ON TRACES OF PERMUTING n-DERIVATIONS AND PERMUTING GENERALIZED n-DERIVATIONS ON JORDAN IDEALS

Badr Nejjar, A. Mamouni and L. Oukhtite
Communicated by Najib Mahdou

MSC 2010 Classifications: Primary 16W10, 16W25; Secondary 16U80.
Keywords and phrases: derivation, generalized derivation, permuting n-derivation, Jordan ideal.

Abstract

In this paper we investigate some proprieties of permuting n-derivations acting on a Jordan Ideal of prime-rings. Some related results for left n-multipliers and generalized n-derivations are also discussed.

1 Introduction

In this paper, R will represent an associative ring. For any $x, y \in R$ the symbol $[x, y]$ will denote the commutator $x y-y x$; while the symbol $x \circ y$ will stand for the anti-commutator $x y+y x . R$ is 2-torsion free if whenever $2 x=0$, with $x \in R$ implies $x=0 . R$ is prime if $a R b=0$ implies $a=0$ or $b=0$. An additive subgroup J of R is said to be a Jordan ideal of R if $u \circ r \in J$, for all $u \in J$ and $r \in R$. A mapping $f: R \longrightarrow R$ is said to be centralizing (resp. commuting) on a subset S of R if $[f(x), x] \in Z(R)$ (resp. $[f(x), x]=0$) for all $x \in S$. A derivation on R is an additive mapping $d: R \longrightarrow R$ such that $d(x y)=$ $d(x) y+x d(y)$ for all $x, y \in R$. An additive mapping $F: R \longrightarrow R$ is called a generalized derivation if there exists a derivation $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x F(y)$ for all $x, y \in R$. In this case, F is called the generalized derivation associated with d. For a fixed positive integer n, a map $\Delta: R^{n} \longrightarrow R$ is n-additive if it satisfies $\Delta\left(x_{1}, x_{2}, \ldots, x_{i}+x_{i}^{\prime}, \ldots, x_{n}\right)=$ $\Delta\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)+\Delta\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)$ for all $x_{i}, x_{i}^{\prime} \in R, i=1,2, \ldots, n$. A map Δ : $R^{n} \longrightarrow R$ is said to be permuting if $\Delta\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\Delta\left(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, \ldots, x_{\pi(n)}\right)$ for all $x_{i} \in R$ and for every permutation $\pi(1), \pi(2), \pi(3), \ldots \ldots, \pi(n)$. A map $\delta: R \longrightarrow R$ is called the trace of Δ if $\delta(x)=\Delta(x, x, x, \ldots, x)$ for all $x \in R$. It is obvious to verify that if $\Delta: R \longrightarrow R$ is a permuting and n-additive mapping, then the trace δ of Δ satisfies the relation

$$
\delta(x+y)=\delta(x)+\delta(y)+\sum_{i=1}^{n-1}\binom{n}{i} \Delta(x, x, \ldots, x, y, y, \ldots, y)
$$

where x appears $(n-i)$-times and y appears i-times.
Park [9] introduced the notion of permuting n-derivation as follows: a permuting map $\Delta: R^{n} \longrightarrow$ R is said to be a permuting n-derivation if Δ is n-additive and $\Delta\left(x_{1}, x_{2}, \ldots, x_{i} x_{i}^{\prime}, \ldots, x_{n}\right)=$ $x_{i} \Delta\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)+\Delta\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) x_{i}^{\prime}$ for all $x_{i}, x_{i}^{\prime} \in R$. Clearly, a 1-derivation is a usual derivation and a 2-derivation is a symmetric bi-derivation. However, in the case of $n=3$ we get the concept of tri-derivation.
An n-additive mapping $\Omega: R^{n} \longrightarrow R$ is called a generalized n-derivation of R with associated n-derivation Δ if

$$
\Omega\left(x_{1}, x_{2}, \ldots, x_{i} x_{i}^{\prime}, \ldots, x_{n}\right)=\Omega\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) x_{i}^{\prime}+x_{i} \Omega\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)
$$

for all $x_{i}, x_{i}^{\prime} \in R$.
An additive subgroup J of R is said to be a Jordan ideal of R if $u \circ r \in J$, for all $u \in J$ and $r \in R$. We shall use without explicit mention the fact that if J is a nonzero Jordan ideal of a ring R, then $2[R, R] J \subseteq J$ and $2 J[R, R] \subseteq J$ ([8], Lemma 2.4). Moreover, from ([1], proof of Lemma 3) we have $4 j^{2} R \subset J$ and $4 R j^{2} \subset J$ for all $j \in J$. Since $4 j r j=2\{j(j r+r j)+(j r+$
$r j) j\}-\left\{2 j^{2} \cdot r+r \cdot 2 j^{2}\right\}$, it follows that $4 j R j \subset J$ for all $j \in J$ (see [1], proof of Theorem 3). Many results in literature indicate how the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result due to Posner [7] states that a prime ring R which admits a nonzero centralizing derivation is commutative. Since then, several authors have done a great deal of work concerning commutativity of prime and semi-prime rings admitting different kinds of maps which are centralizing on some appropriate subsets of R ([3] and [6] for a further references). More recently several authors have studied various identities involving trace of permuting n-derivations (generalized n-derivation) and have obtained interesting theorems. In this paper we establish analogous results for the traces of permuting n-derivations (generalized n-derivation) acting on Jordan ideals.

