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Abstract. In this paper we investigate some proprieties of permuting n-derivations acting

on a Jordan Ideal of prime-rings. Some related results for left n−multipliers and generalized

n−derivations are also discussed.

1 Introduction

In this paper, R will represent an associative ring. For any x, y ∈ R the symbol [x, y] will
denote the commutator xy − yx; while the symbol x ◦ y will stand for the anti-commutator

xy + yx. R is 2-torsion free if whenever 2x = 0, with x ∈ R implies x = 0. R is prime

if aRb = 0 implies a = 0 or b = 0. An additive subgroup J of R is said to be a Jordan

ideal of R if u ◦ r ∈ J , for all u ∈ J and r ∈ R. A mapping f : R −→ R is said to be

centralizing (resp. commuting) on a subset S of R if [f(x), x] ∈ Z(R) (resp. [f(x), x] = 0)

for all x ∈ S. A derivation on R is an additive mapping d : R −→ R such that d(xy) =
d(x)y + xd(y) for all x, y ∈ R. An additive mapping F : R −→ R is called a generalized

derivation if there exists a derivation d : R −→ R such that F (xy) = F (x)y + xF (y) for

all x, y ∈ R. In this case, F is called the generalized derivation associated with d. For a �xed

positive integer n, a map D : Rn −→ R is n-additive if it satis�es D(x1, x2, ..., xi + x′
i, ..., xn) =

D(x1, x2, ..., xi, ..., xn) + D(x1, x2, ..., x′
i, ..., xn) for all xi, x

′
i ∈ R, i = 1, 2, ..., n. A map D :

Rn −→ R is said to be permuting if D(x1, x2, x3, ...., xn) = D(xπ(1), xπ(2), xπ(3), ...., xπ(n)) for
all xi ∈ R and for every permutation π(1), π(2), π(3), ......, π(n). A map δ : R −→ R is called

the trace of D if δ(x) = D(x, x, x, ...., x) for all x ∈ R. It is obvious to verify that if D : R −→ R
is a permuting and n-additive mapping, then the trace δ of D satis�es the relation

δ(x+ y) = δ(x) + δ(y) +
n−1∑
i=1

(
n

i

)
D(x, x, ..., x, y, y, ..., y)

where x appears (n− i)-times and y appears i-times.

Park [9] introduced the notion of permuting n-derivation as follows: a permuting map D : Rn −→
R is said to be a permuting n-derivation if D is n-additive and D(x1, x2, ..., xix

′

i, ..., xn) =

xiD(x1, x2, ..., x
′

i, ..., xn) + D(x1, x2, ..., xi, ..., xn)x
′

i for all xi, x
′

i ∈ R. Clearly, a 1-derivation is

a usual derivation and a 2-derivation is a symmetric bi-derivation. However, in the case of n = 3

we get the concept of tri-derivation.

An n-additive mapping W : Rn −→ R is called a generalized n-derivation of R with associated

n-derivation D if

W(x1, x2, ..., xix
′

i, ..., xn) = W(x1, x2, ..., xi, ..., xn)x
′

i + xiW(x1, x2, ..., x
′
i, ..., xn)

for all xi, x
′

i ∈ R.
An additive subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J , for all u ∈ J and

r ∈ R. We shall use without explicit mention the fact that if J is a nonzero Jordan ideal of a

ring R, then 2[R,R]J ⊆ J and 2J [R,R] ⊆ J ([8], Lemma 2.4). Moreover, from ([1], proof of

Lemma 3) we have 4j2R ⊂ J and 4Rj2 ⊂ J for all j ∈ J. Since 4jrj = 2{j(jr + rj) + (jr +
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rj)j} − {2j2 · r + r · 2j2}, it follows that 4jRj ⊂ J for all j ∈ J (see [1], proof of Theorem 3).

