3n+3)[[\delta(x),x],x][y^2z,x] + (3n+1)[\delta(x),x][[y^2z,x],x] + n\delta(x)[[[y^2z,x],x],x] = 0 \quad (2.7)$$

Replacing z by $2z[\delta(x), x]$ in (2.7) and comparing with (2.4), we find that $(3n+3)[[\delta(x), x], x]^2y^2z + (6n+2)[\delta(x), x][y^2z, x][[\delta(x), x], x]$ $+3n\delta(x)[[[y^2z, x], x], x][[\delta(x), x], x] = 0$

and thus

$$(9n+5)[[\delta(x), x], x]^{2}[y^{2}z, x] + (9n+2)[\delta(x), x][[y^{2}z, x], x][[\delta(x), x], x] +3n\delta(x)[[[y^{2}z, x], x], x][[\delta(x), x], x] = 0$$
(2.9)

for all $x, y, z \in J$. It now follows, from (2.7) and (2.9), that

$$4[[\delta(x), x], x]^2[y^2 z, x] + [\delta(x), x][[y^2 z, x], x][[\delta(x), x], x] = 0.$$
(2.10)

Once again replacing z by $2z[\delta(x), x]$ and using (2.10), we obtain

$$[[\delta(x), x], x]^2 (4[[\delta(x), x], x]y^2 z + 2[\delta(x), x][y^2 z, x]) = 0 \quad \text{for all} \ x, y, z \in J.$$
(2.11)

Writing 2z[r, t] instead of z in (2.11), where $r, t \in R$, we get

$$[[\delta(x), x], x]^2[\delta(x), x]y^2z[[r, t]x] = 0 \quad \text{for all} \ x, y, z \in J; \ r, t \in R.$$
(2.12)

Since N is prime, then (2.12) shows that

$$[[\delta(x), x], x] = 0 \text{ for all } x \in J.$$

$$(2.13)$$

Replacing x by x + ky in (2.13), we obtain

$$kQ_1(x,y) + k^2Q_2(x,y) + \dots + k^{n+1}Q_{n+1}(x,y) = 0 \quad \text{for all} \ x, y \in J.$$
(2.14)

Once again applying Lemma 2.1, we obtain

$$[[\delta(x), x], y] + [[\delta(x), y], x] + n[[\Delta(x, x, x, ..., y), x], x] = 0 \quad \text{for all} \ x, y \in J.$$
(2.15)

Replacing y by $8xzy^2uv$ in (2.15), where $u, v, z \in J$, we get

$$(2n+1)[\delta(x),x][zy^{2}uv,x] + n\delta(x)[[zy^{2}uv,x],x] = 0 \quad \text{for all} \quad u,v,x,y,z \in J.$$
(2.16)

Replacing y by $8xrzy^2uv$ in (2.15), where $u, v, z \in J$ and $r \in R$, we get

$$(2n+1)[\delta(x), x][rzy^2uv, x] + n\delta(x)[[rzy^2uv, x], x] = 0$$
 for all $u, v, x, y, z \in J$; $r \in R$ (2.17) in such a way that

In such a way that

$$(2n+1)[\delta(x), x](r[zy^{2}uv, x] + [r, x]zy^{2}uv) + n\delta(x)(2[r, x][zy^{2}uv, x] + r[[zy^{2}uv, x], x] + [[r, x], x]zy^{2}uv) = 0$$
(2.18)

for all $u, v, x, y, z \in J$, $r \in R$. Taking $r = \delta(x)$ in the last expression we get $(2n+1)[\delta(x), x](\delta(x)[zy^2uv, x] + [\delta(x), x]zy^2uv) + n\delta(x)(2[\delta(x), x][zy^2uv, x])$

$$+\delta(x)[[zy^2uv,x],x]) = 0.$$
(2.19)

Invoking (2.17), we get

$$(2n+1)[\delta(x), x](\delta(x)[zy^{2}uv, x] + [\delta(x), x]zy^{2}uv) + 2n\delta(x)[\delta(x), x][zy^{2}uv, x] - (2n+1)\delta(x)[\delta(x), x][zy^{2}uv, x] = 0$$
(2.20)

and thus

$$(2n+1)\left([\delta(x),x]\delta(x) - \delta(x)[\delta(x),x]\right)[zy^2uv,x] + (2n+1)[\delta(x),x]^2zy^2uv = 0 \quad (2.21)$$

