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Abstract. In this paper we investigate some proprieties of permuting n-derivations acting
on a Jordan Ideal of prime-rings. Some related results for left n—multipliers and generalized
n—derivations are also discussed.

1 Introduction

In this paper, R will represent an associative ring. For any z,y € R the symbol [z,y] will
denote the commutator zy — yx; while the symbol = o y will stand for the anti-commutator
zy + yx. R is 2-torsion free if whenever 2z = 0, with x € R implies x = 0. R is prime
if aRb = 0 implies @ = 0 or b = 0. An additive subgroup J of R is said to be a Jordan
ideal of Rif uor € J,forallu € Jand r € R. A mapping f : R — R is said to be
centralizing (resp. commuting) on a subset S of R if [f(z),z] € Z(R) (resp. [f(z),z] = 0)
for all x € S. A derivation on R is an additive mapping d : R — R such that d(zy) =
d(z)y + zd(y) for all z,y € R. An additive mapping F : R — R is called a generalized
derivation if there exists a derivation d : R — R such that F(zy) = F(x)y + xF(y) for
all z,y € R. In this case, F'is called the generalized derivation associated with d. For a fixed
positive integer n, amap A: R® — R is n-additive if it satisfies A(z1, 22, ..., x; + @}, ..., ) =
A(T1, T2, ooy Tiy ooy Tny) + AlT1, T2, oy Ty oy ) for all my,zl € R4 = 1,2,...,mn. Amap A :

'L

R" — Ris sa1d to be permuting if A(:vl,xz,xq, o ) = AT (1), Tr(2)s Tre(3)s o0 Tr(n)) fOT
all z; € R and for every permutation 7(1),7(2), 7 (3 ), ...... ,m(n). Amapd: R — R is called
the trace of A if §(x) = A(z, x, , ...., ) for all € R. It is obvious to verify that if A: R — R

is a permuting and n-additive mapping, then the trace § of A satisfies the relation

S(z+y) =6z Z( ) LYy Yy s )

where z appears (n — i)-times and y appears i-times.

Park [9] introduced the notion of permuting n-derivation as follows: a permuting map A:R" —

R is said to be a permuting n-derivation if A is n-additive and Ay, 2, ... 11: iy X)) =
Az, 2y T ooy ) + A1, 20, ooy T, oy )2 fOr all zy, ;€ R. Clearly, a 1-derivation is
a usual derivation and a 2-derivation is a symmetric bi-derivation. However, in the case of n = 3
we get the concept of tri-derivation.

An n-additive mapping Q : R — R is called a generalized n-derivation of R with associated
n-derivation A if

/

/ /
Q(z1, T2y ey BTy ooy ) = Q(T1, T2y ooy Ty ooy T )Ty + QX1 T2y ooy Ty ey Ty

for all z;, z; € R.

An additive subgroup J of R is said to be a Jordan ideal of R if uor € J, forall u € J and
r € R. We shall use without explicit mention the fact that if J is a nonzero Jordan ideal of a
ring R, then 2[R, R]J C J and 2J[R, R] C J ([8], Lemma 2.4). Moreover, from ([1], proof of
Lemma 3) we have 4j2R C J and 4Rj% C J forall j € J. Since 4jrj = 2{j(jr +rj) + (jr +
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r§)j} — {24 - +r - 242}, it follows that 4jRj C J for all j € J (see [1], proof of Theorem 3).
Many results in literature indicate how the global structure of a ring R is often tightly connected
to the behaviour of additive mappings defined on R. A well known result due to Posner [7]
states that a prime ring R which admits a nonzero centralizing derivation is commutative. Since
then, several authors have done a great deal of work concerning commutativity of prime and
semi-prime rings admitting different kinds of maps which are centralizing on some appropriate
subsets of R ([3] and [6] for a further references). More recently several authors have studied
various identities involving trace of permuting n-derivations (generalized n-derivation) and have
obtained interesting theorems. In this paper we establish analogous results for the traces of
permuting n-derivations (generalized n-derivation) acting on Jordan ideals.