Many results in literature indicate how the global structure of a ring R is often tightly connected

to the behaviour of additive mappings de�ned on R. A well known result due to Posner [7]

states that a prime ring R which admits a nonzero centralizing derivation is commutative. Since

then, several authors have done a great deal of work concerning commutativity of prime and

semi-prime rings admitting different kinds of maps which are centralizing on some appropriate

subsets of R ([3] and [6] for a further references). More recently several authors have studied

various identities involving trace of permuting n-derivations (generalized n-derivation) and have
obtained interesting theorems. In this paper we establish analogous results for the traces of

permuting n-derivations (generalized n-derivation) acting on Jordan ideals.

2 Main results

The following lemmas are essential for developing the proofs of our results.

Lemma 2.1. ([6], Lemma 2.4) Let n be a �xed positive integer and let R be a n!−torsion free

prime ring. Suppose that y1, y2, ..., yn ∈ R satisfy λy1 + λ2y2 + .... + λnyn = 0, ( or ∈ Z(R))
for λ = 1, 2, 3, ..., n. Then yi = 0 (or yi ∈ Z(R)) for all i.

Lemma 2.2. ([4])] LetR be a prime ring. Let d :R → R be a derivation and a ∈ R. If ad(x) = 0

holds for all x ∈ J , then we have either a = 0 or d = 0.

Proof. Assume that: ad(x) for all ∈ J. Replacing x by 4xj2, where j ∈ J, we get axd(j2) = 0,
so that aJd(j2) = 0. Applying ([8], Lemma 2.6) we have a = 0 or d(j2) = 0 for all j ∈ J. In
the last case,([5], Lemma 3) implies that d = 0. 2

Theorem 2.3. Let n ≥ 2 be a �xed positive integer and R be a (n+ 1)!-torsion free prime ring

and J a nonzero Jordan ideal of R. If R admits a permuting n-derivation D such that the trace δ
satis�es [[δ(x), x], x] ∈ Z(R) for all x ∈ J. Then δ is commuting on J .

Proof. We are given that

[[δ(x), x], x] ∈ Z(R) for all x ∈ J. (2.1)

An easier computation shows that the trace δ of D satis�es the relation:

δ(x+ y) = δ(x) + δ(y) +
n−1∑
r=1

(
n

r

)
hr(x, y) for all x, y ∈ J (2.2)

where hr(x, y) = D(x, x, x, ...., x, y, y, ...., y); y appears r times and x appears n− r times.

Consider a positive integer k, 1 ≤ k ≤ n+ 1. Replacing x by x+ ky in (2.1), we obtain

kQ1(x, y) + k2Q2(x, y) + ........+ kn+1Qn+1(x, y) = 0 for all x, y ∈ J (2.3)

where Qi(x, y) denotes the sum of the terms in which y appears i times. Using (2.3) together
with Lemma 2.1, we have

[[δ(x), x], y] + [[δ(x), y], x] + n[[D(x, x, x, ...., y), x], x] ∈ Z(R) (2.4)

for all x, y ∈ J. Replacing y by 4y2z in (2.4), where z ∈ J , we get

[[δ(x), x], y2z] + [[δ(x), y2z], x] + n[[D(x, x, x, ...., y2z), x], x] ∈ Z(R). (2.5)

for all x, y, z ∈ J. Substituting 8xy2z for y in (2.4), we get
x([[δ(x), x], y2z] + [[δ(x), y2z], x] + n[[D(x, x, x, ...., y2z), x], x]) + (n+ 2)[[δ(x), x], x]y2z

+(2n+ 1)[δ(x), x][y2z, x] + nδ(x)[[y2z, x], x] ∈ Z(R) (2.6)

which leads to

(3n+ 3)[[δ(x), x], x][y2z, x] + (3n+ 1)[δ(x), x][[y2z, x], x] + nδ(x)[[[y2z, x], x], x] = 0 (2.7)
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Replacing z by 2z[δ(x), x] in (2.7) and comparing with (2.4), we �nd that