(2.8)

If we replace y by $8x\delta(x)zy^2$ in (2.15), then we get

$$\left((2n+1)[\delta(x),x]\delta(x) - \delta(x)[\delta(x),x]\right)[zy^2,x] + (2n+1)[\delta(x),x]^2 zy^2 = 0$$
(2.22)

Comparing (2.21) and (2.22) we conclude that

$$\left((2n+1)[\delta(x),x]\delta(x) - \delta(x)[\delta(x),x]\right)zy^2[uv,x] = 0$$
(2.23)

so that

$$((2n+1)[\delta(x), x]\delta(x) - \delta(x)[\delta(x), x])Jy^{2}[uv, x] = 0 \quad \text{for all} \ u, v, x, y \in J.$$
(2.24)

Since R is prime, then either $(2n+1)[\delta(x), x]\delta(x) - \delta(x)[\delta(x), x] = 0$ or $y^2[uv, x] = 0$, in which case we obtain $x \in Z(R)$. Hence in both cases we have

$$(2n+1)[\delta(x),x]\delta(x) - \delta(x)[\delta(x),x] = 0 \quad \text{for all } x \in J.$$

$$(2.25)$$

Similarly replacing y by $8uvy^2r\delta(x)x$ in (2.15), where $u, v \in J$ and $r \in R$ we get

$$(2n+1)[uvy^2r\delta(x),x][\delta(x),x] + n[[uvy^2r\delta(x),x],x]\delta(x) = 0$$
(2.26)

which leads to

$$(2n+1)[uvy^{2}r,x]\delta(x)[\delta(x),x] + (2n+1)uvy^{2}r[\delta(x),x]^{2} + 2n[uvy^{2}r,x][\delta(x),x]\delta(x)$$
$$n[[uvy^{2}r,x],x]\delta(x)^{2} = 0 \quad \text{for all} \ u,v,x,y \in J, \ r \in R.$$
(2.27)

If we replace y by $8uvy^2rx$ in (2.15), where $u, v, y \in J$ and $r \in R$, we find that

$$(2n+1)[uvy^2r,x][\delta(x),x] + n[[uvy^2r,x],x]\delta(x) = 0 \quad \text{for all} \ u,v,x,y \in J; \ r \in R.$$
(2.28)

Using (2.28) together with (2.27) we see that $(2n+1)[uvy^2r,x]\delta(x)[\delta(x),x] + (2n+1)uvy^2r[\delta(x),x]^2 + 2n[uvy^2r,x][\delta(x),x]\delta(x)$

$$-(2n+1)[uvy^2r,x][\delta(x),x]\delta(x) = 0 \quad \text{for all} \ u,v,x,y \in J; \ r \in R$$
(2.29)

so that

$$[uvy^{2}r, x]((2n+1)\delta(x)[\delta(x), x] - [\delta(x), x]\delta(x)) + (2n+1)uvy^{2}r[\delta(x), x]^{2} = 0$$
(2.30)

Similarly if we replace y by $8y^2r\delta(x)x$ in (2.15), where $r \in R$, we get

$$[y^{2}r, x]((2n+1)\delta(x)[\delta(x), x] - [\delta(x), x]\delta(x)) + (2n+1)y^{2}r[\delta(x), x]^{2}$$
(2.31)

By virtue of (2.30), equation (2.31) forces

$$[uv, x]y^{2}r\left((2n+1)\delta(x)[\delta(x), x] - [\delta(x), x]\delta(x)\right) = 0$$
(2.32)

and so

$$[uv, x]y^{2}R\bigg((2n+1)\delta(x)[\delta(x), x] - [\delta(x), x]\delta(x)\bigg) = 0 \quad \text{for all} \ u, v, x, y \in J.$$
(2.33)

In light of the primeness of R, we conclude that either $(2n+1)\delta(x)[\delta(x), x] - [\delta(x), x]\delta(x) = 0$ or $[uv, x]y^2 = 0$. Arguing as above, in both the cases we have

$$(2n+1)\delta(x)[\delta(x),x] - [\delta(x),x]\delta(x) = 0 \quad \text{for all} \ x \in J.$$

$$(2.34)$$

Adding (2.25) and (2.34), because of (n + 1)! torsion freeness, we find that

$$\delta(x)[\delta(x), x] + [\delta(x), x]\delta(x) = 0 \quad \text{for all} \quad x \in J.$$
(2.35)