2 Main results
The following lemmas are essential for developing the proofs of our results.

Lemma 2.1. ([6], Lemma 2.4) Let n be a fixed positive integer and let R be a n!—torsion free
prime ring. Suppose that y1,%s, ..., yn € R satisfy \yy + Nyo + .... + X"y, = 0, (or € Z(R))
Jorx=1,23,...,n. Theny; = 0 (ory; € Z(R)) for all i.

Lemma 2.2. ([4])] Let R be a prime ring. Letd : R — R be a derivation and a € R. If ad(z) =0
holds for all x € J, then we have either a =0 or d = 0.

Proof. Assume that: ad(z) for all € J. Replacing x by 42, where j € J, we get azd(j*) = 0,
so that a.Jd(j2) = 0. Applying ([8], Lemma 2.6) we have a = 0 or d(j?) = O for all j € J. In
the last case,([5], Lemma 3) implies that d = 0. O

Theorem 2.3. Let n > 2 be a fixed positive integer and R be a (n + 1)!-torsion free prime ring
and J a nonzero Jordan ideal of R. If R admits a permuting n-derivation A such that the trace §
satisfies [[6(x), x], x| € Z(R) for all x € J. Then § is commuting on J.

Proof. We are given that
[[6(z),z],z] € Z(R) forall z € J. 2.1

An easier computation shows that the trace § of A satisfies the relation:

n—1
§(z+y) =06z Z( ) (z,y) forall z,yeJ (2.2)
where h,.(z,y) = A(z, z, 2, ..., 2,9, y, ....,y); y appears r times and = appears n — r times.
Consider a positive integer k, 1 < k < n + 1. Replacing z by x + ky in (2.1), we obtain
kQi(x,y) + k2 Qa(z,y) + oo + k" Qui1(2,y) =0 forall z,y e J (2.3)

where Q;(x,y) denotes the sum of the terms in which y appears 4 times. Using (2.3) together
with Lemma 2.1, we have

[[6(x),z],y] + [[6(x),y], 2] + n[[A(x, 2,2, ....,y),z],z] € Z(R) (2.4)
for all x,y € J. Replacing y by 4¢°z in (2.4), where z € J, we get
[[0(z), x), %2] + [[6(2), v*2], x] + n[[A(z, z, 2, ..., y*2), x], 2] € Z(R). (2.5)

for all x,y,z € J. Substituting 8xy*z for y in (2.4), we get
z([[0(x), x],y22]) + [[0(x), y*2], 2] + n[[A(z, 2, 2, ..., y?2), 2], 2]) + (n + 2)[[§ (), 2], 2]y*2

+2n + 1)[6(x), z][y?2, ] + nd(z)[[y*z, 2], 7] € Z(R) (2.6)
which leads to

(3n+3)[[6(x), 2], 2][y*2, ] + Bn + 1)[0(2), 2][ly?2, a], 2] + nd()[[[y*z, 2], 2], 2] = 0 (2.7)
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Replacing z by 2z[6(z), 2] in (2.7) and comparing with (2.4), we find that
(3n+3)[[6(), 2], 2]y*2 + (6n + 2)[0(x), 2][y*2, ][[0(x), ], 2]

+3n6(2)|[[y*2, 2], 2], 2][[8(x), 2], 2] = 0

and thus
On +35)[[6(x), 2], 2]*[y*2, 2] + (9n + 2)[6(2), 2] [[y*z, 2], 2][[6(x), 2], 2]