2 Main results

The following lemmas are essential for developing the proofs of our results.
Lemma 2.1. ([6], Lemma 2.4) Let n be a fixed positive integer and let R be a $n!-$ torsion free prime ring. Suppose that $y_{1}, y_{2}, \ldots, y_{n} \in R$ satisfy $\lambda y_{1}+\lambda^{2} y_{2}+\ldots .+\lambda^{n} y_{n}=0,($ or $\in Z(R))$ for $\lambda=1,2,3, \ldots, n$. Then $y_{i}=0\left(\right.$ or $\left.y_{i} \in Z(R)\right)$ for all i.

Lemma 2.2. ([4])] Let R be a prime ring. Let $d: R \rightarrow R$ be a derivation and $a \in R$. If ad $(x)=0$ holds for all $x \in J$, then we have either $a=0$ or $d=0$.

Proof. Assume that: $a d(x)$ for all $\in J$. Replacing x by $4 x j^{2}$, where $j \in J$, we get $\operatorname{axd}\left(j^{2}\right)=0$, so that $a J d\left(j^{2}\right)=0$. Applying ([8], Lemma 2.6) we have $a=0$ or $d\left(j^{2}\right)=0$ for all $j \in J$. In the last case,([5], Lemma 3) implies that $d=0$.

Theorem 2.3. Let $n \geq 2$ be a fixed positive integer and R be a $n+1)$!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting n-derivation Δ such that the trace δ satisfies $[[\delta(x), x], x] \in Z(R)$ for all $x \in J$. Then δ is commuting on J.

Proof. We are given that

$$
\begin{equation*}
[[\delta(x), x], x] \in Z(R) \text { for all } x \in J \tag{2.1}
\end{equation*}
$$

An easier computation shows that the trace δ of Δ satisfies the relation:

$$
\begin{equation*}
\delta(x+y)=\delta(x)+\delta(y)+\sum_{r=1}^{n-1}\binom{n}{r} h_{r}(x, y) \quad \text { for all } x, y \in J \tag{2.2}
\end{equation*}
$$

where $h_{r}(x, y)=\Delta(x, x, x, \ldots, x, y, y, \ldots ., y) ; y$ appears r times and x appears $n-r$ times.
Consider a positive integer $k, 1 \leq k \leq n+1$. Replacing x by $x+k y$ in (2.1), we obtain

$$
\begin{equation*}
k Q_{1}(x, y)+k^{2} Q_{2}(x, y)+\ldots \ldots \ldots+k^{n+1} Q_{n+1}(x, y)=0 \quad \text { for all } x, y \in J \tag{2.3}
\end{equation*}
$$

where $Q_{i}(x, y)$ denotes the sum of the terms in which y appears i times. Using (2.3) together with Lemma 2.1, we have

$$
\begin{equation*}
[[\delta(x), x], y]+[[\delta(x), y], x]+n[[\Delta(x, x, x, \ldots, y), x], x] \in Z(R) \tag{2.4}
\end{equation*}
$$

for all $x, y \in J$. Replacing y by $4 y^{2} z$ in (2.4), where $z \in J$, we get

$$
\begin{equation*}
\left[[\delta(x), x], y^{2} z\right]+\left[\left[\delta(x), y^{2} z\right], x\right]+n\left[\left[\Delta\left(x, x, x, \ldots ., y^{2} z\right), x\right], x\right] \in Z(R) \tag{2.5}
\end{equation*}
$$

for all $x, y, z \in J$. Substituting $8 x y^{2} z$ for y in (2.4), we get

$$
\begin{align*}
x\left(\left[[\delta(x), x], y^{2} z\right]+\right. & {\left.\left[\left[\delta(x), y^{2} z\right], x\right]+n\left[\left[\Delta\left(x, x, x, \ldots, y^{2} z\right), x\right], x\right]\right)+(n+2)[[\delta(x), x], x] y^{2} z } \\
& +(2 n+1)[\delta(x), x]\left[y^{2} z, x\right]+n \delta(x)\left[\left[y^{2} z, x\right], x\right] \in Z(R) \tag{2.6}
\end{align*}
$$

which leads to

$$
\begin{equation*}
(3 n+3)[[\delta(x), x], x]\left[y^{2} z, x\right]+(3 n+1)[\delta(x), x]\left[\left[y^{2} z, x\right], x\right]+n \delta(x)\left[\left[\left[y^{2} z, x\right], x\right], x\right]=0 \tag{2.7}
\end{equation*}
$$

Replacing z by $2 z[\delta(x), x]$ in (2.7) and comparing with (2.4), we find that $(3 n+3)[[\delta(x), x], x]^{2} y^{2} z+(6 n+2)[\delta(x), x]\left[y^{2} z, x\right][[\delta(x), x], x]$

$$
\begin{equation*}
+3 n \delta(x)\left[\left[\left[y^{2} z, x\right], x\right], x\right][[\delta(x), x], x]=0 \tag{2.8}
\end{equation*}
$$

and thus

$$
\begin{gather*}
(9 n+5)[[\delta(x), x], x]^{2}\left[y^{2} z, x\right]+(9 n+2)[\delta(x), x]\left[\left[y^{2} z, x\right], x\right][[\delta(x), x], x] \\
+3 n \delta(x)\left[\left[\left[y^{2} z, x\right], x\right], x\right][[\delta(x), x], x]=0 \tag{2.9}
\end{gather*}
$$

for all $x, y, z \in J$. It now follows, from (2.7) and (2.9), that

$$
\begin{equation*}
4[[\delta(x), x], x]^{2}\left[y^{2} z, x\right]+[\delta(x), x]\left[\left[y^{2} z, x\right], x\right][[\delta(x), x], x]=0 \tag{2.10}
\end{equation*}
$$

Once again replacing z by $2 z[\delta(x), x]$ and using (2.10), we obtain

$$
\begin{equation*}
[[\delta(x), x], x]^{2}\left(4[[\delta(x), x], x] y^{2} z+2[\delta(x), x]\left[y^{2} z, x\right]\right)=0 \quad \text { for all } x, y, z \in J \tag{2.11}
\end{equation*}
$$