(3n+ 3)[[δ(x), x], x]2y2z + (6n+ 2)[δ(x), x][y2z, x][[δ(x), x], x]

+3nδ(x)[[[y2z, x], x], x][[δ(x), x], x] = 0 (2.8)

and thus

(9n+ 5)[[δ(x), x], x]2[y2z, x] + (9n+ 2)[δ(x), x][[y2z, x], x][[δ(x), x], x]

+3nδ(x)[[[y2z, x], x], x][[δ(x), x], x] = 0 (2.9)

for all x, y, z ∈ J. It now follows, from (2.7) and (2.9), that

4[[δ(x), x], x]2[y2z, x] + [δ(x), x][[y2z, x], x][[δ(x), x], x] = 0. (2.10)

Once again replacing z by 2z[δ(x), x] and using (2.10), we obtain

[[δ(x), x], x]2(4[[δ(x), x], x]y2z + 2[δ(x), x][y2z, x]) = 0 for all x, y, z ∈ J. (2.11)

Writing 2z[r, t] instead of z in (2.11), where r, t ∈ R, we get

[[δ(x), x], x]2[δ(x), x]y2z[[r, t]x] = 0 for all x, y, z ∈ J ; r, t ∈ R. (2.12)

Since N is prime, then (2.12) shows that

[[δ(x), x], x] = 0 for all x ∈ J. (2.13)

Replacing x by x+ ky in (2.13), we obtain

kQ1(x, y) + k2Q2(x, y) + ........+ kn+1Qn+1(x, y) = 0 for all x, y ∈ J. (2.14)

Once again applying Lemma 2.1, we obtain

[[δ(x), x], y] + [[δ(x), y], x] + n[[D(x, x, x, ...., y), x], x] = 0 for all x, y ∈ J. (2.15)

Replacing y by 8xzy2uv in (2.15), where u, v, z ∈ J , we get

(2n+ 1)[δ(x), x][zy2uv, x] + nδ(x)[[zy2uv, x], x] = 0 for all u, v, x, y, z ∈ J. (2.16)

Replacing y by 8xrzy2uv in (2.15), where u, v, z ∈ J and r ∈ R, we get

(2n+1)[δ(x), x][rzy2uv, x]+nδ(x)[[rzy2uv, x], x] = 0 for all u, v, x, y, z ∈ J ; r ∈ R (2.17)

in such a way that

(2n+ 1)[δ(x), x](r[zy2uv, x] + [r, x]zy2uv) + nδ(x)(2[r, x][zy2uv, x]

+r[[zy2uv, x], x] + [[r, x], x]zy2uv) = 0 (2.18)

for all u, v, x, y, z ∈ J, r ∈ R. Taking r = δ(x) in the last expression we get

(2n+ 1)[δ(x), x](δ(x)[zy2uv, x] + [δ(x), x]zy2uv) + nδ(x)(2[δ(x), x][zy2uv, x]

+δ(x)[[zy2uv, x], x]) = 0. (2.19)

Invoking (2.17), we get
(2n+ 1)[δ(x), x](δ(x)[zy2uv, x] + [δ(x), x]zy2uv) + 2nδ(x)[δ(x), x][zy2uv, x]

−(2n+ 1)δ(x)[δ(x), x][zy2uv, x] = 0 (2.20)

and thus

(2n+ 1)

(
[δ(x), x]δ(x)− δ(x)[δ(x), x]

)
[zy2uv, x] + (2n+ 1)[δ(x), x]2zy2uv = 0 (2.21)
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If we replace y by 8xδ(x)zy2 in (2.15), then we get(
(2n+ 1)[δ(x), x]δ(x)− δ(x)[δ(x), x]

)
[zy2, x] + (2n+ 1)[δ(x), x]2zy2 = 0 (2.22)

Comparing (2.21) and (2.22) we conclude that(
(2n+ 1)[δ(x), x]δ(x)− δ(x)[δ(x), x]