+308(@) 2, al, ), 2][16(z), 2] = 0
for all z,y,z € J. It now follows, from (2.7) and (2.9), that
a[[8(x), 2], 2P’[y*z, 2] + [6(2), 2][[y*z, 2], 2][[0(2), 2], 2] = 0.
Once again replacing z by 2z[6(z), z] and using (2.10), we obtain
[0(x), 2], z]*(4[[6(z), x], 2]y*2 + 2[6(2), z][y*2,2]) =0 forall x,y,z € J.
Writing 2z[r, ¢] instead of z in (2.11), where r, ¢ € R, we get
[[0(x), ], 2]*[6(x), 2]y2[[r, t]z] =0 forall z,y,z € J; rtecR.
Since N is prime, then (2.12) shows that
[6(z),z], 2] =0forall z € J.
Replacing z by = + ky in (2.13), we obtain
kQi(z,y) + k> Qa(x,y) + ... + k" Qui1(z,y) =0 forall z,y € J.
Once again applying Lemma 2.1, we obtain
[[6(x), z],y] + [[6(x),y], 2] + n[[A(z, 2,2, ....,y),z],2] =0 forall =,y € J.
Replacing y by 8xzy*uv in (2.15), where u, v, z € J, we get
(2n + D)[6(x), =] [2y*uv, 2] + nd(2)[[2y*wv, 2],2] =0 forall u,v,z,y,z € J.

Replacing y by 8zrzy*uv in (2.15), where u, v,z € J and r € R, we get

2n+1)[(z), z|[rzy>uv, 2)+nd(z)[[rzy*uw, 2], z] =0 forall w,v,2,y,2 € J; r € R

in such a way that
(2n + 1)[6(z), 2] (r[zy*uv, z] + [r, 2]29*uv) + nd(z)(2[r, 2] [zy?uv, 2]

+r([zy*uw, x), 2] + [[r, 2], 2] 2p2uv) = 0

forall u,v,z,y,z € J, r € R.Taking r = é(x) in the last expression we get
(2n + D)[6(z), 2] (0(x) [2y2uwv, 2] + [6(2), x]2yuv) + nd(x) (2[6(z), z][zy*uv, 7]

+6(z)[[2y°ww, x], z]) = 0.

Invoking (2.17), we get
(2n + 1)[6(z), 2](8(z)[zy*uv, 2] + [0(), )zy?uv) + 2nd(x)[6(2), 2] [zy*uv, 2]

—(2n + 1)6(2)[6(x), z] [z uv, 2] = 0

and thus

(2n+1) ([6(33),:10]5(96) — (=) [6(56),36]) [zy7uv, 2] + (2n 4+ 1)[6(z), z]* 2p7uv = 0

(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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If we replace y by 826 (x)2y” in (2.15), then we get
<(2n + 1)[6(z), z]é(x) — 5(:1:)[5(:17),:17]) [24°, ] + (2n + 1)[6(x), 2]*2y* = 0 (2.22)
Comparing (2.21) and (2.22) we conclude that

((Zn + 1)[0(z), z]6(x) — 6(z)[6(x), x]>2y2 [uv, 2] =0 (2.23)

so that
(2n+ 1)[8(2),z]d(z) — 6(2)[8(z), z]) Jy*[uv, ] =0 forall u,v,z,y € J. (2.24)

Since R is prime, then either (2n+1)[6(z), z]5(x) — 6(z)[0(x), 2] = 0 or y*[uv, 2] = 0, in which
case we obtain « € Z(R). Hence in both cases we have

(2n+ 1)[6(x),z]d(x) — 6(x)[6(x),z] =0 forall z € J. (2.25)
Similarly replacing y by 8uvy?rdé(z)x in (2.15), where u,v € J and r € R we get
(2n 4 D[uvy?rdé(z), z)[0(x), 2] + n[[uvy?ré(z), x], 2]6(z) = 0 (2.26)

which leads to
(2n + D[uvy?r, z)8(2)[6(z), 2] + (2n + Duvy?r[6(z), z)* + 2n[uvy?r, z][6(z), z]6(z)

n[[uvy?r, ], z])6(x)*> =0 forall u,v,z,y € J, € R. (2.27)
If we replace y by 8uvy*rx in (2.15), where u, v,y € J and r € R, we find that
(2n 4+ Duvy?r, 2][6(x), 2] + n[[uvy*r, 2], z]6(z) =0 forall u,v,z,y € J; r € R. (2.28)

Using (2.28) together with (2.27) we see that
(2n + Dfuvy?r, ]8(2)[6(x), 2] + (2n + Duvy?r[6(z), z]* + 2n[uvy?®r, 2][6(z), 2]6(z)