Writing $2 z[r, t]$ instead of z in (2.11), where $r, t \in R$, we get

$$
\begin{equation*}
[[\delta(x), x], x]^{2}[\delta(x), x] y^{2} z[[r, t] x]=0 \quad \text { for all } x, y, z \in J ; \quad r, t \in R \tag{2.12}
\end{equation*}
$$

Since N is prime, then (2.12) shows that

$$
\begin{equation*}
[[\delta(x), x], x]=0 \text { for all } x \in J \tag{2.13}
\end{equation*}
$$

Replacing x by $x+k y$ in (2.13), we obtain

$$
\begin{equation*}
k Q_{1}(x, y)+k^{2} Q_{2}(x, y)+\ldots \ldots .+k^{n+1} Q_{n+1}(x, y)=0 \text { for all } x, y \in J \tag{2.14}
\end{equation*}
$$

Once again applying Lemma 2.1, we obtain

$$
\begin{equation*}
[[\delta(x), x], y]+[[\delta(x), y], x]+n[[\Delta(x, x, x, \ldots, y), x], x]=0 \quad \text { for all } x, y \in J \tag{2.15}
\end{equation*}
$$

Replacing y by $8 x z y^{2} u v$ in (2.15), where $u, v, z \in J$, we get

$$
\begin{equation*}
(2 n+1)[\delta(x), x]\left[z y^{2} u v, x\right]+n \delta(x)\left[\left[z y^{2} u v, x\right], x\right]=0 \quad \text { for all } u, v, x, y, z \in J \tag{2.16}
\end{equation*}
$$

Replacing y by $8 x r z y^{2} u v$ in (2.15), where $u, v, z \in J$ and $r \in R$, we get

$$
(2 n+1)[\delta(x), x]\left[r z y^{2} u v, x\right]+n \delta(x)\left[\left[r z y^{2} u v, x\right], x\right]=0 \quad \text { for all } u, v, x, y, z \in J ; r \in R \text { (2.17) }
$$

in such a way that
$(2 n+1)[\delta(x), x]\left(r\left[z y^{2} u v, x\right]+[r, x] z y^{2} u v\right)+n \delta(x)\left(2[r, x]\left[z y^{2} u v, x\right]\right.$

$$
\begin{equation*}
\left.+r\left[\left[z y^{2} u v, x\right], x\right]+[[r, x], x] z y^{2} u v\right)=0 \tag{2.18}
\end{equation*}
$$

for all $u, v, x, y, z \in J, r \in R$. Taking $r=\delta(x)$ in the last expression we get
$(2 n+1)[\delta(x), x]\left(\delta(x)\left[z y^{2} u v, x\right]+[\delta(x), x] z y^{2} u v\right)+n \delta(x)\left(2[\delta(x), x]\left[z y^{2} u v, x\right]\right.$

$$
\begin{equation*}
\left.+\delta(x)\left[\left[z y^{2} u v, x\right], x\right]\right)=0 \tag{2.19}
\end{equation*}
$$

Invoking (2.17), we get
$(2 n+1)[\delta(x), x]\left(\delta(x)\left[z y^{2} u v, x\right]+[\delta(x), x] z y^{2} u v\right)+2 n \delta(x)[\delta(x), x]\left[z y^{2} u v, x\right]$

$$
\begin{equation*}
-(2 n+1) \delta(x)[\delta(x), x]\left[z y^{2} u v, x\right]=0 \tag{2.20}
\end{equation*}
$$

and thus

$$
\begin{equation*}
(2 n+1)([\delta(x), x] \delta(x)-\delta(x)[\delta(x), x])\left[z y^{2} u v, x\right]+(2 n+1)[\delta(x), x]^{2} z y^{2} u v=0 \tag{2.21}
\end{equation*}
$$

If we replace y by $8 x \delta(x) z y^{2}$ in (2.15), then we get

$$
\begin{equation*}
((2 n+1)[\delta(x), x] \delta(x)-\delta(x)[\delta(x), x])\left[z y^{2}, x\right]+(2 n+1)[\delta(x), x]^{2} z y^{2}=0 \tag{2.22}
\end{equation*}
$$

Comparing (2.21) and (2.22) we conclude that

$$
\begin{equation*}
((2 n+1)[\delta(x), x] \delta(x)-\delta(x)[\delta(x), x]) z y^{2}[u v, x]=0 \tag{2.23}
\end{equation*}
$$

so that

$$
\begin{equation*}
((2 n+1)[\delta(x), x] \delta(x)-\delta(x)[\delta(x), x]) J y^{2}[u v, x]=0 \quad \text { for all } u, v, x, y \in J \tag{2.24}
\end{equation*}
$$

Since R is prime, then either $(2 n+1)[\delta(x), x] \delta(x)-\delta(x)[\delta(x), x]=0$ or $y^{2}[u v, x]=0$, in which case we obtain $x \in Z(R)$. Hence in both cases we have

$$
\begin{equation*}
(2 n+1)[\delta(x), x] \delta(x)-\delta(x)[\delta(x), x]=0 \quad \text { for all } x \in J \tag{2.25}
\end{equation*}
$$