Analogously, adding (2.25) and (2.35) we see that

$$[\delta(x), x]\delta(x) = 0 \quad \text{for all} \ x \in J.$$
(2.36)

Accordingly, equation (2.25) reduces to

$$\delta(x)[\delta(x), x] = 0 \quad \text{for all} \ x \in J.$$
(2.37)

Replacing x by x + ky in (2.37), we obtain

$$kB_1(x,y) + k^2 B_2(x,y) + \dots + k^{n+1} B_{n+1}(x,y) = 0 \quad \text{for all} \ x, y \in J$$
(2.38)

where $B_i(x, y)$ denotes the sum of the terms in which y appears *i* times. Application of Lemma 2.1 and (2.3) gives that

$$\delta(x)[\delta(x), y] + n\delta(x)[\Delta(x, x, x, ..., y), x] + n\Delta(x, x, x, ..., y)[\delta(x), x] = 0$$
(2.39)

Replacing y by $8ury^2vx$ in (2.39), where $u, v, x, y \in J$ and $r \in R$, we obtain

$$(n+1)\delta(x)ury^2v[\delta(x),x] + n\delta(x)[ury^2v,x]\delta(x) = 0$$
(2.40)

Substituting $8xury^2vx$ for y in (2.39), where $u, v, x, y \in J$ and $r \in R$, we get

$$(n+1)\delta(x)xury^2v[\delta(x),x] + n\delta(x)x[ury^2v,x]\delta(x) = 0$$
(2.41)

Left multiplying (2.40) by x and using (2.41), it is obvious to see that

$$(n+1)[\delta(x), x]ury^{2}v[\delta(x), x] + n[\delta(x), x][ury^{2}v, x]\delta(x) = 0$$
(2.42)

Replacing y by $8\delta(x)sz^2ry^2vx$ in (2.4), where $s \in R$ we get

$$(2n+1)[\delta(x), x]sz^2ry^2v[\delta(x), x] + 2n[\delta(x), x][sz^2ry^2v, x]\delta(x) = 0$$
(2.43)

Writing sz^2 instead of u in (2.42), where $z \in J$ and $s \in R$ we get

$$(n+1)[\delta(x),x]sz^2ry^2v[\delta(x),x] + n[\delta(x),x][sz^2ry^2v,x]\delta(x) = 0$$
(2.44)

Combining (2.43) and (2.44), because of the torsion restriction, we find that

$$[\delta(x), x]sz^2ry^2v[\delta(x), x] + [\delta(x), x][sz^2ry^2v, x]\delta(x) = 0$$
(2.45)

for all $v, x, y, z \in J$, and $r, s \in R$. Comparing (2.44) and (2.45) we conclude that

$$[\delta(x), x]sz^2ry^2v[\delta(x), x] = 0 \quad \text{for all} \quad v, x, y, z \in J, \text{ and } r, s \in R$$
(2.46)

so that

$$[\delta(x), x]sz^2Ry^2v[\delta(x), x] = 0 \quad \text{for all } v, x, y, z \in J, \text{ and } s \in R.$$
(2.47)

Since R is prime, the we can conclude that $[\delta(x), x]sz^2 = 0$ or $y^2v[\delta(x), x] = 0$. But in both the cases one can see that for each $x \in J$, $[\delta(x), x] = 0$ and our proof is complete. \Box

Theorem 2.4. Let $n \ge 2$ be a fixed positive integer and R be a noncommutative (n + 1)!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting generalized n-derivation Ω with associated n-derivation Δ such that the trace ω of Ω is commuting on R. Then Ω is a left n-multiplier on R.