—(2n + D[uwvy?r, z])[6(z),2]d(z) =0 forall u,v,z,y € J; r€ R (2.29)
so that
[wvy?r, 2]((2n + 1)8(z)[6(x), 2] — [6(x), 2]6(2)) + 2n + Duvy*r[§(z),z]* =0  (2.30)
Similarly if we replace y by 8y>rd(z)x in (2.15), where r € R, we get
[y?r, 2] ((2n 4 1)8(2)[6(x), 2] — [0(x), 2]6(x)) + (2n + D)yr[6(z), z]? (2.31)

By virtue of (2.30), equation (2.31) forces
[uv,x]yzr((Zn + 1)d(x)[0(z), x] — [5(x),3:]5(x)) =0 (2.32)
and so
[uv,x]y2R<(2n + 1)6(z)[0(x), z] — [(5(37),5(:]5(33)) =0 forall u,v,z,y € J. (2.33)

In light of the primeness of R, we conclude that either (2n + 1)6(z)[0(z), z] — [6(z), z]6(z) =0
or [uv, z]y? = 0. Arguing as above, in both the cases we have
2n+ 1)d(x)[0(x), 2] — [6(z),z]é(x) =0 forall =€ J. (2.34)
Adding (2.25) and (2.34), because of (n + 1)! torsion freeness, we find that
d(x)[0(x),z] + [6(x),z]d(x) =0 forall z e J. (2.35)
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Analogously, adding (2.25) and (2.35) we see that
[6(z),z]6(z) =0 forall z € J. (2.36)
Accordingly, equation (2.25) reduces to
5(z)[6(x), 2] =0 forall x € J. (2.37)
Replacing z by = + ky in (2.37), we obtain
EBi(z,y) + k*Ba(z,y) + ........ + k" B,y (z,y) =0 forall z,yeJ (2.38)

where B;(x,y) denotes the sum of the terms in which y appears 7 times. Application of Lemma
2.1 and (2.3) gives that

5(x)[6(x),y] + nd(z)[A(z, 2,2, ..., y), ] + nA(z, z, 2, ....,y)[6(x), 2] =0 (2.39)
Replacing y by 8ury?vz in (2.39), where u, v, z,y € J and r € R, we obtain
(n + 1)d(z)ury*v[d(z), z] + nd(z)[ury*v, z]é(z) = 0 (2.40)
Substituting 8zury*vx for y in (2.39), where u,v,z,y € J and r € R, we get
(n + 1)d(z)zury*v[d(z), z] + nd(x)z[ury*v, z]é(z) = 0 (2.41)
Left multiplying (2.40) by = and using (2.41), it is obvious to see that
(n+ D)[6(x), 2Jury*v[6(x), z] + n[d(z), =] [ury®v, z]6(x) = 0 (2.42)
Replacing y by 83(x)sz*ry?vx in (2.4), where s € R we get
(2n 4+ 1)[6(z), x]s2?ry*v[6(x), 2] + 2n[d(x), 2][sz*ryv, 2]6(z) = O (2.43)
Writing s2” instead of u in (2.42), where z € J and s € R we get
(n+ 1)[6(x), z]sz*ry*v[6(2), z] + n[d(z), z][sz*ry*v, x]é(z) = O (2.44)
Combining (2.43) and (2.44), because of the torsion restriction, we find that
[6(x), z]s2*ry*v[d(x), x] + [8(z), z][s2*ry*v, )6 (z) = O (2.45)
forall v,z,y,z € J, and r,s € R. Comparing (2.44) and (2.45) we conclude that
[6(x),z]sz*ry*v[d(x),z] =0 forall v,2,y,2 € J, andr,s € R (2.46)

so that
[6(x),z]sz* Ry*v[6(x),2] =0 forall v,z,y,2 € J, and s € R. (2.47)

Since R is prime, the we can conclude that [§(x), z]s2> = 0 or y*v[§(x), ] = 0. But in both the
cases one can see that for each z € J, [6(x),z] = 0 and our proof is complete. O

Theorem 2.4. Let n > 2 be a fixed positive integer and R be a noncommutative (n + 1)!-torsion
free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting generalized n-
derivation Q with associated n-derivation A such that the trace w of Q is commuting on R. Then
Q is a left n-multiplier on R.