Similarly replacing y by $8 u v y^{2} r \delta(x) x$ in (2.15), where $u, v \in J$ and $r \in R$ we get

$$
\begin{equation*}
(2 n+1)\left[u v y^{2} r \delta(x), x\right][\delta(x), x]+n\left[\left[u v y^{2} r \delta(x), x\right], x\right] \delta(x)=0 \tag{2.26}
\end{equation*}
$$

which leads to
$(2 n+1)\left[u v y^{2} r, x\right] \delta(x)[\delta(x), x]+(2 n+1) u v y^{2} r[\delta(x), x]^{2}+2 n\left[u v y^{2} r, x\right][\delta(x), x] \delta(x)$

$$
\begin{equation*}
n\left[\left[u v y^{2} r, x\right], x\right] \delta(x)^{2}=0 \text { for all } u, v, x, y \in J, \quad r \in R \tag{2.27}
\end{equation*}
$$

If we replace y by $8 u v y^{2} r x$ in (2.15), where $u, v, y \in J$ and $r \in R$, we find that

$$
\begin{equation*}
(2 n+1)\left[u v y^{2} r, x\right][\delta(x), x]+n\left[\left[u v y^{2} r, x\right], x\right] \delta(x)=0 \quad \text { for all } u, v, x, y \in J ; r \in R . \tag{2.28}
\end{equation*}
$$

Using (2.28) together with (2.27) we see that
$(2 n+1)\left[u v y^{2} r, x\right] \delta(x)[\delta(x), x]+(2 n+1) u v y^{2} r[\delta(x), x]^{2}+2 n\left[u v y^{2} r, x\right][\delta(x), x] \delta(x)$

$$
\begin{equation*}
-(2 n+1)\left[u v y^{2} r, x\right][\delta(x), x] \delta(x)=0 \quad \text { for all } u, v, x, y \in J ; \quad r \in R \tag{2.29}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left[u v y^{2} r, x\right]((2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x))+(2 n+1) u v y^{2} r[\delta(x), x]^{2}=0 \tag{2.30}
\end{equation*}
$$

Similarly if we replace y by $8 y^{2} r \delta(x) x$ in (2.15), where $r \in R$, we get

$$
\begin{equation*}
\left[y^{2} r, x\right]((2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x))+(2 n+1) y^{2} r[\delta(x), x]^{2} \tag{2.31}
\end{equation*}
$$

By virtue of (2.30), equation (2.31) forces

$$
\begin{equation*}
[u v, x] y^{2} r((2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x))=0 \tag{2.32}
\end{equation*}
$$

and so

$$
\begin{equation*}
[u v, x] y^{2} R((2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x))=0 \quad \text { for all } u, v, x, y \in J \tag{2.33}
\end{equation*}
$$

In light of the primeness of R, we conclude that either $(2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x)=0$ or $[u v, x] y^{2}=0$. Arguing as above, in both the cases we have

$$
\begin{equation*}
(2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x)=0 \quad \text { for all } x \in J \tag{2.34}
\end{equation*}
$$

Adding (2.25) and (2.34), because of $(n+1)$! torsion freeness, we find that

$$
\begin{equation*}
\delta(x)[\delta(x), x]+[\delta(x), x] \delta(x)=0 \quad \text { for all } x \in J \tag{2.35}
\end{equation*}
$$

Analogously, adding (2.25) and (2.35) we see that

$$
\begin{equation*}
[\delta(x), x] \delta(x)=0 \quad \text { for all } \quad x \in J \tag{2.36}
\end{equation*}
$$

Accordingly, equation (2.25) reduces to

$$
\begin{equation*}
\delta(x)[\delta(x), x]=0 \quad \text { for all } x \in J \tag{2.37}
\end{equation*}
$$

Replacing x by $x+k y$ in (2.37), we obtain

$$
\begin{equation*}
k B_{1}(x, y)+k^{2} B_{2}(x, y)+\ldots \ldots . .+k^{n+1} B_{n+1}(x, y)=0 \quad \text { for all } x, y \in J \tag{2.38}
\end{equation*}
$$

where $B_{i}(x, y)$ denotes the sum of the terms in which y appears i times. Application of Lemma 2.1 and (2.3) gives that

$$
\begin{equation*}
\delta(x)[\delta(x), y]+n \delta(x)[\Delta(x, x, x, \ldots, y), x]+n \Delta(x, x, x, \ldots, y)[\delta(x), x]=0 \tag{2.39}
\end{equation*}
$$

Replacing y by $8 u r y^{2} v x$ in (2.39), where $u, v, x, y \in J$ and $r \in R$, we obtain

$$
\begin{equation*}
(n+1) \delta(x) u r y^{2} v[\delta(x), x]+n \delta(x)\left[u r y^{2} v, x\right] \delta(x)=0 \tag{2.40}
\end{equation*}
$$

Substituting $8 x u r y^{2} v x$ for y in (2.39), where $u, v, x, y \in J$ and $r \in R$, we get

$$
\begin{equation*}
(n+1) \delta(x) x u r y^{2} v[\delta(x), x]+n \delta(x) x\left[u r y^{2} v, x\right] \delta(x)=0 \tag{2.41}
\end{equation*}
$$

Left multiplying (2.40) by x and using (2.41), it is obvious to see that

$$
\begin{equation*}
(n+1)[\delta(x), x] u r y^{2} v[\delta(x), x]+n[\delta(x), x]\left[u r y^{2} v, x\right] \delta(x)=0 \tag{2.42}
\end{equation*}
$$

Replacing y by $8 \delta(x) s z^{2} r y^{2} v x$ in (2.4), where $s \in R$ we get

$$
\begin{equation*}
(2 n+1)[\delta(x), x] s z^{2} r y^{2} v[\delta(x), x]+2 n[\delta(x), x]\left[s z^{2} r y^{2} v, x\right] \delta(x)=0 \tag{2.43}
\end{equation*}
$$

Writing $s z^{2}$ instead of u in (2.42), where $z \in J$ and $s \in R$ we get

$$
\begin{equation*}
(n+1)[\delta(x), x] s z^{2} r y^{2} v[\delta(x), x]+n[\delta(x), x]\left[s z^{2} r y^{2} v, x\right] \delta(x)=0 \tag{2.44}
\end{equation*}
$$