Proof. Assume that

$$[\omega(x), x] = 0 \quad \text{for all} \quad x \in J. \tag{2.48}$$

It is obvious to verify that

$$\omega(x+y) = \omega(x) + \omega(y) + \sum {n \choose r} H_r(x,y) \quad \text{for all } x, y \in J$$
(2.49)

where $H_i(x, y) = \Omega(x, x, x, ..., x, y, y, ..., y)$; y appears i times. Replacing x by x + ky in (2.48), where $1 \le k \le n$ is a positive integer, we get

$$[\omega(x+ky), x+ky] = 0 \quad \text{for all} \ x, y \in J$$
(2.50)

so that

$$[\omega(x) + \omega(ky) + \sum_{i=1}^{n-1} \binom{n}{i} H_i(x,y), x + ky] = 0 \quad \text{for all} \ x, y \in J$$
(2.51)

and therefore

$$k([\omega(x), y] + \binom{n}{1}[H_1(x, y), x]) + k^2(\binom{n}{1}[H_1(x, y), y] + \binom{n}{2}[H_2(x, y), x]) + \dots + k^n([\omega(y), x] + \binom{n}{n-1}[H_{n-1}(x, y), x]) = 0 \text{ for all } x, y \in J$$
(2.52)

Application of Lemma 2.1 yields

$$[\omega(x), y] + \binom{n}{1} [H_1(x, y), x] = [\omega(x), y] + n[\Omega(x, x, ..., y), x] = 0 \text{ for all } x, y \in J.$$
 (2.53)

Replacing y by $8zuy^2vx$, where $u, v, x, y, z \in J$, we get

$$\begin{array}{lcl} 0 & = & zuy^2 v[\omega(x), x] + [\omega(x), zuy^2 v]x + n[\Omega(x, x, ..., zuy^2 v)x + zuy^2 v\Delta(x, x, ..., x), x] \\ & = & [\omega(x), zuy^2 v]x + nzuy^2 v[\delta(x), x] + n[zuy^2 v, x]\delta(x) + n[\Omega(x, x, ..., zuy^2 v), x]x \\ & = & n[zuy^2 v, x]\delta(x) + nzuy^2 v[\delta(x), x] \end{array}$$

Since R is (n + 1)!-torsion free, it then follows that

$$[zuy^2v, x]\delta(x) + zuy^2v[\delta(x), x] = 0 \quad \text{for all} \quad x, y \in J.$$
(2.54)

Replacing z by 2[r, t]z, where $r, t \in R$, and invoking (2.54), we have

$$[[r,t],x]zy^2v\delta(x) = 0 \quad \text{for all} \quad v,x,y \in J, \quad and \quad r,t \in R.$$

$$(2.55)$$

Using the primeness of R, we get $\delta(x) = 0$ or $x \in Z(R)$ for all $x \in J$. Hence in all the cases we have

$$[\delta(x), x] = 0 \quad \text{for all} \quad x \in J. \tag{2.56}$$

Consider a positive integer $k, 1 \le k \le n+1$. Replacing x by $x + \lambda y$ in (2.56), where $y \in J$, we get

$$0 = k[\delta(x), y] + k[\delta(x), y] + \binom{n}{r} [h_1(x, y), x] + k^2 \binom{n}{1} [h_1(x, y), y] + \binom{n}{2} [h_2(x, y), x]$$

+ ... + $k^n \binom{n}{1} [h_1(x, y), y] + \binom{n}{n-1} [h_{n-1}(x, y), y]$

In view of Lemma 2.1, (2.56) assures that

$$[\delta(x), y] + n[h_1(x, y), x] = 0 \quad \text{for all } x, y \in J.$$
(2.57)

Replacing y by $128ry^2vj^2t$ in (2.57), where $j, v \in J$ and $r, t \in R$, we get

$$[\delta(x), 128ry^2vj^2t] + n[h_1(x, 128ry^2vj^2t), x] = 0 \quad \text{for all} \ x \in J.$$
(2.58)

Writing xr instead of r in (2.58), one can easily see that

$$[\delta(x), 128xry^2vj^2t] + n[h_1(x, 128xry^2vj^2t), x] = 0 \quad \text{for all} \ x \in J$$
(2.59)

which implies that

$$x[\delta(x), 128ry^2vj^2t] + n[h_1(x, 128ry^2vj^2t), x] + n\delta(x)[128ry^2vj^2t, x] = 0$$
(2.60)

and thus

$$\delta(x)[128ry^2vj^2t, x] = 0 \quad \text{for all} \quad x \in J.$$

$$(2.61)$$

Substituting t by ts in (2.61), where $s \in R$, and using the primeness of R, we conclude that $\delta(x) = 0$ or $x \in Z(R)$ for all $x \in J$.