Proof. Assume that
[w(z),z] =0 forall z € J. (2.48)

It is obvious to verify that

wx+y) =wx) +wly)+ Z (Z) H.(z,y) forall z,yeJ (2.49)
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where H;(z,y) = Q(z,z,2,....,2,y,y, ....,y); y appears i times.
Replacing = by x + ky in (2.48), where 1 < k < n is a positive integer, we get

[w(z+ky),z+ky] =0 forall z,y € J (2.50)

so that )
[w(z) + w(ky) +Z() i(z,y),z+ky]l =0 forall z,y€cJ (2.51)

i=1

and therefore
k(lw(@),y] + (DH(2,9), 2]) + B ((D[Hi (2, y),y] + () [Ha(2,), z])

n

Foo +E([w(y), 2] + ( 1) [Hp—1(z,y),z]) =0 forall z,yeJ (2.52)
Application of Lemma 2.1 yields
[w(z),y] + <T]l) [Hi(z,y),2] = [w(x),y]+n[Q(z,z,...,y),z] =0 forall z,y € J (2.53)

Replacing y by 8zuy?vz, where u, v, x,y, z € J, we get

0 = zuy’vlw(x),z] + [wx), zuyv)z +n[Q(x, , ..., 2uy’v)x + 2uy’vA(z, z, ..., x), 2]
= [w(@), zuyv]z + nzuy*v[d(x), 2] + nlzuyv, 2]0(x) + n[Q(z, z, ..., zuyv), ]z
= nfzuy*v, 2]6(z) + nzuyv]d(x), 2]
Since R is (n + 1)!-torsion free, it then follows that
[zuy?v, 2]0(z) + zuy?v[d(z),z] =0 forall z,y € J. (2.54)
Replacing z by 2[r, t]z,where r,t € R, and invoking (2.54), we have
[[r, 1], z]zy°vé(z) =0 forall v,z,y € .J, and rtc R. (2.55)

Using the primeness of R, we get 6(z) = 0 or x € Z(R) for all z € J. Hence in all the cases we
have
[0(z),z] =0 forall =€ J. (2.56)

Consider a positive integer k, 1 < k < n+ 1. Replacing = by = + Ay in (2.56), where y € J, we
get

0 = o) o] + K)ol + () aGoal +2 () Inten)onl + (5 ) aGons.al
+ R (7) [ (), y] + <n7i 1>[hn—1(x,y),y]

In view of Lemma 2.1, (2.56) assures that
[0(2),y] +nlhi(z,y), 2] =0 forall z,y € J. (2.57)
Replacing y by 128ry?vj’t in (2.57), where j,v € J and 7,t € R, we get
[6(x), 128ry*vj2t] + n[hi (z, 128ry*vj*t), 2] =0 forall z € J. (2.58)
Writing zr instead of r in (2.58), one can easily see that
[6(x), 128xry*vj?t] 4 n[hi (z, 128zry?vj*t), 2] =0 forall = € J (2.59)
which implies that

z[6(x), 128ry>vj*t] + nlhi (z, 128ry?v5%t), x] + nd(z)[128ry*vj?t, ] = 0 (2.60)
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and thus
§(z)[128ry*vj*t,x] =0 forall = € J. (2.61)

Substituting ¢ by ts in (2.61), where s € R, and using the primeness of R, we conclude that
d(z)=0orx € Z(R)forallz € J.
LetzeJ (z€Z(R)andy € J (y ¢ Z(R). Then y + kx ¢ Z(R) and thus

0=y + k) = 8(y) + k"3(= +Z’“< )

accordingly,
n—1
DK (Z) he(z,y) + k"6(z) =0 forall z,y € J. (2.62)
r=1

Application of Lemma 2.1 implies that
d(z) =0 forall € J (2.63)