Combining (2.43) and (2.44), because of the torsion restriction, we find that

$$
\begin{equation*}
[\delta(x), x] s z^{2} r y^{2} v[\delta(x), x]+[\delta(x), x]\left[s z^{2} r y^{2} v, x\right] \delta(x)=0 \tag{2.45}
\end{equation*}
$$

for all $v, x, y, z \in J$, and $r, s \in R$. Comparing (2.44) and (2.45) we conclude that

$$
\begin{equation*}
[\delta(x), x] s z^{2} r y^{2} v[\delta(x), x]=0 \quad \text { for all } v, x, y, z \in J, \text { and } r, s \in R \tag{2.46}
\end{equation*}
$$

so that

$$
\begin{equation*}
[\delta(x), x] s z^{2} R y^{2} v[\delta(x), x]=0 \quad \text { for all } v, x, y, z \in J, \text { and } s \in R \tag{2.47}
\end{equation*}
$$

Since R is prime, the we can conclude that $[\delta(x), x] s z^{2}=0$ or $y^{2} v[\delta(x), x]=0$. But in both the cases one can see that for each $x \in J,[\delta(x), x]=0$ and our proof is complete.

Theorem 2.4. Let $n \geq 2$ be a fixed positive integer and R be a noncommutative $(n+1)$!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting generalized n derivation Ω with associated n-derivation Δ such that the trace ω of Ω is commuting on R. Then Ω is a left n-multiplier on R.

Proof. Assume that

$$
\begin{equation*}
[\omega(x), x]=0 \quad \text { for all } x \in J \tag{2.48}
\end{equation*}
$$

It is obvious to verify that

$$
\begin{equation*}
\omega(x+y)=\omega(x)+\omega(y)+\sum\binom{n}{r} H_{r}(x, y) \quad \text { for all } x, y \in J \tag{2.49}
\end{equation*}
$$

where $H_{i}(x, y)=\Omega(x, x, x, \ldots ., x, y, y, \ldots ., y) ; y$ appears i times.
Replacing x by $x+k y$ in (2.48), where $1 \leq k \leq n$ is a positive integer, we get

$$
\begin{equation*}
[\omega(x+k y), x+k y]=0 \quad \text { for all } x, y \in J \tag{2.50}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left[\omega(x)+\omega(k y)+\sum_{i=1}^{n-1}\binom{n}{i} H_{i}(x, y), x+k y\right]=0 \quad \text { for all } x, y \in J \tag{2.51}
\end{equation*}
$$

and therefore

$$
\begin{align*}
k([\omega(x), y] & \left.+\binom{n}{1}\left[H_{1}(x, y), x\right]\right)+k^{2}\left(\binom{n}{1}\left[H_{1}(x, y), y\right]+\binom{n}{2}\left[H_{2}(x, y), x\right]\right) \\
& +\ldots .+k^{n}\left([\omega(y), x]+\binom{n}{n-1}\left[H_{n-1}(x, y), x\right]\right)=0 \text { for all } x, y \in J \tag{2.52}
\end{align*}
$$

Application of Lemma 2.1 yields

$$
\begin{equation*}
[\omega(x), y]+\binom{n}{1}\left[H_{1}(x, y), x\right]=[\omega(x), y]+n[\Omega(x, x, \ldots, y), x]=0 \text { for all } x, y \in J \tag{2.53}
\end{equation*}
$$

Replacing y by $8 z u y^{2} v x$, where $u, v, x, y, z \in J$, we get

$$
\begin{aligned}
0 & =z u y^{2} v[\omega(x), x]+\left[\omega(x), z u y^{2} v\right] x+n\left[\Omega\left(x, x, \ldots, z u y^{2} v\right) x+z u y^{2} v \Delta(x, x, \ldots, x), x\right] \\
& =\left[\omega(x), z u y^{2} v\right] x+n z u y^{2} v[\delta(x), x]+n\left[z u y^{2} v, x\right] \delta(x)+n\left[\Omega\left(x, x, \ldots, z u y^{2} v\right), x\right] x \\
& =n\left[z u y^{2} v, x\right] \delta(x)+n z u y^{2} v[\delta(x), x]
\end{aligned}
$$

Since R is $(n+1)$!-torsion free, it then follows that

$$
\begin{equation*}
\left[z u y^{2} v, x\right] \delta(x)+z u y^{2} v[\delta(x), x]=0 \quad \text { for all } x, y \in J \tag{2.54}
\end{equation*}
$$

Replacing z by $2[r, t] z$, where $r, t \in R$, and invoking (2.54), we have

$$
\begin{equation*}
[[r, t], x] z y^{2} v \delta(x)=0 \quad \text { for all } v, x, y \in J, \text { and } r, t \in R \tag{2.55}
\end{equation*}
$$

Using the primeness of R, we get $\delta(x)=0$ or $x \in Z(R)$ for all $x \in J$. Hence in all the cases we have

$$
\begin{equation*}
[\delta(x), x]=0 \quad \text { for all } x \in J \tag{2.56}
\end{equation*}
$$

Consider a positive integer $k, 1 \leq k \leq n+1$. Replacing x by $x+\lambda y$ in (2.56), where $y \in J$, we get

$$
\begin{aligned}
0 & =k[\delta(x), y]+k[\delta(x), y]+\binom{n}{r}\left[h_{1}(x, y), x\right]+k^{2}\binom{n}{1}\left[h_{1}(x, y), y\right]+\binom{n}{2}\left[h_{2}(x, y), x\right] \\
& +\ldots+k^{n}\binom{n}{1}\left[h_{1}(x, y), y\right]+\binom{n}{n-1}\left[h_{n-1}(x, y), y\right]
\end{aligned}
$$