Let $x \in J$ $(x \in Z(R)$ and $y \in J$ $(y \notin Z(R)$. Then $y + kx \notin Z(R)$ and thus

$$0 = \delta(y + kx) = \delta(y) + k^{n}\delta(x) + \sum_{i=1}^{n-1} k^{i} \binom{n}{i} h_{i}(x, y)$$

accordingly,

$$\sum_{r=1}^{n-1} k^r \binom{n}{r} h_r(x,y) + k^n \delta(x) = 0 \quad \text{for all } x, y \in J.$$
 (2.62)

Application of Lemma 2.1 implies that

$$\delta(x) = 0 \quad \text{for all} \ x \in J. \tag{2.63}$$

For k = 1, 2, 3, ..., n, Let $P_k(x) = \Delta(x, x, ..., x, x_{k+1}, x_{k+2}, ..., x_n)$, where x appears k times and $x, x_i \in R, i = k + 1, k + 2, ..., n$. Let μ $(1 \le \mu \le n - 1)$ be any integer. By view of (2.63),

$$0 = \delta(\mu x + x_n) = P_n(\mu x + x_n)$$

= $\mu^n \delta(x) + \delta(x_n) + \sum_{r=1}^{n-1} \mu^r \binom{n}{r} P_r(x)$
= $\sum_{r=1}^{n-1} \mu^r \binom{n}{r} P_r(x)$

for all $x, x_n \in J$, that is

$$\sum_{r=1}^{n-1} \mu^r \binom{n}{r} P_r(x) = 0 \quad \text{for all } x \in J.$$

$$(2.64)$$

Using Lemma 2.2 together with (2.64), we obtain

$$P_{n-1}(x) = 0$$
 for all $x \in J$. (2.65)

Let ν $(1 \le \nu \le n-2)$ be any integer. By virtue of (2.65) we have

$$0 = P_{n-1}(\nu x + x_{n-1}) = \nu^{n-1}P_{n-1}(x) + P_{n-1}(x_{n-1}) + \sum_{i=1}^{n-2} \nu^i \binom{n}{i} P_i(x)$$

for all $x, x_{n-1} \in J$ in such a way that

$$\sum_{r=1}^{n-2} \nu^r \binom{n}{r} P_r(x) = 0 \quad \text{for all } x \in J.$$

$$(2.66)$$

Once again using Lemma 2.2, (2.66) yields

 $P_{n-2}(x) = 0$ for all $x \in J$. (2.67)

If we continue to carry out the same method as above, we arrive at

$$P_1(x) = 0 \quad \text{for all} \quad x \in J \tag{2.68}$$

for all $x \in J$; that is

$$\Delta(x_1, x_2, \dots, x_n) = 0 \quad \text{for all} \quad x_i \in J \tag{2.69}$$

so we get the required result. \Box

Our aim in the following theorem is to extend ([2], Theorem 2.8) to Jordan ideals with the restriction that R is assumed to be prime.

Theorem 2.5. Let n be a fixed positive integer and R be a (n+1)!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a nonzero permuting generalized n-derivation Ω with associated n-derivation Δ such that the trace ω of Ω is centralizing on J. Then R is commutative.

Proof. We are given that $[\omega(x), x] \in Z(R)$ for all $x \in R$. Using similar arguments as used in the proof of Theorem 2.4, we obtain

$$[\omega(x), y] + n[\Omega(x, x, ..., y), x] = 0 \quad \text{for all} \ x, y \in J.$$
(2.70)

Replacing y by $128ry^2uz^2x$, where $u, z \in J$, and $r \in R$, we have $128ry^2uz^2[\omega(x), x] + [\omega(x), 128ry^2uz^2]x + n[\Omega(x, x, ..., 128ry^2uz^2), x]x$

$$+128nry^{2}uz^{2}[\delta(x), x] + n[128ry^{2}uz^{2}, x]\delta(x) \in Z(R)$$
(2.71)

for all $x, y \in J$. Once again replacing y by $128ry^2uz^2$ in (2.70), where $u \in J$ and $r \in R$, it is straightforward to see that

$$[\omega(x), 128ry^2uz^2] + n[\Omega(x, x, ..., 128ry^2uz^2), x] = 0 \quad \text{for all} \ x, y \in J.$$
 (2.72)