)
zy2[uv, x] = 0 (2.23)

so that

((2n+ 1)[δ(x), x]δ(x)− δ(x)[δ(x), x])Jy2[uv, x] = 0 for all u, v, x, y ∈ J. (2.24)

Since R is prime, then either (2n+1)[δ(x), x]δ(x)−δ(x)[δ(x), x] = 0 or y2[uv, x] = 0, in which

case we obtain x ∈ Z(R). Hence in both cases we have

(2n+ 1)[δ(x), x]δ(x)− δ(x)[δ(x), x] = 0 for all x ∈ J. (2.25)

Similarly replacing y by 8uvy2rδ(x)x in (2.15), where u, v ∈ J and r ∈ R we get

(2n+ 1)[uvy2rδ(x), x][δ(x), x] + n[[uvy2rδ(x), x], x]δ(x) = 0 (2.26)

which leads to

(2n+ 1)[uvy2r, x]δ(x)[δ(x), x] + (2n+ 1)uvy2r[δ(x), x]2 + 2n[uvy2r, x][δ(x), x]δ(x)

n[[uvy2r, x], x]δ(x)2 = 0 for all u, v, x, y ∈ J, r ∈ R. (2.27)

If we replace y by 8uvy2rx in (2.15), where u, v, y ∈ J and r ∈ R, we �nd that

(2n+ 1)[uvy2r, x][δ(x), x] + n[[uvy2r, x], x]δ(x) = 0 for all u, v, x, y ∈ J ; r ∈ R. (2.28)

Using (2.28) together with (2.27) we see that
(2n+ 1)[uvy2r, x]δ(x)[δ(x), x] + (2n+ 1)uvy2r[δ(x), x]2 + 2n[uvy2r, x][δ(x), x]δ(x)

−(2n+ 1)[uvy2r, x][δ(x), x]δ(x) = 0 for all u, v, x, y ∈ J ; r ∈ R (2.29)

so that

[uvy2r, x]((2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x)) + (2n+ 1)uvy2r[δ(x), x]2 = 0 (2.30)

Similarly if we replace y by 8y2rδ(x)x in (2.15), where r ∈ R, we get

[y2r, x]((2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x)) + (2n+ 1)y2r[δ(x), x]2 (2.31)

By virtue of (2.30), equation (2.31) forces

[uv, x]y2r

(
(2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x)

)
= 0 (2.32)

and so

[uv, x]y2R

(
(2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x)

)
= 0 for all u, v, x, y ∈ J. (2.33)

In light of the primeness of R, we conclude that either (2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x) = 0

or [uv, x]y2 = 0. Arguing as above, in both the cases we have

(2n+ 1)δ(x)[δ(x), x]− [δ(x), x]δ(x) = 0 for all x ∈ J. (2.34)

Adding (2.25) and (2.34), because of (n+ 1)! torsion freeness, we �nd that

δ(x)[δ(x), x] + [δ(x), x]δ(x) = 0 for all x ∈ J. (2.35)
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Analogously, adding (2.25) and (2.35) we see that

[δ(x), x]δ(x) = 0 for all x ∈ J. (2.36)

Accordingly, equation (2.25) reduces to

δ(x)[δ(x), x] = 0 for all x ∈ J. (2.37)

Replacing x by x+ ky in (2.37), we obtain

kB1(x, y) + k2B2(x, y) + ........+ kn+1Bn+1(x, y) = 0 for all x, y ∈ J (2.38)

where Bi(x, y) denotes the sum of the terms in which y appears i times. Application of Lemma

2.1 and (2.3) gives that

δ(x)[δ(x), y] + nδ(x)[D(x, x, x, ...., y), x] + nD(x, x, x, ...., y)[δ(x), x] = 0 (2.39)

Replacing y by 8ury2vx in (2.39), where u, v, x, y ∈ J and r ∈ R, we obtain

(n+ 1)δ(x)ury2v[δ(x), x] + nδ(x)[ury2v, x]δ(x) = 0 (2.40)