In view of Lemma 2.1, (2.56) assures that

$$
\begin{equation*}
[\delta(x), y]+n\left[h_{1}(x, y), x\right]=0 \quad \text { for all } x, y \in J \tag{2.57}
\end{equation*}
$$

Replacing y by $128 r y^{2} v j^{2} t$ in (2.57), where $j, v \in J$ and $r, t \in R$, we get

$$
\begin{equation*}
\left[\delta(x), 128 r y^{2} v j^{2} t\right]+n\left[h_{1}\left(x, 128 r y^{2} v j^{2} t\right), x\right]=0 \quad \text { for all } x \in J \tag{2.58}
\end{equation*}
$$

Writing $x r$ instead of r in (2.58), one can easily see that

$$
\begin{equation*}
\left[\delta(x), 128 x r y^{2} v j^{2} t\right]+n\left[h_{1}\left(x, 128 x r y^{2} v j^{2} t\right), x\right]=0 \quad \text { for all } x \in J \tag{2.59}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
x\left[\delta(x), 128 r y^{2} v j^{2} t\right]+n\left[h_{1}\left(x, 128 r y^{2} v j^{2} t\right), x\right]+n \delta(x)\left[128 r y^{2} v j^{2} t, x\right]=0 \tag{2.60}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\delta(x)\left[128 r y^{2} v j^{2} t, x\right]=0 \quad \text { for all } x \in J \tag{2.61}
\end{equation*}
$$

Substituting t by $t s$ in (2.61), where $s \in R$, and using the primeness of R, we conclude that $\delta(x)=0$ or $x \in Z(R)$ for all $x \in J$.
Let $x \in J(x \in Z(R)$ and $y \in J(y \notin Z(R)$. Then $y+k x \notin Z(R)$ and thus

$$
0=\delta(y+k x)=\delta(y)+k^{n} \delta(x)+\sum_{i=1}^{n-1} k^{i}\binom{n}{i} h_{i}(x, y)
$$

accordingly,

$$
\begin{equation*}
\sum_{r=1}^{n-1} k^{r}\binom{n}{r} h_{r}(x, y)+k^{n} \delta(x)=0 \quad \text { for all } x, y \in J \tag{2.62}
\end{equation*}
$$

Application of Lemma 2.1 implies that

$$
\begin{equation*}
\delta(x)=0 \quad \text { for all } x \in J \tag{2.63}
\end{equation*}
$$

For $k=1,2,3, \ldots, n$, Let $P_{k}(x)=\Delta\left(x, x, . ., x, x_{k+1}, x_{k+2}, \ldots, x_{n}\right)$, where x appears k times and $x, x_{i} \in R, i=k+1, k+2, \ldots, n$. Let $\mu(1 \leq \mu \leq n-1)$ be any integer. By view of (2.63),

$$
\begin{aligned}
0 & =\delta\left(\mu x+x_{n}\right)=P_{n}\left(\mu x+x_{n}\right) \\
& =\mu^{n} \delta(x)+\delta\left(x_{n}\right)+\sum_{r=1}^{n-1} \mu^{r}\binom{n}{r} P_{r}(x) \\
& =\sum_{r=1}^{n-1} \mu^{r}\binom{n}{r} P_{r}(x)
\end{aligned}
$$

for all $x, x_{n} \in J$, that is

$$
\begin{equation*}
\sum_{r=1}^{n-1} \mu^{r}\binom{n}{r} P_{r}(x)=0 \quad \text { for all } x \in J \tag{2.64}
\end{equation*}
$$

Using Lemma 2.2 together with (2.64), we obtain

$$
\begin{equation*}
P_{n-1}(x)=0 \quad \text { for all } x \in J \tag{2.65}
\end{equation*}
$$

Let $\nu(1 \leq \nu \leq n-2)$ be any integer. By virtue of (2.65) we have

$$
0=P_{n-1}\left(\nu x+x_{n-1}\right)=\nu^{n-1} P_{n-1}(x)+P_{n-1}\left(x_{n-1}\right)+\sum_{i=1}^{n-2} \nu^{i}\binom{n}{i} P_{i}(x)
$$

for all $x, x_{n-1} \in J$ in such a way that

$$
\begin{equation*}
\sum_{r=1}^{n-2} \nu^{r}\binom{n}{r} P_{r}(x)=0 \quad \text { for all } x \in J \tag{2.66}
\end{equation*}
$$

Once again using Lemma 2.2, (2.66) yields

$$
\begin{equation*}
P_{n-2}(x)=0 \quad \text { for all } x \in J \tag{2.67}
\end{equation*}
$$

If we continue to carry out the same method as above, we arrive at

$$
\begin{equation*}
P_{1}(x)=0 \quad \text { for all } x \in J \tag{2.68}
\end{equation*}
$$

for all $x \in J$; that is

$$
\begin{equation*}
\Delta\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=0 \text { for all } x_{i} \in J \tag{2.69}
\end{equation*}
$$

so we get the required result.
Our aim in the following theorem is to extend ([2], Theorem 2.8) to Jordan ideals with the restriction that R is assumed to be prime.

Theorem 2.5. Let n be a fixed positive integer and R be $a(n+1)$!-torsion free prime ring and J a nonzero Jordan ideal of R. If R admits a nonzero permuting generalized n-derivation Ω with associated n-derivation Δ such that the trace ω of Ω is centralizing on J. Then R is commutative.