Combining (2.71) with (2.72), we get $[128ry^{2}uz^{2}, x][\omega(x), x] + n[128ry^{2}uz^{2}, x][\delta(x), x] + 128nry^{2}uz^{2}[[\delta(x), x], x] + n[128ry^{2}uz^{2}, x][\delta(x), x] + n[[128ry^{2}uz^{2}, x], x]\delta(x) = 0$ (2.73)

for all $u, x, y \in J$ and $r \in R$. Replacing r by $\omega(x)r$ in (2.73) and invoking (2.73), we obtain

$$128[\omega(x), x]ry^2uz^2[\omega(x), x] + 128 \times 2n[\omega(x), x]ry^2uz^2[\delta(x), x] + 2n[\omega(x), x][128ry^2uz^2, x]\delta(x) = 0$$
(2.74)

for all $u, x, y \in J$ and $r \in R$. Writing rs instead of r, where $s \in R$, we obtain

$$[\omega(x), x](128rsy^2uz^2([\omega(x), x] + 2n[\delta(x), x]) + 2n(r[128sy^2uz^2, x] + [r, x]128sy^2uz^2)\delta(x)) = 0$$
(2.75)

Using (2.74) together with (2.75), we get

$$2n[\omega(x), x][r, x] = 128sy^2 uz^2 \delta(x) = 0 \quad \text{for all} \ u, x, y \in J, \ and \ r \in R.$$
(2.76)

Replacing r by $\omega(x)$, we conclude that either $[\omega(x), x]^2 = 0$ or $\delta(x) = 0$. If $[\omega(x), x]^2 = 0$, then $[\omega(x), x]R[\omega(x), x] = 0$ so that $[\omega(x), x] = 0$. Suppose that $\delta(x) = 0$, then (2.74) gives

$$ry^2 uz^2 [\omega(x), x]^2 = 0 \quad \text{for all} \ u, x, y \in J, \ and \ r \in R$$

$$(2.77)$$

which, because of the primeness of R, leads to

$$[\omega(x), x] = 0 \quad \text{for all} \quad x \in J \tag{2.78}$$

so that ω is commuting on J.

For $x, y \in J$, replacing x by x + ky for k = 1, 2, ..., n in $[\omega(x), x] = 0$, we find that $[x + ky, \delta(x) + \delta(ky) + \sum_{r=1}^{n-1} {n \choose r} h_r(x, y)] = 0$ for all $x, y \in J$. Using the last equation together with Lemma 2.1, we get

$$[y, \omega(x)] + n[x, \Omega(x, x, x, ..., y)] = 0 \text{ for all } x, y \in J.$$
(2.79)

Replacing y by $8zy^2uvx$ in (2.79), where $u, v, z \in J$, and using the given condition, we get

$$[zy^{2}uv, \omega(x)]x + n[x, \Omega(x, x, x, ..., zy^{2}uv)]x + n[x, zy^{2}uv]\omega(x) = 0 \ \forall \ x, y \in J.$$
(2.80)

Using (2.79) we find that $[x, zy^2uv]\omega(x) = 0$. Replacing x by x + kw for k = 1, 2, ..., n and use (2.79) we obtain

$$n[x, zy^{2}uv]\Omega(x, x, x, ..., w) + [w, zy^{2}uv]\omega(x) = 0 \ \forall \ u, v, w, x, y, z \in J.$$
(2.81)

Then we obtain

$$n[x,z]y^{2}uv\Omega(x,x,x,...,w) + [w,z]y^{2}uv\omega(x) = 0 \ \forall \ j,u,v,w,x,y,z \in J.$$
(2.82)

Replacing w by z we get

$$n[x, z]y^{2}uv\Omega(x, x, x, ..., z) = 0 \ \forall \ u, v, x, y, z \in J.$$
(2.83)

Replacing z by z + w we get

$$n[x, z]y^{2}uv\Omega(x, x, x, ..., w) + [x, w]y^{2}uv\Omega(x, x, x, ..., z) = 0 \ \forall \ u, v, w, x, y, z \in J.$$
(2.84)

Using (2.83) and (2.84) we obtain

$$[x,w]y^{2}uv\Omega(x,x,x,...,z)R[x,w]y^{2}uv\Omega(x,x,x,...,z) = 0 \ \forall \ u,v,w,x,y,z \in J.$$
(2.85)