Substituting 8xury2vx for y in (2.39), where u, v, x, y ∈ J and r ∈ R, we get

(n+ 1)δ(x)xury2v[δ(x), x] + nδ(x)x[ury2v, x]δ(x) = 0 (2.41)

Left multiplying (2.40) by x and using (2.41), it is obvious to see that

(n+ 1)[δ(x), x]ury2v[δ(x), x] + n[δ(x), x][ury2v, x]δ(x) = 0 (2.42)

Replacing y by 8δ(x)sz2ry2vx in (2.4), where s ∈ R we get

(2n+ 1)[δ(x), x]sz2ry2v[δ(x), x] + 2n[δ(x), x][sz2ry2v, x]δ(x) = 0 (2.43)

Writing sz2 instead of u in (2.42), where z ∈ J and s ∈ R we get

(n+ 1)[δ(x), x]sz2ry2v[δ(x), x] + n[δ(x), x][sz2ry2v, x]δ(x) = 0 (2.44)

Combining (2.43) and (2.44), because of the torsion restriction, we �nd that

[δ(x), x]sz2ry2v[δ(x), x] + [δ(x), x][sz2ry2v, x]δ(x) = 0 (2.45)

for all v, x, y, z ∈ J, and r, s ∈ R. Comparing (2.44) and (2.45) we conclude that

[δ(x), x]sz2ry2v[δ(x), x] = 0 for all v, x, y, z ∈ J, and r, s ∈ R (2.46)

so that

[δ(x), x]sz2Ry2v[δ(x), x] = 0 for all v, x, y, z ∈ J, and s ∈ R. (2.47)

Since R is prime, the we can conclude that [δ(x), x]sz2 = 0 or y2v[δ(x), x] = 0. But in both the

cases one can see that for each x ∈ J, [δ(x), x] = 0 and our proof is complete. 2

Theorem 2.4. Let n ≥ 2 be a �xed positive integer and R be a noncommutative (n+ 1)!-torsion
free prime ring and J a nonzero Jordan ideal of R. If R admits a permuting generalized n-
derivationW with associated n-derivation D such that the trace ω ofW is commuting on R. Then

W is a left n-multiplier on R.

Proof. Assume that

[ω(x), x] = 0 for all x ∈ J. (2.48)

It is obvious to verify that

ω(x+ y) = ω(x) + ω(y) +
∑(

n

r

)
Hr(x, y) for all x, y ∈ J (2.49)
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where Hi(x, y) = W(x, x, x, ...., x, y, y, ...., y); y appears i times.

Replacing x by x+ ky in (2.48), where 1 ≤ k ≤ n is a positive integer, we get

[ω(x+ ky), x+ ky] = 0 for all x, y ∈ J (2.50)

so that

[ω(x) + ω(ky) +
n−1∑
i=1

(
n

i

)
Hi(x, y), x+ ky] = 0 for all x, y ∈ J (2.51)

and therefore

k([ω(x), y] + (n
1
)[H1(x, y), x]) + k2((n

1
)[H1(x, y), y] + (n

2
)[H2(x, y), x])

+.....+ kn([ω(y), x] +

(
n

n− 1

)
[Hn−1(x, y), x]) = 0 for all x, y ∈ J (2.52)

Application of Lemma 2.1 yields

[ω(x), y] +

(
n

1

)
[H1(x, y), x] = [ω(x), y] + n[W(x, x, ..., y), x] = 0 for all x, y ∈ J. (2.53)

Replacing y by 8zuy2vx, where u, v, x, y, z ∈ J, we get

0 = zuy2v[ω(x), x] + [ω(x), zuy2v]x+ n[W(x, x, ...., zuy2v)x+ zuy2vD(x, x, ..., x), x]

= [ω(x), zuy2v]x+ nzuy2v[δ(x), x] + n[zuy2v, x]δ(x) + n[W(x, x, ..., zuy2v), x]x

= n[zuy2v, x]δ(x) + nzuy2v[δ(x), x]