Proof. We are given that $[\omega(x), x] \in Z(R)$ for all $x \in R$. Using similar arguments as used in the proof of Theorem 2.4, we obtain

$$
\begin{equation*}
[\omega(x), y]+n[\Omega(x, x, \ldots, y), x]=0 \text { for all } x, y \in J \tag{2.70}
\end{equation*}
$$

Replacing y by $128 r y^{2} u z^{2} x$, where $u, z \in J$, and $r \in R$, we have
$128 r y^{2} u z^{2}[\omega(x), x]+\left[\omega(x), 128 r y^{2} u z^{2}\right] x+n\left[\Omega\left(x, x, \ldots, 128 r y^{2} u z^{2}\right), x\right] x$

$$
\begin{equation*}
+128 n r y^{2} u z^{2}[\delta(x), x]+n\left[128 r y^{2} u z^{2}, x\right] \delta(x) \in Z(R) \tag{2.71}
\end{equation*}
$$

for all $x, y \in J$. Once again replacing y by $128 r y^{2} u z^{2}$ in (2.70), where $u \in J$ and $r \in R$, it is straightforward to see that

$$
\begin{equation*}
\left[\omega(x), 128 r y^{2} u z^{2}\right]+n\left[\Omega\left(x, x, \ldots, 128 r y^{2} u z^{2}\right), x\right]=0 \quad \text { for all } x, y \in J \tag{2.72}
\end{equation*}
$$

Combining (2.71) with (2.72), we get
$\left[128 r y^{2} u z^{2}, x\right][\omega(x), x]+n\left[128 r y^{2} u z^{2}, x\right][\delta(x), x]+128 n r y^{2} u z^{2}[[\delta(x), x], x]$

$$
\begin{equation*}
+n\left[128 r y^{2} u z^{2}, x\right][\delta(x), x]+n\left[\left[128 r y^{2} u z^{2}, x\right], x\right] \delta(x)=0 \tag{2.73}
\end{equation*}
$$

for all $u, x, y \in J$ and $r \in R$. Replacing r by $\omega(x) r$ in (2.73) and invoking (2.73), we obtain $128[\omega(x), x] r y^{2} u z^{2}[\omega(x), x]+128 \times 2 n[\omega(x), x] r y^{2} u z^{2}[\delta(x), x]+2 n[\omega(x), x]\left[128 r y^{2} u z^{2}, x\right] \delta(x)=0$
for all $u, x, y \in J$ and $r \in R$. Writing $r s$ instead of r, where $s \in R$, we obtain
$[\omega(x), x]\left(128 r s y^{2} u z^{2}([\omega(x), x]+2 n[\delta(x), x])+2 n\left(r\left[128 s y^{2} u z^{2}, x\right]+[r, x] 128 s y^{2} u z^{2}\right) \delta(x)\right)=0$
Using (2.74) together with (2.75), we get

$$
\begin{equation*}
2 n[\omega(x), x][r, x] 128 s y^{2} u z^{2} \delta(x)=0 \quad \text { for all } u, x, y \in J, \text { and } r \in R \tag{2.76}
\end{equation*}
$$

Replacing r by $\omega(x)$, we conclude that either $[\omega(x), x]^{2}=0$ or $\delta(x)=0$.
If $[\omega(x), x]^{2}=0$, then $[\omega(x), x] R[\omega(x), x]=0$ so that $[\omega(x), x]=0$.
Suppose that $\delta(x)=0$, then (2.74) gives

$$
\begin{equation*}
r y^{2} u z^{2}[\omega(x), x]^{2}=0 \quad \text { for all } u, x, y \in J, \text { and } r \in R \tag{2.77}
\end{equation*}
$$

which, because of the primeness of R, leads to

$$
\begin{equation*}
[\omega(x), x]=0 \quad \text { for all } x \in J \tag{2.78}
\end{equation*}
$$

so that ω is commuting on J.
For $x, y \in J$, replacing x by $x+k y$ for $k=1,2, \ldots, n$ in $[\omega(x), x]=0$, we find that $[x+k y, \delta(x)+$ $\left.\delta(k y)+\sum_{r=1}^{n-1}\binom{n}{r} h_{r}(x, y)\right]=0$ for all $x, y \in J$. Using the last equation together with Lemma 2.1, we get

$$
\begin{equation*}
[y, \omega(x)]+n[x, \Omega(x, x, x, \ldots ., y)]=0 \text { for all } x, y \in J \tag{2.79}
\end{equation*}
$$

Replacing y by $8 z y^{2} u v x$ in (2.79), where $u, v, z \in J$, and using the given condition, we get

$$
\begin{equation*}
\left[z y^{2} u v, \omega(x)\right] x+n\left[x, \Omega\left(x, x, x, \ldots ., z y^{2} u v\right)\right] x+n\left[x, z y^{2} u v\right] \omega(x)=0 \forall x, y \in J \tag{2.80}
\end{equation*}
$$

Using (2.79) we find that $\left[x, z y^{2} u v\right] \omega(x)=0$. Replacing x by $x+k w$ for $k=1,2, \ldots, n$ and use (2.79) we obtain

$$
\begin{equation*}
n\left[x, z y^{2} u v\right] \Omega(x, x, x, \ldots, w)+\left[w, z y^{2} u v\right] \omega(x)=0 \forall u, v, w, x, y, z \in J . \tag{2.81}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
n[x, z] y^{2} u v \Omega(x, x, x, \ldots ., w)+[w, z] y^{2} u v \omega(x)=0 \forall j, u, v, w, x, y, z \in J \tag{2.82}
\end{equation*}
$$

Replacing w by z we get

$$
\begin{equation*}
n[x, z] y^{2} u v \Omega(x, x, x, \ldots ., z)=0 \forall u, v, x, y, z \in J \tag{2.83}
\end{equation*}
$$