Since R is prime we conclude that

$$[x,w]y^{2}uv\Omega(x,x,x,...,z) = 0 \ \forall \ u,v,w,x,y,z \in J.$$
(2.86)

Let $[x, y] z \Omega(x, ..., x, x_{i-1}, x_{i-2}, ..., x_2, x_1) = 0$ holds for all $x, x_{i-1}, x_{i-2}, ..., x_1 \in J$, and $2 \le i \le n$. Replacing x by $x + kx_i$ in last equation to obtain

$$[x + kx_i, y] z \Omega(x + kx_i, ..., x + kx_i, x_{i-1}, x_{i-2}, ..., x_2, x_1) = 0 \ \forall \ j, u, v, w, x, y, z \in J.$$
(2.87)

Using Lemma 2.1, we obtain

$$[x_i, y] z \Omega(x, ..., x, x_{i-1}, ..., x_1) + (n - i + 1) [x, y] z \Omega(x, ..., x, x_i, ..., x_1) = 0$$
(2.88)

for all $j, u, v, w, x, y, z \in J$. Then we have $0 = (n - i + 1)[x, y]z\Omega(x, ..., x, x_i, ..., x_1)R[x, y]z\Omega(x, ..., x, x_i, ..., x_1)$ $= -[x_i, y]z\Omega(x, ..., x, x_i, ..., x_1)R[x, y]z\Omega(x, ..., x, x_{i-1}, ..., x_1)$. Since *R* is prime we get

$$[x, y] z \Omega(x, ..., x, x_i, ..., x_1) = 0 \ \forall \ x_i, ..., x_1, x, y, z \in J.$$
(2.89)

For i = n - 1, we obtain

$$[x,y]z\Omega(x,x_{n-1},...,x_1) = 0 \ \forall \ x_{n-1},...,x_1,x,y,z \in J.$$
(2.90)

As R is prime we obtain [x, y] = 0 or $\Omega(x, x_{n-1}, ..., x_1) \forall x_{n-1}, ..., x_1, x, y \in J$. Let us consider

$$J_1 = \{x \in J | [x, z] = 0 \forall z \in J\}, \ J_2 = \{x \in J | \Omega(x, y_{n-1}, ..., y_1) = 0 \forall y_{n-1}, ..., y_1 \in J\}.$$

It is clear that J_1 and J_2 are two additive subgroups of J such that $J = J_1 \cup J_2$ and therefore either $J = J_1$ or $J = J_2$.

If $J = J_1$ then we get [J, J] = 0 which proves that R is commutative. If $J = J_2$ then $\Omega(x, y_{n-1}, ..., y_1) = 0$ for all $y_{n-1}, ..., y_1, x \in J$ and thus $\Omega(J, J, ..., J) = 0$. Accordingly $\omega(J) = 0$ in such a way that $\omega = 0$, a contradiction. Therefore R is commutative.

References

- [1] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41, 67-74 (1973).
- [2] M. ashraf, A. Khan and M. R. Jamal, On traces of permuting n-derivations and permuting generalized n-derivations of rings, (in press).
- [3] M. Bresar, Commuting maps: a survey, Taiwainese J. Math. 8 (3), 361-397 (2004).
- [4] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, *Comment. Math. Univ. Carol.* 54 (4), 447-457 (2013).
- [5] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, *Turkish J. Math.* 38 (2), 225-232 (2014).

- [6] K.H. Park, On prime and semiprime rings with symmetric n-derivations, *Journal of Chungcheong Mathematical Society* **22**, 451-458 (2009).
- [7] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100 (1957).
- [8] S. M. A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left (θ, θ) -derivations in prime rings, *Int. J. Math. Math. Sci.* **2004** (37-40), 1957-1964 (2004).

Author information

Badr Nejjar, Université Ibn Tofaïl, Département de mathematiques, Faculté des Sciences Kénitra, Morocco. E-mail: bader.nejjar@gmail.com

A. Mamouni, Université Moulay Ismaïl, Faculté des Sciences et Techniques, Département de Mathématiques, Errachidia, Morocco.

E-mail: mamouni = 75 @live.fr

L. Oukhtite, Department of Mathematics, S. M. Ben Abdellah University of Fez, Faculty of Science and Technology, Box 2202, Fez, Morocco. E-mail: oukhtitel@hotmail.com

Received: October 7, 2015.

Accepted: December 23, 2015