Since R is (n+ 1)!-torsion free, it then follows that

[zuy2v, x]δ(x) + zuy2v[δ(x), x] = 0 for all x, y ∈ J. (2.54)

Replacing z by 2[r, t]z,where r, t ∈ R, and invoking (2.54), we have

[[r, t], x]zy2vδ(x) = 0 for all v, x, y ∈ J, and r, t ∈ R. (2.55)

Using the primeness of R, we get δ(x) = 0 or x ∈ Z(R) for all x ∈ J. Hence in all the cases we

have

[δ(x), x] = 0 for all x ∈ J. (2.56)

Consider a positive integer k, 1 ≤ k ≤ n+ 1. Replacing x by x+ λy in (2.56), where y ∈ J , we
get

0 = k[δ(x), y] + k[δ(x), y] +

(
n

r

)
[h1(x, y), x] + k2

(
n

1

)
[h1(x, y), y] +

(
n

2

)
[h2(x, y), x]

+ ...+ kn
(
n

1

)
[h1(x, y), y] +

(
n

n− 1

)
[hn−1(x, y), y]

In view of Lemma 2.1, (2.56) assures that

[δ(x), y] + n[h1(x, y), x] = 0 for all x, y ∈ J. (2.57)

Replacing y by 128ry2vj2t in (2.57), where j, v ∈ J and r, t ∈ R, we get

[δ(x), 128ry2vj2t] + n[h1(x, 128ry
2vj2t), x] = 0 for all x ∈ J. (2.58)

Writing xr instead of r in (2.58), one can easily see that

[δ(x), 128xry2vj2t] + n[h1(x, 128xry
2vj2t), x] = 0 for all x ∈ J (2.59)

which implies that

x[δ(x), 128ry2vj2t] + n[h1(x, 128ry
2vj2t), x] + nδ(x)[128ry2vj2t, x] = 0 (2.60)
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and thus

δ(x)[128ry2vj2t, x] = 0 for all x ∈ J. (2.61)

Substituting t by ts in (2.61), where s ∈ R, and using the primeness of R, we conclude that

δ(x) = 0 or x ∈ Z(R) for all x ∈ J .
Let x ∈ J (x ∈ Z(R) and y ∈ J (y /∈ Z(R). Then y + kx /∈ Z(R) and thus

0 = δ(y + kx) = δ(y) + knδ(x) +
n−1∑
i=1

ki
(
n

i

)
hi(x, y)

accordingly,
n−1∑
r=1

kr
(
n

r

)
hr(x, y) + knδ(x) = 0 for all x, y ∈ J. (2.62)

Application of Lemma 2.1 implies that

δ(x) = 0 for all x ∈ J. (2.63)

For k = 1, 2, 3, ..., n, Let Pk(x) = D(x, x, .., x, xk+1, xk+2, ..., xn), where x appears k times and

x, xi ∈ R, i = k + 1, k + 2, ..., n. Let µ (1 ≤ µ ≤ n− 1) be any integer. By view of (2.63),

0 = δ(µx+ xn) = Pn(µx+ xn)

= µnδ(x) + δ(xn) +
n−1∑
r=1

µr

(
n

r

)
Pr(x)

=
n−1∑
r=1

µr

(
n

r

)
Pr(x)

for all x, xn ∈ J , that is
n−1∑
r=1

µr

(
n

r

)
Pr(x) = 0 for all x ∈ J. (2.64)

Using Lemma 2.2 together with (2.64), we obtain

Pn−1(x) = 0 for all x ∈ J. (2.65)

Let ν (1 ≤ ν ≤ n− 2) be any integer. By virtue of (2.65) we have

0 = Pn−1(νx+ xn−1) = νn−1Pn−1(x) + Pn−1(xn−1) +
n−2∑
i=1

νi
(
n

i

)
Pi(x)

for all x, xn−1 ∈ J in such a way that

n−2∑
r=1

νr
(
n

r

)
Pr(x) = 0 for all x ∈ J. (2.66)