Fork =1,2,3,...,n, Let Py(x) = Az, z, .., T, Tg+1, Th+2, ---, Tn ), Where x appears k times and
z,x; €ERi=k+1,k+2,...,n Let u (1 <p<n—1)be any integer. By view of (2.63),

0 = 6(pz+x,) = Po(pz+ z4)

= 1"8(x) + 6(xn) + 7:1 pr (:f) P (z)

for all z, z,, € J, thatis
Z I <"> =0 forall z €. (2.64)

-
Using Lemma 2.2 together with (2.64), we obtain
Po_1(z) =0 forall z € J. (2.65)

Letv (1 < v <n —2) be any integer. By virtue of (2.65) we have

n—2
0=P, 1(ve+a,1)=v"" Py 1(z) + Po_1(zp_1) + Z v (n) Pi(z)

for all z,z,_1 € J in such a way that

2_: ( ) )=0 forall xz € J. (2.66)

Once again using Lemma 2.2, (2.66) yields
P, 2(z)=0 forall x € J. (2.67)
If we continue to carry out the same method as above, we arrive at
Pi(z) =0 forall z € J (2.68)

for all x € J; that is
A(z1, 20, oy zy) =0 forall z; € J (2.69)

so we get the required result. O

Our aim in the following theorem is to extend ([2], Theorem 2.8) to Jordan ideals with the
restriction that R is assumed to be prime.
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Theorem 2.5. Let n be a fixed positive integer and R be a (n+ 1)!-torsion free prime ring and J
a nonzero Jordan ideal of R. If R admits a nonzero permuting generalized n-derivation  with
associated n-derivation A such that the trace w of Q is centralizing on J. Then R is commutative.

Proof. We are given that [w(z),z] € Z(R) for all z € R. Using similar arguments as used in the
proof of Theorem 2.4, we obtain

w(z),y] + n[Q(z,x,...,y),x] =0 forall z,y € J. (2.70)

Replacing y by 128ry?uz*x, where u, z € J, and r € R, we have
128ry?uz?w(x), z] + [w(x), 128ry?uz?]e + n[Q(z, z, ..., 128ry?uz?), z]z

+128nry u2?[6(x), «] + n[128ry*uz?, z]6(x) € Z(R) (2.71)

for all z,y € J. Once again replacing y by 128ry?uz? in (2.70), where u € J and r € R, it is
straightforward to see that

[w(z), 128ry2uz] + n[Q(z, z, ..., 128ry*uz?), 2] =0 forall z,y € J. (2.72)

Combining (2.71) with (2.72), we get
[1287y2uz?, x][w(z), z] + n[128ry?uz?, z][6(z), z] + 128nry’uz?[[6(z), ], ]

+n[128r2uz?, 2][6(x), 2] + n[[128ry?uz?, z], 2]d(x) = 0 (2.73)
forall w,z,y € J and r € R. Replacing r by w(z)r in (2.73) and invoking (2.73), we obtain
128[w(x), z]ry’uz’[w(zx), 2]4+128 x2n[w(z), )ry*uz’[0(x), ]+2nfw(z), z][128ry*uz?, £]6(z) = 0

(2.74)

for all u,z,y € J and r € R. Writing rs instead of r, where s € R, we obtain

[w(z), 2] (128rsy*uz*([w(z), x]+2n[d(x), x]) +2n(r[128sy*uz?, o] +[r, £]128sy*uz*)d(z)) = 0

(2.75)
Using (2.74) together with (2.75), we get
2nfw(x), z][r, 2]128sy*uz*6(x) =0 forall u,z,y € J, and r € R. (2.76)
Replacing r by w(z), we conclude that either [w(z),z]> =0 or é(z) = 0.
If w(z), 2]*> = 0, then [w(x), z] R[w(x), z] = 0 so that [w(z), z] = 0.
Suppose that §(z) = 0, then (2.74) gives
ryfuztw(z),z]* =0 forall u,z,y € J, and r € R (2.77)
which, because of the primeness of R, leads to
[w(z),z2] =0 forall xz € J (2.78)

so that w is commuting on .J.
Forz,y € J, replacing x by z+ky fork = 1,2, ..., nin [w(z), 2] = 0, we find that [z+ky, §(x) +

n—1
d(ky) + > (0)hr(x,y)] = O for all ,y € J. Using the last equation together with Lemma 2.1,
r=1

we get
[y, w(z)] + n[z, Q(z,z,2,.....,y)] =0 for all z,y € J. (2.79)