Replacing z by $z+w$ we get

$$
\begin{equation*}
n[x, z] y^{2} u v \Omega(x, x, x, \ldots ., w)+[x, w] y^{2} u v \Omega(x, x, x, \ldots ., z)=0 \forall u, v, w, x, y, z \in J \tag{2.84}
\end{equation*}
$$

Using (2.83) and (2.84) we obtain

$$
\begin{equation*}
[x, w] y^{2} u v \Omega(x, x, x, \ldots ., z) R[x, w] y^{2} u v \Omega(x, x, x, \ldots ., z)=0 \forall u, v, w, x, y, z \in J \tag{2.85}
\end{equation*}
$$

Since R is prime we conclude that

$$
\begin{equation*}
[x, w] y^{2} u v \Omega(x, x, x, \ldots, z)=0 \forall u, v, w, x, y, z \in J \tag{2.86}
\end{equation*}
$$

Let $[x, y] z \Omega\left(x, \ldots, x, x_{i-1}, x_{i-2}, \ldots, x_{2}, x_{1}\right)=0$ holds for all $x, x_{i-1}, x_{i-2}, \ldots, x_{1} \in J$, and $2 \leq$ $i \leq n$. Replacing x by $x+k x_{i}$ in last equation to obtain

$$
\begin{equation*}
\left[x+k x_{i}, y\right] z \Omega\left(x+k x_{i}, \ldots, x+k x_{i}, x_{i-1}, x_{i-2}, \ldots, x_{2}, x_{1}\right)=0 \forall j, u, v, w, x, y, z \in J \tag{2.87}
\end{equation*}
$$

Using Lemma 2.1, we obtain

$$
\begin{equation*}
\left[x_{i}, y\right] z \Omega\left(x, \ldots, x, x_{i-1}, \ldots, x_{1}\right)+(n-i+1)[x, y] z \Omega\left(x, \ldots, x, x_{i}, \ldots, x_{1}\right)=0 \tag{2.88}
\end{equation*}
$$

for all $j, u, v, w, x, y, z \in J$. Then we have
$0=(n-i+1)[x, y] z \Omega\left(x, \ldots, x, x_{i}, \ldots, x_{1}\right) R[x, y] z \Omega\left(x, \ldots, x, x_{i}, \ldots, x_{1}\right)$
$=-\left[x_{i}, y\right] z \Omega\left(x, \ldots, x, x_{i}, \ldots, x_{1}\right) R[x, y] z \Omega\left(x, \ldots, x, x_{i-1}, \ldots, x_{1}\right)$.
Since R is prime we get

$$
\begin{equation*}
[x, y] z \Omega\left(x, \ldots, x, x_{i}, \ldots, x_{1}\right)=0 \forall x_{i}, \ldots, x_{1}, x, y, z \in J \tag{2.89}
\end{equation*}
$$

For $i=n-1$, we obtain

$$
\begin{equation*}
[x, y] z \Omega\left(x, x_{n-1}, \ldots, x_{1}\right)=0 \forall x_{n-1}, \ldots, x_{1}, x, y, z \in J \tag{2.90}
\end{equation*}
$$

As R is prime we obtain $[x, y]=0$ or $\Omega\left(x, x_{n-1}, \ldots, x_{1}\right) \forall x_{n-1}, \ldots, x_{1}, x, y \in J$.
Let us consider

$$
J_{1}=\{x \in J \mid[x, z]=0 \forall z \in J\}, J_{2}=\left\{x \in J \mid \Omega\left(x, y_{n-1}, \ldots, y_{1}\right)=0 \forall y_{n-1}, \ldots, y_{1} \in J\right\}
$$

It is clear that J_{1} and J_{2} are two additive subgroups of J such that $J=J_{1} \cup J_{2}$ and therefore either $J=J_{1}$ or $J=J_{2}$.
If $J=J_{1}$ then we get $[J, J]=0$ which proves that R is commutative.
If $J=J_{2}$ then $\Omega\left(x, y_{n-1}, \ldots, y_{1}\right)=0$ for all $y_{n-1}, \ldots, y_{1}, x \in J$ and thus $\Omega(J, J, \ldots, J)=0$.
Accordingly $\omega(J)=0$ in such a way that $\omega=0$, a contradiction. Therefore R is commutative. \square

References

[1] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41, 67-74 (1973).
[2] M. ashraf, A. Khan and M. R. Jamal, On traces of permuting n-derivations and permuting generalized n -derivations of rings, (in press).
[3] M. Bresar, Commuting maps:a survey, Taiwainese J. Math. 8 (3), 361-397 (2004).
[4] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carol. 54 (4), 447-457 (2013).
[5] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2), 225-232 (2014).
[6] K.H. Park, On prime and semiprime rings with symmetric n-derivations, Journal of Chungcheong Mathematical Society 22, 451-458 (2009).
[7] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100 (1957).
[8] S. M. A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left (θ, θ)-derivations in prime rings, Int. J. Math. Math. Sci. 2004 (37-40), 1957-1964 (2004).

Author information

Badr Nejjar, Université Ibn Tofaïl, Département de mathematiques, Faculté des Sciences Kénitra, Morocco. E-mail: bader.nejjar@gmail.com
A. Mamouni, Université Moulay Ismaïl, Faculté des Sciences et Techniques, Département de Mathématiques, Errachidia, Morocco.
E-mail: mamouni_75@live.fr
L. Oukhtite, Department of Mathematics, S. M. Ben Abdellah University of Fez, Faculty of Science and Technology, Box 2202, Fez, Morocco.
E-mail: oukhtitel@hotmail.com
Received: October 7, 2015.
Accepted: December 23, 2015