Once again using Lemma 2.2, (2.66) yields

Pn−2(x) = 0 for all x ∈ J. (2.67)

If we continue to carry out the same method as above, we arrive at

P1(x) = 0 for all x ∈ J (2.68)

for all x ∈ J ; that is
D(x1, x2, ....., xn) = 0 for all xi ∈ J (2.69)

so we get the required result. 2

Our aim in the following theorem is to extend ([2], Theorem 2.8) to Jordan ideals with the

restriction that R is assumed to be prime.
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Theorem 2.5. Let n be a �xed positive integer and R be a (n+1)!-torsion free prime ring and J
a nonzero Jordan ideal of R. If R admits a nonzero permuting generalized n-derivation W with

associated n-derivation D such that the trace ω ofW is centralizing on J . ThenR is commutative.

Proof. We are given that [ω(x), x] ∈ Z(R) for all x ∈ R. Using similar arguments as used in the

proof of Theorem 2.4, we obtain

[ω(x), y] + n[W(x, x, ..., y), x] = 0 for all x, y ∈ J. (2.70)

Replacing y by 128ry2uz2x, where u, z ∈ J, and r ∈ R, we have
128ry2uz2[ω(x), x] + [ω(x), 128ry2uz2]x+ n[W(x, x, ..., 128ry2uz2), x]x

+128nry2uz2[δ(x), x] + n[128ry2uz2, x]δ(x) ∈ Z(R) (2.71)

for all x, y ∈ J. Once again replacing y by 128ry2uz2 in (2.70), where u ∈ J and r ∈ R, it is
straightforward to see that

[ω(x), 128ry2uz2] + n[W(x, x, ..., 128ry2uz2), x] = 0 for all x, y ∈ J. (2.72)

Combining (2.71) with (2.72), we get
[128ry2uz2, x][ω(x), x] + n[128ry2uz2, x][δ(x), x] + 128nry2uz2[[δ(x), x], x]

+n[128ry2uz2, x][δ(x), x] + n[[128ry2uz2, x], x]δ(x) = 0 (2.73)

for all u, x, y ∈ J and r ∈ R. Replacing r by ω(x)r in (2.73) and invoking (2.73), we obtain

128[ω(x), x]ry2uz2[ω(x), x]+128×2n[ω(x), x]ry2uz2[δ(x), x]+2n[ω(x), x][128ry2uz2, x]δ(x) = 0

(2.74)

for all u, x, y ∈ J and r ∈ R. Writing rs instead of r, where s ∈ R, we obtain

[ω(x), x](128rsy2uz2([ω(x), x]+2n[δ(x), x])+2n(r[128sy2uz2, x]+[r, x]128sy2uz2)δ(x)) = 0

(2.75)

Using (2.74) together with (2.75), we get

2n[ω(x), x][r, x]128sy2uz2δ(x) = 0 for all u, x, y ∈ J, and r ∈ R. (2.76)

Replacing r by ω(x), we conclude that either [ω(x), x]2 = 0 or δ(x) = 0.
If [ω(x), x]2 = 0, then [ω(x), x]R[ω(x), x] = 0 so that [ω(x), x] = 0.
Suppose that δ(x) = 0, then (2.74) gives

ry2uz2[ω(x), x]2 = 0 for all u, x, y ∈ J, and r ∈ R (2.77)

which, because of the primeness of R, leads to

[ω(x), x] = 0 for all x ∈ J (2.78)

so that ω is commuting on J.
For x, y ∈ J, replacing x by x+ky for k = 1, 2, ..., n in [ω(x), x] = 0,we �nd that [x+ky, δ(x)+

δ(ky) +
n−1∑
r=1

(nr)hr(x, y)] = 0 for all x, y ∈ J. Using the last equation together with Lemma 2.1,

we get

[y, ω(x)] + n[x,W(x, x, x, ...., y)] = 0 for all x, y ∈ J. (2.79)