Replacing y by 8zy?uvz in (2.79), where u,v, z € J, and using the given condition, we get
[2yPuw, w(x)]z + nlr, Q(z, x, ., ..., 2y2uv) |z + nfz, 2y2uv]w(z) =0V z,y € J. (2.80)

Using (2.79) we find that [z, zy*uv]w(z) = 0. Replacing = by x + kw for k = 1,2, ...,n and use
(2.79) we obtain

nlz, zy?u]Q(z, z, z, ..., w) + [w, ziPw]w(z) = 0V u, v, w, x,y, z € J. (2.81)
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Then we obtain
nlz, 2]yt uvQ(z, z, 2, ..., w) + [w, 2]y*uvw(z) = 0V j,u,v,w,z,y,2 € J. (2.82)
Replacing w by z we get
nlz, 2l uww(z, z, ., ..., z2) = 0V u,v, x,y,2 € J. (2.83)
Replacing z by z + w we get
nlz, 2]y uvQ(z, x, , ...y w) + [z, wyruwQ(z, z, 2, ..., 2) = 0V u,v,w,z,y,2 € J.  (2.84)
Using (2.83) and (2.84) we obtain
[z, W]y uQ(z, z, T, ...., 2) Rz, wyuwwQ(z, x, x, ..., 2) = 0V u,v,w, z,y, 2 € J. (2.85)
Since R is prime we conclude that
[z, w]yruwQ(z, z, 2, ..., 2) = OV u,v,w, z,y, 2 € J. (2.86)

Let [z, y]2Q(x, ...,x, i—1,%;—2, ..., 22,21) = 0 holds for all z,z;_1,2;_2,...,71 € J,and 2 <
i < n. Replacing = by « + kx; in last equation to obtain

[ + kxi, y]2Q(x + kxyy ooy @ + kxy, i1, Tim2y v, T2, 1) =0V jyu,v,w,x,y,2 € J. (2.87)
Using Lemma 2.1, we obtain
[, y]2Q(z, .o, x, T, oy 1) + (0 — i+ D[z, y]2Q(x, ..y 2, 24, ooy 1) =0 (2.83)

for all j,u,v,w,x,y,z € J. Then we have

0=(n—i+ 1)[z,y]2Q(, ...,z x4, ..., x1) R[x, y|2Q(z, ..., x, i, ..., T1)
= —[zs,y]2Q(z, ...z, 24, ..., z1) Rz, y]2Q(2) ..., T, i1,y ey T ).

Since R is prime we get

[z, y]2Q(z, ...,z @iy ooy x1) = OV 24,y 21, @, Y, 2 € J. (2.89)
Fori =n — 1, we obtain
[, 9]2Q(x, Tn_1, 1) =0V Zp_1, ..., 71, 2,9, 2 € J. (2.90)

As R is prime we obtain [z,y] =0 or Q(z,xy_1,....,71) VTp_1,...,21,%,y € J.
Let us consider

Ji={zeJ|lx,z]=0Vze J}, h={zxeJQx,yr1,.y1) =0V yn_1,....,y1 € J}.

It is clear that J; and .J, are two additive subgroups of J such that J = J; U J, and therefore
either J = J; or J = .J».

If J = J; then we get [J, J] = O which proves that R is commutative.

If J = J, then Q(z,yn—1,..,y1) = O for all y,_1,....,41,z € J and thus Q(J, J,...,J) = 0.
Accordingly w(J) = 0 in such a way that w = 0, a contradiction. Therefore R is commutative.O
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