Replacing y by 8zy2uvx in (2.79), where u, v, z ∈ J , and using the given condition, we get

[zy2uv, ω(x)]x+ n[x,W(x, x, x, ...., zy2uv)]x+ n[x, zy2uv]ω(x) = 0 ∀ x, y ∈ J. (2.80)

Using (2.79) we �nd that [x, zy2uv]ω(x) = 0. Replacing x by x+ kw for k = 1, 2, ..., n and use

(2.79) we obtain

n[x, zy2uv]W(x, x, x, ...., w) + [w, zy2uv]ω(x) = 0 ∀ u, v, w, x, y, z ∈ J. (2.81)
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Then we obtain

n[x, z]y2uvW(x, x, x, ...., w) + [w, z]y2uvω(x) = 0 ∀ j, u, v, w, x, y, z ∈ J. (2.82)

Replacing w by z we get

n[x, z]y2uvW(x, x, x, ...., z) = 0 ∀ u, v, x, y, z ∈ J. (2.83)

Replacing z by z + w we get

n[x, z]y2uvW(x, x, x, ...., w) + [x,w]y2uvW(x, x, x, ...., z) = 0 ∀ u, v, w, x, y, z ∈ J. (2.84)

Using (2.83) and (2.84) we obtain

[x,w]y2uvW(x, x, x, ...., z)R[x,w]y2uvW(x, x, x, ...., z) = 0 ∀ u, v, w, x, y, z ∈ J. (2.85)

Since R is prime we conclude that

[x,w]y2uvW(x, x, x, ...., z) = 0 ∀ u, v, w, x, y, z ∈ J. (2.86)

Let [x, y]zW(x, ..., x, xi−1, xi−2, ...., x2, x1) = 0 holds for all x, xi−1, xi−2, ..., x1 ∈ J, and 2 ≤
i ≤ n. Replacing x by x+ kxi in last equation to obtain

[x+ kxi, y]zW(x+ kxi, ..., x+ kxi, xi−1, xi−2, ...., x2, x1) = 0 ∀ j, u, v, w, x, y, z ∈ J. (2.87)

Using Lemma 2.1, we obtain

[xi, y]zW(x, ..., x, xi−1, ..., x1) + (n− i+ 1)[x, y]zW(x, ..., x, xi, ..., x1) = 0 (2.88)

for all j, u, v, w, x, y, z ∈ J. Then we have

0 = (n− i+ 1)[x, y]zW(x, ..., x, xi, ..., x1)R[x, y]zW(x, ..., x, xi, ..., x1)
= −[xi, y]zW(x, ..., x, xi, ..., x1)R[x, y]zW(x, ..., x, xi−1, ..., x1).
Since R is prime we get

[x, y]zW(x, ..., x, xi, ..., x1) = 0 ∀ xi, ..., x1, x, y, z ∈ J. (2.89)

For i = n− 1, we obtain

[x, y]zW(x, xn−1, ..., x1) = 0 ∀ xn−1, ..., x1, x, y, z ∈ J. (2.90)

As R is prime we obtain [x, y] = 0 or W(x, xn−1, ..., x1) ∀xn−1, ..., x1, x, y ∈ J.
Let us consider

J1 = {x ∈ J | [x, z] = 0 ∀ z ∈ J}, J2 = {x ∈ J |W(x, yn−1, ..., y1) = 0 ∀ yn−1, ..., y1 ∈ J}.

It is clear that J1 and J2 are two additive subgroups of J such that J = J1 ∪ J2 and therefore

either J = J1 or J = J2.
If J = J1 then we get [J, J ] = 0 which proves that R is commutative.

If J = J2 then W(x, yn−1, ..., y1) = 0 for all yn−1, ..., y1, x ∈ J and thus W(J, J, ..., J) = 0.
Accordingly ω(J) = 0 in such a way that ω = 0, a contradiction. Therefore R is commutative.2
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